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An Example of Two-Dimensional Interpolation

Using a Linear Combination of Bicubic B-Splines
Stanisław Rosłoniec

Abstract—The paper describes how a linear combination of
bicubic B-splines can be effectively used in a two-dimensional
interpolation. It is assumed that values of a function to be
interpolated are evaluated at the uniformly located nodes of a
corresponding rectangular grid. All formulae of importance have
been derived step by step and are presented in a form convenient
for computer implementations. To ensure clarity of considerations
a short description of one-dimensional B-spline is also given
in Appendix 1. The usefulness of the presented interpolation
algorithm has been confirmed by the real engineering example
of applications.

Keywords—Numerical analysis, two-variable interpolation, cu-
bic B-splines.

I. INTRODUCTION

A
T the present time the most of science and engineering

problems are analysed numerically. Consequently the

results of calculations are presented in a form of tables or

the corresponding parametrical diagrams. It is obvious that

these traditional forms of presentation are rather inconvenient

for computer-aided design (CAD), calibration of electronic

system or automatic control [1]–[4]. Thus, in such situations

the proper interpolation or approximation of final numerical

results by the continuous and differentiable functions are

required. Of course, the used functions should be also smooth

enough and the interpolation method should not be excessively

complex. It follows from the relevant literature that the nor-

malised bicubic B-splines seem to be the most suitable for

this purpose, especially when the interpolation problem being

solved is large in size, [5]–[7]. Therefore, in the present paper

it is shown how the interpolation problem formulated above

can be effectively solved by using the bicubic B-splines. The

proposed approach is illustrated with results of calculations

carried out for a shielded coaxial slab transmission line.

II. THE ALGORITHM OF TWO-DIMENSIONAL

INTERPOLATION USING CUBIC B-SPLINES

The problem of interpolation of a one-variable function by

the linear combination of the cubic B-splines is a subject

of considerations in many publications, see [5] and [7] for

instance. As a rule the interpolating function has the form

Q1(x) =

m+1
∑

i=−1

aiB
(i)(x), x0 ≤ x ≤ xm (1)

This analytical one-variable function can be easily converted

into the two-variable one by assuming that all its coefficients
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ai, namely a−1, a0, a1, a2, a3, . . . , am+1 are similar functions

of the second variable, i.e.

ai ≡ ai(y) =
n+1
∑

j=−1

ai,jB
(j)(y), y0 ≤ y ≤ yn (2)

where ai,−1, ai,0, ai,1, ai,2, ai,3, . . . , ai,n+1 are new real-

valued coefficients creating (n + 3)−element vectors ai for

−1 ≤ i ≤ m+ 1. Also in this case B(j)(y) denotes the cubic

B-spline related to its central node y = yj , see the Appendix 1.

After introducing coefficients (2) into function (1) we obtain:

Q2(x, y) =

m+1
∑

i=−1

[

n+1
∑

j=−1

ai,jB
(j)(y)

]

B(i)(x) =

= B(−1)(x)[a−1,−1B
(−1)(y)+a−1,0B

(0)(y)+a−1,1B
(1)(y)+

. . .+ a−1,n+1B
(n+1)(y)] +B(0)(x)[a0,−1B

(−1)(y)+

+a0,0B
(0)(y) + a0,1B

(1)(y) + . . .+ a0,n+1B
(n+1)(y)]+

..................................................................................

+B(m+1)(x)[am+1,−1B
(−1)(y) + am+1,0B

(0)(y)+

+am+1,1B
(1)(y) + . . .+ am+1,n+1B

(n+1)(y)] (3)

The two-variable function formulated above, includes

(m+ 3)(n+ 3) independent coefficients ai,j because B-spline

functions of third degree are defined for −1 ≤ i ≤ m + 1
and −1 ≤ j ≤ n + 1. In order to evaluate the values of

Fig. 1. The extended interpolation region including additional (fictitious)
nodes.
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these coefficients a system of (m + 3)(n + 3) independent

equations has to be created. For this purpose the given values

zi,j of the function to be interpolated, determined at particular

nodes (xi, yj) of the doubly regular grid, are used, see Fig.1.

There the term “doubly regular grids” means that its nodes are

distributed equidistantly with step hx with respect to variable

x and with step hy with respect to the second variable y. Due

to this assumption the B-spline functions B(i)(x) and B(j)(y)
can be calculated without difficulty by using the formulae (18)

given in Appendix 1. On the grid shown in Fig.1, we can

separate (m + 1)(n + 1) nodes of the proper interpolation

region R : {(x, y), x0 ≤ x ≤ xm, y0 ≤ y ≤ yn} (dashed)

and 2(m+n)+8 additional (fictitious) nodes surrounding this

region.

Function (3) should interpolate exactly the given discrete

function zi,j at all nodes (xi, yj) of a doubly regular grid

defined on the interpolation region R. This fundamental re-

quirement is satisfied if

Q2(xk, yl) =

m+1
∑

i=−1

[

n+1
∑

j=−1

ai,jB
(j)(yl)

]

B(i)(xk) = zk,l (4)

where 0 ≤ k ≤ m and 0 ≤ l ≤ m. The complete form of the

above equation is:

B(−1)(xk)[a−1,−1B
(−1)(yl)+a−1,0B

(0)(yl)+a−1,1B
(1)(yl)+

. . .+ a−1,n+1B
(n+1)(yl)] +B(0)(xk)[a0,−1B

(−1)(yl)+

+a0,0B
(0)(yl) + a0,1B

(1)(yl) + . . .+ a0,n+1B
(n+1)(yl)]+

..................................................................................

+B(m+1)(xk)[am+1,−1B
(−1)(yl) + am+1,0B

(0)(yl)+

+am+1,1B
(1)(yl) + . . .+ am+1,n+1B

(n+1)(yl)] = zk,l

It follows from the fundamental properties of cubic B-splines

that they take zero values if j ≤ l − 2, j ≥ l + 2, k ≤ i− 2,

and k ≥ i+ 2, see Appendix 1. Due to this feature the above

equation reduces itself to

B(k−1)(xk)[ak−1,l−1B
(l−1)(yl) + ak−1,lB

(l)(yl)+

+ak−1,l+1B
(l+1)(yl)] +B(k)(xk)[ak,l−1B

(l−1)(yl)+

+ak,lB
(l)(yl) + ak,l+1B

(l+1)(yl)]+

+B(k+1)(xk)[ak+1,l−1B
(l−1)(yl) + ak+1,lB

(l)(yl)+

+ak+1,l+1B
(l+1)(yl)] = zk,l (5)

The further reduction of equation (5) takes place when the

following realtions

B(k−1)(xk) = 1/6, B(k)(xk) = 4/6, B(k+1)(xk) = 1/6

B(l−1)(yl) = 1/6, B(l)(yl) = 4/6, B(l+1)(yl) = 1/6
(6)

are taken into account, see Table II presented in Appendix 1.

Finally, we obtain

(ak−1,j−1+4ak−1,l+ak−1,l+1)+4(ak,l−1+4ak,l+ak,l+1)+

+(ak+1,l−1 + 4ak+1,l + ak+1,l+1) = 36zk,l (7)

Equations similar to (7) are formulated for each node of the

rectangular grid covering the interpolation region R which has

been dashed in Fig.1. In such way a system of (m+1)(n+1)
independent equations is obtained. As mentioned earlier, the

interpolating function Q2(xk, yl) contains (m + 3)(n + 3)
coefficients. To evaluate of them (m+3)(n+3) independent

equations are required. Thus, additional 2(m+n)+8 equations

should be formulated on the basis of proper boundary condi-

tions. It follows from the literature that very good quality of

interpolation can be achieved when the second-order partial

derivatives of the interpolating function take zero values at

border nodes, [5], [7], [8]. Boundary conditions formulated in

this way describe the following equations

∂2Q2(xk, yl)

∂x2
=

1

6h2
x

[ak−1,l−1 + 4ak−1,l + ak−1,l+1]+

−
2

6h2
x

[ak,l−1 + 4ak,l + ak,l+1]+

+
1

6h2
x

[ak+1,l−1 + 4ak+1,l + ak+1,l+1] = 0 (8)

for k = 0, m and 0 ≤ l ≤ n

∂2Q2(xk, yl)

∂y2
=

1

6h2
y

[ak−1,l−1 + 4ak,l−1 + ak+1,l−1]+

−
2

6h2
y

[ak−1,l + 4ak,l + ak+1,l]+

+
1

6h2
y

[ak−1,l+1 + 4ak,l+1 + ak+1,l+1] = 0 (9)

for l = 0, n and 0 ≤ k ≤ m
where hx = xk+1 − xk and hy = yl+1 − yl. The number of

equations described by fomulae (8) and (9) is equal to 2m+
2n+4. Four missing equations are formulated for corner nodes,

i.e. (x0, y0), (x0, yn), (xm, y0) and (xm, yn), in the form

∂4Q2(xk, yl)

∂x2∂y2
=

∂4Q2(xk, yl)

∂y2∂x2
=

=
1

h2
xh

2
y

[ak−1,l−1 − 2ak,l−1 + ak+1,l−1]+

−
2

h2
xh

2
y

[ak−1,l − 2ak,l + ak+1,l]+

+
1

h2
xh

2
y

[ak−1,l+1 − 2ak,l+1 + ak+1,l+1] = 0 (10)

Now, the overall number of equations, described by formulae

(7)-(10), is equal to (m + 3)(n + 3) and is equal to the

number of coefficients ai,j being sought. Naturally, the system

of equations formulated on a basis of (7)-(10) is linear with

respect to coefficients ai,j and cen be written in a standard

matrix form

C · A = Z (11)



AN EXAMPLE OF TWO-DIMENSIONAL INTERPOLATION USING A LINEAR COMBINATION OF BICUBIC B-SPLINES 295

where:

C =

























[M1][M2][M1] .

[M1][M3][M1] .

[M1][M3][M1] .

[M1][M3][M1].
. . . . . . . . . . .

.[M1][M3][M1]

. [M1][M3][M1]

. [M1][M3][M1]

. [M1][M2][M1]

























(12)

is the square matrix of degree (m + 3)(n + 3) and it is

composed of 2(m + 3) matrices [M1], 2 matrices [M2] and

(m+1) matrices [M3]. All these component matrices (blocks)

are of degree (n+3) and have the following square structures.

[M1] =





















1 −2 1 0 . 0 0 0 0
1 4 1 0 . 0 0 0 0
0 1 4 1 . 0 0 0 0
. . . . . . . . .
0 0 0 0 . 1 4 1 0
0 0 0 0 . 0 1 4 1
0 0 0 0 . 0 1 −2 1





















(n+3)×(n+3)

[M2] =

=











−2 4 −2 0 . 0 0 0 0
−2 −8 −2 0 . 0 0 0 0
0 −2 −8 −2. 0 0 0 0
. . . . . . . . .

0 0 0 0 . − 2 −8 −2 0
0 0 0 0 . 0 −2 −8 −2
0 0 0 0 . 0 −2 4 −2











(n+3)×(n+3)

[M3] =



















4 −8 4 0 . 0 0 0 0
4 16 4 0 . 0 0 0 0
0 4 16 4 . 0 0 0 0
. . . . . . . . .

0 0 0 0 . 4 16 4 0
0 0 0 0 . 0 4 16 4
0 0 0 0 . 0 4 −8 4



















(n+3)×(n+3)

(13)

The vector A of variables (coefficients ai,j) as well as vector

Z of the free terms, see equation (11), have a column – block

form, i.e.

A =





























[A−1]
[A0]
[A1]
[A2]
. . .

[Am−2]
[Am−1]
[Am]

[Am+1]





























1×(m·n+3m+3n+9)

Z =





























[Z−1]
[Z0]
[Z1]
[Z2]
. . .

[Zm−2]
[Zm−1]
[Zm]

[Zm+1]





























1×(m·n+3m+3n+9)

(14)

and are composed of the following blocks

[A−1] =





















a−1,−1

a−1,0

a−1,1

a−1,2

. . .
a−1,n

a−1,n+1





















, [A0] =





















a0,−1

a0,0
a0,1
a0,2
. . .
a0,n

a0,n+1





















,

[A1] =





















a1,−1

a1,0
a1,1
a1,2
. . .
a1,n

a1,n+1





















, . . . , [Am+1] =





















am+1,−1

am+1,0

am+1,1

am+1,2

. . .
am+1,n

am+1,n+1





















(15)

[Z−1] = [Zm+1] =





















0
0
0
0
. . .
0
0





















, [Z0] =





















0
36z0,0
36z0,1
36z0,2
. . .

36z0,n
0





















,

[Z1] =





















0
36z1,0
36z1,1
36z1,2
. . .

36z1,n
0





















, . . . , [Zm] =





















0
36zm,0

36zm,1

36zm,2

. . .
36zm,n

0





















(16)

The next stage of presented algorithm is solving the system of

equations which contains (m+1)(n+1) independent equations

defined by general formula (7) and 2m + 2n + 8 equations

related to boundary conditions described by (8)-(10).

In general, equation system (11) can be solved by means

of standard Gauss elimination method [6], [9] However, in

many cases this approach can be non-effectice, because matrix

(12) is sparse. In other words it contains [(m + 3)(n + 3)]2

xk

xk+1

xk-1

x *

y *ylyl-1 yl+1 yl+2 y

x

P

Fig. 2. A sector of the interpolation region placed around an internal node
(xk, yl).
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elements, from which only 9(m+ 3)(n+ 3) ones take values

different from zero. For sufficiently big values of m and n the

relative number of non-zero elements is of several percent. For

instance, if m > 7 and n > 7 then it is less than 9%. It is

obvious that in such cases the system (11) should be solved

by using one of special versions of Gauss elimination method

[8], [10], [11].

Thus, let us assume that the values of coefficients ai,j are

known. Let us assume also that a non-node point P (x, y) lies

in close vicinity of the node (xk, yl), as illustrated in Fig. 2.

In such a situation the value of the interpolating function

Z(x, y) ≡ Q2(x, y) at point P (x, y) is calculated according

to the following formula:

Z(x, y) = B(k−1)(x)[ak−1,l−1B
(l−1)(y) + ak−1,lB

(l)(y)+

+ak−1,l+1B
(l+1)(y) + ak−1,l+2B

(l+2)(y)]+

+B(k)(x)[ak,l−1B
(l−1)(y) + ak,lB

(l)(y) + ak,l+1B
(l+1)(y)+

+ak,l+2B
(l+2)(y)] +B(k+1)(x)[ak+1,l−1B

(l−1)(y)+

+ak+1,lB
(l)(y) + ak+1,l+1B

(l+1)(y) + ak+1,l+2B
(l+2)(y)]+

+B(k+2)(x)[ak+2,l−1B
(l−1)(y) + +ak+2,lB

(l)(y)+

+ak+2,l+1B
(l+1)(y) + ak+2,l+2B

(l+2)(y)] (17)

where k and l are the biggest integral indices for which

k · hx < x and l ·hy < y. The values of B-splines occuring in

the formula (17) can be easily calculated by using the formulae

(18) given in Appendix 1.

III. THE EXAMPLE OF TWO-DIMENSIONAL

INTERPOLATION

In this section the interpolating function Z(x, y) ≡ Q2(x, y)
is evaluated on the basis of the two-variable fuction

zi,j = z(xi, yj) given in Table 1. This function is determinated

by 42 discrete values of zi,j = z(xi, yj) specified at 42

uniformly spaced nodes (xi, yj), of the interpolation region

R : {(x, y), x0 ≤ x ≤ xm, y0 ≤ y ≤ yn}. These

values of characteristic impedance (expressed in ohms) have

been evaluated numerically (by means of the finite difference

method) for a shielded coaxial slab transmission line whose

tranverse section is shown in Fig. 3, [3], [4], [9], [12], [13].

According to the theory presented in the previous section,

see formulae (16), column vector Z formulated for this in-

terpolation problem contains 72 elements and is composed of

(m+3) = 8 9-element blocks. Some of them are given below.

[Z−1] = 36





























z−1,−1

z−1,0

z−1,1

z−1,2

z−1,3

z−1,4

z−1,5

z−1,6

z−1,7





























=





























z1
z2
z3
z4
z5
z6
z7
z8
z9





























=





























0
0
0
0
0
0
0
0
0





























,

[Z0] = 36





























z0,−1

z0,0
z0,1
z0,2
z0,3
z0,4
z0,5
z0,6
z0,7





























=





























z10
z11
z12
z13
z14
z15
z16
z17
z18





























=





























0
2771.28
2813.04
2832.48
2840.76
2845.08
2846.88
2847.60

0





























,

[Z1] = 36





























z1,−1

z1,0
z1,1
z1,2
z1,3
z1,4
z1,5
z1,6
z1,7





























=





























z19
z20
z21
z22
z23
z24
z25
z26
z27





























=





























0
2647.80
2689.56
2708.64
2716.56
2721.24
2723.04
2724.12

0





























, . . . ,

[Z6] = 36





























z6,−1

z6,0
z6,1
z6,2
z6,3
z6,4
z6,5
z6,6
z6,7





























=





























z64
z65
z66
z67
z68
z69
z70
z71
z72





























=





























0
0
0
0
0
0
0
0
0





























A solution of the matrix equation (11) is column vector A

containing 72 elements, i.e. coefficients ai,j of the interpolat-

ing function (3) being sought. Below, this vector is presented

as a block one, see formulae (14) and (15), composed of

(m+ 3) = 8 blocks [A−1]− [A6].

[A−1] =





























a−1,−1

a−1,0

a−1,1

a−1,2

a−1,3

a−1,4

a−1,5

a−1,6

a−1,7





























=





























a1
a2
a3
a4
a5
a6
a7
a8
a9





























=





























84.04900945
84.78287081
85.51673218
86.08589425
86.15892529
86.38998356
86.39492038
86.44928230
86.50364422





























,

W

bd

Air

Fig. 3. The tranverse section of the shielded coaxial slab transmission line.
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TABLE I

x = d/b y = W/b
y0 = 1.50 y1 = 1.75 y2 = 2.00 y3 = 2.25 y4 = 2.50 y5 = 2.75 y6 = 3.00

x0 = 0.32 80.83 81.79 82.32 82.53 82.67 82.72 82.75
x1 = 0.34 76.98 78.14 78.68 78.91 79.03 79.08 79.10
x2 = 0.36 73.55 74.71 75.24 75.46 75.59 75.64 75.67
x3 = 0.38 70.29 71.45 71.98 72.20 72.34 72.38 72.41
x4 = 0.40 67.20 68.36 68.89 69.14 69.25 69.29 69.32
x5 = 0.42 64.26 65.42 65.95 66.18 66.31 66.36 66.38

[A0] =





























a0,−1

a0,0
a0,1
a0,2
a0,3
a0,4
a0,5
a0,6
a0,7





























=





























a10
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a14
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a16
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



























=





























79.77684615
80.83000001
81.88315385
82.37738462
82.52730769
82.69338462
82.71915385
82.75000002
82.78084615





























,

[A1] =


























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
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
















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
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


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
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

























75.50468286
76.87712919
78.24957551
78.66887498
78.89569010
78.99678567
79.04338731
79.05071770
79.05804809
























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
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
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










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


























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


























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



























72.25042240
73.54148325
74.83254411
75.25111545
75.43993191
75.57547270
75.61329690
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75.68096148
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
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


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
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[A3] = 36
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




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


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
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




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








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
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



68.94624291
70.25693780
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[A4] =





























a4,−1

a4,0
a4,1
a4,2
a4,3
a4,4
a4,5
a4,6
a4,7


























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




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
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




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














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[A5] =


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
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




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a5,1
a5,2
a5,3
a5,4
a5,5
a5,6
a5,7
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
























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












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














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64.26000001
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66.38000001
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


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



























a6,−1
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
























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


























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
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


















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






















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




















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

,

It has been confirmed by numerous computer simulations that

interpolating function Z(x, y) ≡ Q2(x, y) evaluated above

takes values zk,l ascribed to the particular nodes (xk, yl)
of the interpolation region R : {(x, y), x0 ≤ x ≤ xm,
y0 ≤ y ≤ yn}. Undoubtedly, this fact confirms correctness of

presented interpolation method. Naturally, at any non-node

point, for example (x∗ = 0.37, y∗ = 2.35), the function

Z(x, y) can be written as

Z(x∗, y∗) = B(k−1)(x∗)[ak−1,l−1B
(l−1)(y∗)+ak−1,lB

(l)(y∗)+

+ak−1,l+1B
(l+1)(y∗) + ak−1,l+2B

(l+2)(y∗)]+

+B(k)(x∗)[ak,l−1B
(l−1)(y∗)+ak,lB

(l)(y∗)+ak,l+1B
(l+1)(y∗)+

+ak,l+2B
(l+2)(y∗)] +B(k+1)(x∗)[ak+1,l−1B

(l−1)(y∗)+

+ak+1,lB
(l)(y∗)+ak+1,l+1B

(l+1)(y∗)+ak+1,l+2B
(l+2)(y∗)]+

+B(k+2)(x∗)[ak+2,l−1B
(l−1)(y∗) + +ak+2,lB

(l)(y∗)+
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+ak+2,l+1B
(l+1)(y∗) + ak+2,l+2B

(l+2)(y∗)]

where: k = 2, l = 3, hx = 0.02, hy = 0.25, ∆x∗ = x∗−xk =
= 0.37− 0.36 = 0.01, ∆y∗ = y∗ − yl = 2.35− 2.25 = 0.1,

B(k−1)(x∗) =
1

6h3
x

[

2hx − (xk−1 + hx +∆x∗) + xk−1

]3

=

=
1

6h3
x

(hx −∆x∗)3 = 0.020833333

B(k)(x∗) =
1

6h3
x

[

3(∆x∗)3−6(∆x∗)2hx+4h3
x)
]

= 0.479166653

B(k+1)(x∗) =
1

6h3
x

[

−3(∆x∗−hx)
3−6(∆x∗−hx)

2hx+4h3
x

]

=

= 0.479166653

B(k+2)(x∗) =
1

6h3
x

(xk+2 − 2hx +∆x∗ − xk+2 + 2hx)
3 =

=
1

6h3
x

(∆x∗)3 = 0.020833333

B(l−1)(y∗) =
1

6h3
y

[

2hy − (yl−1 + hy +∆y∗) + yl−1

]3

=

=
1

6h3
y

(hy −∆y∗)3 = 0.036000004

B(l)(y∗) =
1

6h3
y

[

3(∆y∗)3−6(∆y∗)2hy+4h3
y)
]

= 0.538666684

B(l+1)(y∗) =
1

6h3
y

[

−3(∆y∗−hy)
3−6(∆y∗−hy)

2hy+4h3
y

]

=

= 0.414666675

B(l+2)(y∗) =
1

6h3
y

(yl+2 − 2hy +∆y∗ − yl+2 + 2hy)
3 =

=
1

6h3
y

(∆y∗)3 = 0.010666666

All values of B-splines listed above have been calculated ac-

cording to formula (18) given in Appendix 1. After introducing

these values and corresponding values of coefficients ai,j (ap-

propriate elements of vector A) into the interpolating function

Z(x∗, y∗) we obtain Z(x = 0.37, y = 2.35) = 73.869390.

The numerical results presented so far have been calculated

by means of computer program SPLINE elaborated on the

basis of theory presented in section 2 and Appendix 1. This

program has been also used for computing the three plane

sections of Z(x, y), namely Z(x = 0.40, 1.5 ≤ y ≤ 3.0),
Z(x = 0.42, 1.5 ≤ y ≤ 3.0) and Z(0.32 ≤ x ≤ 0.42,
y = 2.5) depicted in Figs.4 and 5, respectively.

It should be pointed out here that fuction Z(x, y) is smooth

enough, even near to the borders of interpolation region R.

Indirectly, this fact confirms the proper choice of boundary

conditions described by equations (8)-(10).

Fig. 4. Plane sections Z(x = 0.4, 1.5 ≤ y ≤ 3) and Z(x = 0.42,
1.5 ≤ y ≤ 3) of the interpolating function Z(x, y).

Fig. 5. The plane section Z(0.32 ≤ x ≤ 0.42, y = 2.5) of the interpolating
function Z(x, y).

IV. CONCLUSIONS

The main didactic purpose of the paper is to show how

the linear combination of bicubic B-splines can be effectively

used in the two-dimensional interpolation. It is assumed that

discrete values of a function to be interpolated are ascribed

to the uniformly spaced nodes of a rectangular grid cov-

ering the interpolation region. All formulae of importance

have been derived step by step and are presented in the

form especially convenient for computer implementations. To

ensure clarity of considerations, a short description of the

one-dimensional cubic B-spline is also given in Appendix 1.

The theory presented in section 2 and both appendices have

been used in section 3 to two-dimensional interpolate of 42

values of characteristic impedance of the shielded coaxial slab

transmission line. The obtained results confirm completely

correctness of the proposed approach. Due to proper choice

of boundary conditions, see equations (8)-(10), very good

quality of interpolation has been achieved. In other words,

ripples of the evaluated interpolating function Z(x, y) are

neglectible small near to borders of the interpolation region.

This significant conclusion is well illustrated by the three plane

sections of Z(x, y) shown in Figs. 4 and 5.
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APPENDIX 1

NORMALISED CUBIC B-SPLINES

The B(i)(x) spline being used in this paper is a polynomial

of degree m = 3 taking positive non-zero values on an interval

[xi−2h, xi+2h], as illustrated in Fig.6. According to [1], [2]

this polynomial can be written as

B(i)(x) =
1

6h3



























0 for x ≤ (xi − 2h)
(x− xi + 2h)3 for (xi − 2h) ≤ x ≤ (xi − h)
−3(x− xi)

3 − 6(x − xi)
2h+ 4h3 for (xi − h) ≤ x ≤ xi

3(x− xi)
3 − 6(x− xi)

2h+ 4h3 for xi ≤ x ≤ (xi + h)
(2h− x+ xi)

3 for (xi + h) ≤ x ≤ (xi + 2h)
0 for x ≥ (xi + 2h)

(18)

where xi denotes its central node and h is th distance between

any adjacent nodes. As it is visible in Fig.6, function (18)

takes the value of 4/6 at the central node xi and is equal to

1/6 at adjacent nodes, namely at xi−1 and xi+1. At nodes

xi−2, xi+2 (often called endpoints) and outside of the interval

[xi − 2h, xi + 2h] the function under discussion is equal to

0. The first-order and second-order derivatives of B(i)(x) can

be easily calculated by using the following formulae.

dB(i)(x)

dx
=

=
1

6h3



























0 for x ≤ (xi − 2h)
3(x− xi + 2h)2 for (xi − 2h) ≤ x ≤ (xi − h)
−9(x− xi)2 − 12(x − xi)h for (xi − h) ≤ x ≤ xi

9(x− xi)2 − 12(x − xi)h for xi ≤ x ≤ (xi + h)
−3(2h− x+ xi)2 for (xi + h) ≤ x ≤ (xi + 2h)
0 for x ≥ (xi + 2h)

(19)

d2B(i)(x)

dx2
=

=
1

6h3



























0 for x ≤ (xi − 2h)
6(x− xi + 2h) for (xi − 2h) ≤ x ≤ (xi − h)
−18(x− xi)− 12h for (xi − h) ≤ x ≤ xi

18(x− xi)− 12h for xi ≤ x ≤ (xi + h)
6(2h− x+ xi) for (xi + h) ≤ x ≤ (xi + 2h)
0 for x ≥ (xi + 2h)

(20)

It follows from the above formulae that first-order

and second-order derivatives of B(i)(x) are continuous

over the whole interval [xi − 2h, xi + 2h], i.e. for

(xi − 2h) < x < (xi + 2h). Consequently they are continuous

at internal nodes xi−1 = xi − h, xi and xi+1 = xi+h. Values

B  (x)
(i)

4 / 6

1 / 61 / 6

xi xi+2xi+1xi-1xi-2

x

Fig. 6. The cubic B-spline defined in relation to its central node xi.

TABLE II

x → xi − 2h xi − h xi xi + h xi + 2h

B(i)(x) 0
1

6

4

6

1

6
0

dB(i)(x)

dx
0

1

2h
0 −

1

2h
0

d2B(i)(x)

dx2
0

1

h2
−

2

h2

1

h2
0

of B(i)(x),
dB(i)(x)

dx
and

d2B(i)(x)

dx2
evaluated on a basis of

formulae (18)-(20) at particular nodes mentioned above are

given in Table II.

The functions B(i)(x) defined for i = k, k + 1, . . . are

linearly independent. Hence, a linear combination of them is

also a spline function. Due to this valuable feature, the linear

combinations of cubic B-splines are particularly siutable for

the interpolation and approximation purposes.
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