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Abstract—The problem of transient EM radiation by a linear
current source placed on the ground-air interface is analyt-
ically studied. We derive a self-modeling exact solution for
the interfacial Green function. The spatio-temporal radiation
pattern is constructed by means of the Duhamel integral. An
inverse problem of antenna current reconstruction from the
measured waveform of direct surface wave is solved analytically.
An example of real GPR data deconvolution is given.
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I. INTRODUCTION

THE problem of electromagnetic radiation from a horizon-

tal electric dipole placed on the earth’s surface has been

studied in a number of classical works, e.g. [1], [2] related to

the issues of radio communication. Attention was paid mainly

to the laws of harmonic wave propagation along the ground-air

interface.

Radiation patterns of a point dipole and of an infinitely long

linear antenna have been derived in [3]. An exact solution was

found using Fourier transform in a complex plane. Deriva-

tion of the far-field radiation pattern, lateral wave and the

wave field in the intermediate regions requires sophisticated

asymptotic and numerical approaches [3], [4]. The problem

of wide-band pulsed radiation is much less studied. An an-

alytical approach, based on the Smirnov-Sobolev concept of

functionally-invariant solution [5] has been used in [6] to study

the lateral (“head”) wave which plays an important role in

seismic prospecting.

Nowadays, a renewed interest to the problem of EM radia-

tion by antennas lying on the interface between two dielectric

media is motivated by the needs of subsurface sensing (ground

penetrating radar, GPR) and microelectronics. Direct numer-

ical schemes for solving Maxwell’s equations are commonly

used to calculate the propagation of realistic ultrawideband

(UWB) pulses [7]. As this approach involves a great amount

of numerical calculations it is suitable only for idealized model

problems or for a thorough post-processing of a few selected

GPR profiles. In practice, the radiation pattern of a monopulse

GPR antenna is usually estimated on the basis of the harmonic

wave theory and the centre frequency concept. This leads

to the loss of information contained in the waveform of the

received GPR signal.
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Of course, in virtue of the superposition principle, the clas-

sical solution of the monochromatic wave radiation problem

can be used for the calculation of a UWB antenna by Fourier

transform. However, straightforward problem treatment in

time domain looks more promising. Following the Smirnov-

Sobolev approach, we derive an elementary solution of the

time-dependent 2D wave equation that substantially simplifies

calculations and clarifies the physical mechanisms of the wave

field formation.

By convolving the obtained time-domain Green function

with a given current pulse form, we simulate realistic spa-

tiotemporal radiation patterns of resistively-loaded GPR dipole

antennas. Next, the inverse problem of the antenna current

reconstruction from the electric field measured at the ground-

air interface is solved in a closed form. Finally, an example

of realistic GPR profile deconvolution is given.

II. EXPLICIT SOLUTION OF THE WAVE EQUATION

Consider a model problem of transient radiation from an

infinite line current source stretched along y-axis on the z = 0
plane being the interface between two uniform dielectric half-

spaces: z > 0 (“ground”) and z < 0 (“air”). Neglecting the

conductivity effects, we characterize “ground” by a single

parameter n =
√
ǫr > 1 (refraction index), whereas the

“air” half-space has n0 = 1. In this essentially 2D model,

Maxwell’s equations are reduced to a scalar wave equation

governing the horizontal component of the electrical field

Ey = E(x, z, t) excited by a pulsed current source J(t) at

the origin (x = 0, z = 0):

∂2E

∂x2
+
∂2E

∂z2
− n2

c2
∂2E

∂t2
=

4π

c2
δ(x)δ(z)

dJ

dt
(1)

The heuristic considerations leading to the proper choice

of the sought solution form are as follows. Consider a line

antenna in free space with n0 = 1 excited by a unit current

step J(t) = Θ(t) (Heaviside function). In contrast to the

harmonic wave field depending on the wavelength λ =
2πc

ω
,

in our case the only parameter of the dimension of length is the

distance from the point source: r =
√
x2 + z2. In this case,

the corresponding solution of the equation (1) is the pulsed

Green function [8]:

E0(r, t) = (s2−r2)−1/2
+ =





1√
s2 − r2

, s = ct > r

0, s < r
(2)

(here and below s = ct). Convolution of this function with

the antenna pulse form (Duhamel integral) represents transient
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radiation generated by an arbitrary current J(t):

E0(r, t) = (s2−r2)−1/2
+ =






1√
s2 − r2

, s = ct > r

0, s < r
(3)

Obviously, the Green function can be represented as a func-

tion of dimensionless parameter τ =
s

r
, with an additional

factor
1

r
taking into account geometrical divergence of the

emitted wave:

G0(r, t) =
1

r
V0(τ) (4)

where V0(τ) = (τ2−1)
−1/2
+ . We can expect that in the case

of a line source lying at the interface between two uniform

media the Green function has a similar form:

G(r, θ, t) =
1

r
V (τ, θ) (5)

where just the dependence on the angular variable

θ = atanx
z is added to take into account the influence of

the interface on the radiation pattern. Substitution of the

expression (5) into (1) yields a new equation

(τ2 − n2)
∂2V

∂τ2
+ 3τ

∂V

∂τ
+
∂2V

∂θ2
+ V = 0 (6)

containing only dimensionless variables and describing the

sought self-modeling solution V (τ, θ). Following the method

of [5], we look for a solution in the form of generalized

cylindrical waves:

V (τ, θ) = Re

(
1√

τ2 − n2
B
(
|θ|+ iArcosh

τ

n

))
(7)

in the subsurface medium z > 0
(
|θ| < π

2

)
, and

V (τ, θ) = Re
( 1√

τ2 − 1
A(π − |θ|+ iArcoshτ)

)
(8)

in free space z > 0
(
|θ| < π

2

)
.

Here, A(α) and B(β) are analytic functions, arbitrary so far,

regular for τ > n, behind the slow wave front, where the total

wave field has no jumps. These functions can be found from

the conditions of smooth matching the tangent components

of EM field, that reduce to the continuity of V and
∂V

∂θ
at

|θ| = π

2
. Explicitly,















1
√

τ2 − 1
A

(

π

2
+ iArcoshτ

)

=
1

√

τ2 − n2
B

(

π

2
+ iArcosh

τ

n

)

−

1
√

τ2 − 1
A′

(

π

2
+ iArcoshτ

)

=
1

√

τ2 − n2
B′

(

π

2
+ iArcosh

τ

n

)

(9)

Denoting

α =
π

2
+ iArchτ, β =

π

2
+ iArch

τ

n
(10)

and eliminating from (10) the variable τ , we obtain a func-

tion β(α) determined by Snell’s law

n sinβ = sinα, β′(α) =
cosα

n cosβ
(11)

After introducing a new unknown function

B%(α) = B[β(α)], the second equation (9) can be integrated

to A+(α) +B+(α) = K = Const, and the first one yields an

explicit solution






A(α) =
cosα

cosα+ n cosβ

B(β) ≡ B̃(α) =
n cosβ

cosα+ n cosβ

(12)

for τ > n. At lower dimensionless times, for 1 < τ < n, the

solution is found by analytic continuation.

III. NUMERICAL IMPLEMENTATION AND CONSEQUENCES

The obtained solution describes all the wave field singu-

larities predicted by geometrical optics and physical theory

of diffraction (see, e.g. [3]–[6], [8]): sharp circular wave

fronts τ = 1 and τ = n n in the corresponding half-

spaces and a weak singularity at the plane lateral wave front

|θ| = ψ + η, where ψ = arccos τ
n , η = arccos 1

n . A graphical

representation of the function V (τ, θ) for a fixed t (“snapshot”)

is given by Fig.1.

Transient Green function (5) and Duhamel integral (3)

make an efficient tool of deriving the global spatio-temporal

radiation pattern for an arbitrary current pulse form. As an

illustration, in Fig.2 a polar plot of E(r, θ, s) is depicted as

a function of time (actually, s = ct) and observation angle

θ for a fixed radius t = Const and a one-period sinusoidal

current pulse form – see Fig. 5 (a).

In order to relate our solution to the commonly referred

results for the harmonic waves we trace the formation of the far

field radiation pattern of the wave generated by a few periods

of sinusoidal current pulse – see Fig.3. One can see that the

peak amplitude values tend to the far-field pattern with sharp

edges at the critical total reflection angles |θ| = η calculated

in [4] but quite slowly – at unrealistic for GPR application

distances of many decameters.

Fig. 1. Snapshot of the self-modeling solution V (τ, θ).
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Fig. 2. Spatio-temporal radiation pattern for a one-period sinusoidal current
pulse form (logarithmic scale).

The most important feature of the spatio-temporal radiation

pattern is dependence of the probing pulse waveform on

the radiation angle. Some characteristic bearings are depicted

in Fig.4. While the pulses radiated vertically upwards and

downwards, marked by numbers 1 and 4, are quite similar,

signals propagating obliquely in the sector η < |θ| < π/2,

represented by the curve 3, have a pronounced precursor due

to the lateral “Cherenkov” wave. Of special interest is the

signal propagating along the ground-air interface (curve 2). It

consists of two pulses of opposite polarity, propagating with

different velocities, and has a waveform distinct from the other

bearings.

Fig. 3. Peak radiation pattern. The space between transmitter and receiver:
(1) 200 m, (2) 12 m, (3) 4 m, (4) 2 m.

Fig. 4. Sounding pulse form for a one-period sinusoidal current pulse related
to the direction of propagation. (1) upwards, (2) along the interface, (3) in
the lateral wave sector, (4) downwards.

IV. INITIAL PULSE RECONSTRUCTION BY THE INTERFACE

SIGNAL

In modern ground penetrating radars recording full received

signal waveform, the interface signal produces characteristic

stripes in the upper part of the GPR scan – see Fig.6 (a). Com-

mon practice is just to use them as a reference point for the

time count. However, this direct signal contains information

both on the ground velocity v =
c

n
and the antenna current

pulse form J(t). A stable numerical algorithm for antenna

current reconstruction has been developed in [9].

In what follows, we derive a closed-form solution of this

inverse problem and give a numerical example. The self-

modeling solution (7)-(8) takes the simplest form on the

ground-air interface θ =
π

2
:

V
(
τ,
π

2

)
= Re

(
2√

τ2 − 1 +
√
τ2 − n2

)
=

=
2

n2 − 1

(√
τ2 − 1+ −

√
τ2 − n2

+

)
(13)

After substitution into the Duhamel integral, the latter takes

the following form

E
(
r,
π

2
, s
)
= − 4

cr(n2 − 1)

[ ∫
∞

1

J(s− rξ)
ξdξ√
ξ2 − 1

−

−
∫

∞

n

J(s− rξ)
ξdξ√
ξ2 − n2

]
(14)

If the electric field on the interface E0(s) = E
(
r,
π

2
, s
)

is known, this formula becomes an integral equation for the

primary current J(s). It can be solved by Laplace transform.
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Fig. 5. Model example of the pulse current form reconstruction using the signal that propagates along the interface. Relative permittivity of the subsurface
medium ǫ = 4, antenna separation R = 1.3m. a) Initial current pulse form, b) Signal along the interface, c) Sum of the first four terms of series for M(τ),
d) Reconstructed pulse form.

Making use of the Macdonald function integral representation

[10] we obtain: E%
0 (p) = J%(p)G%

0 (p), where

G%
0 (p) = − 2

πicr(n2 − 1)
[K1(pr)− nK1(npr)] (15)

Functions G%
0 (p) and J%(p) are Laplace images of the

Green function boundary value G0(r, t) =
1

r
V
(
τ,
π

2

)
and of

the current pulse form J(s), respectively. Expressing J%(p)
as a ratio of E%

0 (p) and G%
0 (p) and calculating the inverse

Laplace transform we obtain a convolution integral

J(s) = −cr(n
2 − 1)

4

d

ds

∫
∞

0

E0(ξ)M
(s− ξ

r

)
dξ (16)

whose kernel M(τ) is a new special function

M(τ) =
1

2πi

∫ γ+i∞

γ−i∞

eτw
dw

w[K1(w) − nK1(nw)]
(17)

Direct calculation of the complex integral (17) presents

certain difficulties due to multiple poles of the integrand

and emerging quasi-periodic numerical errors. However, by

representing the integrand as a sum of a geometrical series

1

K1(w) − nK1(nw)
=

1

K1(w)
+
nK1(nw)

K2
1 (w)

+
n2K2

1(nw)

K3
1 (w)

+. . .

(18)

we come to an absolutely converging series

M(τ) =
∞∑

µ=0

Mµ(τ), where functions

Mµ(τ) =
1

2πi

∫

Ã

eτw
nµKµ

1 (nw)

Kµ+1
1 (w)

dw

w
(19)

can be reduced to easily evaluated integrals. For any fixed

value of τ the series contains a finite number of terms, because

– as follows from the asymptotic behavior of the Macdonald

function, Mµ(τ) = 0 for τ < µ(n − 1) − 1. For most GPR

problems, it is enough to keep 2-3 terms of the series.

The behavior of the convolution kernel M(τ) and a model

numerical example of antenna current reconstruction are de-

picted in Fig. 5. Obviously, the main reason of the inverse

problem instability is the growing amplitude of successive

peaks of the M(τ) function. Nevertheless, by using a priori

information on the primary current duration and the least

square method, it is possible to develop a stable numerical

procedure.

V. DECONVOLUTION OF COMMON-OFFSET DATA

The obtained inverse problem solution allows one to im-

prove the resolution of subsurface object by deconvolution of

the primary GPR data from the reconstructed antenna current

pulse form. Basically, such a procedure removes the fringes

caused by the oscillations of the primary current pulse, al-

though measurement errors and numerical ill-conditionedness

may outweigh the improvement. A more stable procedure can

be used that skips the step of antenna current reconstruction.

As the Laplace images of the actual radiation pattern E(r, θ, t)
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Fig. 6. Example of real GPR common-offset data processing (lake bottom): a) raw data, b) after deconvolution.

and of the time-domain Green function are proportional to the

current pulse image:

E%(r, θ, p) = J%(p)G%(r, θ, p) (20)

we can eliminate J%(p) and obtain the following spectral

relation

G%(p, x) =
G%

0 (p)

E%
0 (p)

E%(p, x) (21)

between the global wave field E(r, θ, t) and the field strength

E0(t) = E(r0, θ0, t) measured at an arbitrary chosen reference

point (r0, θ0). By choosing r0 = 1, θ0 =
π

2
, where ℓ is

distance between the transmitter and receiver antennas, we

can apply formula (21) to the common-offset scheme of GPR

measurements (“B-scan”) [11]:

G%(p, x) =
G%

0

E%
0 (p)

E%(p, x) (22)

Here, E%(p, x) is the actual GPR profile spectrum, E%
0 (p)

– transformed waveform of the surface wave, G%
0 is the

analytical function (15) calculated for r = 1, and G%(p, x)
is the Laplace spectrum of a virtual profile corresponding

to a Heaviside step current. Inverse Laplace transform yields

a rectified image of subsurface objects. As an example, in

Fig.6(a) an experimental B-scan of a lake bottom, taken from

the water surface, is depicted. Two distinct interfaces (bedrock

and deposition) are blurred with phantom stratification caused

by the probing pulse oscillations. The direct wave propagating

along the water surface produces sharp stripes in the upper part

of the profile.

A virtual “Heaviside” scan, with the direct wave and the

probing pulse filtered out, is shown in Fig.6(b). Spurious strata

being removed and real interfaces emphasized, this picture

gives a more realistic view of the lake bottom shape and the

underlying structures.
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