
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, VOL. 57, NO. 4, PP. 489–496

Manuscript received October 17, 2011; revised November 2011. DOI: 10.2478/v10177-011-0069-9

An Efficient Hardware Implementation of

Smith-Waterman Algorithm Based on the

Incremental Approach
Andrzej Pułka and Adam Milik

Abstract—The paper presents optimized hardware structure
applied to genome alignment search. The proposed method-
ology is based on dynamic programming. The authors show
how starting from the original Smith-Waterman approach, the
algorithm can be optimized and the evaluation process simplified
and speeded-up. The main idea is based on the observations of
growth trends in the adjacent cells of the systolic array, which
leads to the incremental approach. Moreover various coding
styles are discussed and the best technique allowing further
reduction of resources is selected. The entire processing unit
utilizes fully pipelined structure that is well balanced trade-off
between performance and resource requirements. The proposed
technique is implemented in modern FPGA structures and
obtained results proved efficiency of the methodology comparing
to other approaches in the field.

Keywords—DNA-tiles, pattern routing, pipelining, FPGA syn-
thesis, parallelism and concurrency, reconfigurable systems, dy-
namic programming, systolic arrays.

I. INTRODUCTION

RAPID development of natural sciences covering micro-

biology, molecular biology and computational biology

observed for last few decades has faced researchers in front

of new problems. First of all the results of these investigations

have delivered huge amount of information that need to be

processed and efficiently analyzed. GenBank [1] – an open

access database collects data coming from various scientific

centers. In this database we can find genome sequences of

human beings. One of the branches of modern computational

biology deals with the problem of searching for some char-

acteristic properties of the DNA sequences [2], [3]. Genome

patterns alignment belongs to such tasks. We would like to find

if a given pattern (short sequence) could be localized within

the long genome sequence (for human being it reaches 3GB).

In other words the genome pattern alignment search task can

be formulated as a mathematical (logical) problem.

The searching techniques based on classical software solu-

tions have proved their correctness [4], but also showed their

ineffectiveness when the amount of data gain GB. So, it is

necessary to look for other, hardware-dedicated and effective

solutions. The presented work proposes such a solution.

The limitations of modern computers and constraints of

data processing cause that ’pure’ software-based approaches

to the genome searching are not sufficient in general. However

A. Pułka and A. Milik are with the Institute of Electronics, Sile-
sian University of Technology, Gliwice, Poland (e-mails: apulka@polsl.pl,
amilik@polsl.pl).

there exist some software approaches based on Smith and

Waterman (S-W) algorithm [5] combined with heuristics [6],

[7] (BLAST, FASTA) or using parallel processors working

in accelerated graphical environments [8], [9] (CUDA). The

presented work focuses on hardware, reconfigurable solutions

that seem to be more efficient and faster solutions in the field

of pattern search alignment.

Some works based on programmable hardware structures

have been proposed recently like, for example [7], [10]–[14].

Many efforts have been done into optimizing the hardware

structures and making them more regular (systolic arrays)

[15]–[18]. A very rapid development of FPGA devices allows

further improving the performance and speeding up the data

processing [19], [20].

This paper presents such a methodology implemented in the

optimized reconfigurable hardware structure, which is much

more effective solution than software based approaches. The

paper is organized as follows: after a short recall of the

Smith-Waterman methodology, the main idea of the proposed

optimization based on the appropriate penalty values selection

is given. Then we discuss the growth trends in the matrix

and describe the algorithm by the simplified truth tables. In

the next step we show how to reduce the logical equations

describing the processing path by appropriate selection of

codes. The presented methodology also considers trace back

path allowing final localization of the found alignment. The

experimental results and comparisons to other approaches in

the field conclude the paper.

II. PROBLEM FORMULATION

We can formulate the problem as follows: investigate a

given, very long chain of symbols (here DNA chain) and try

to localize best alignments between this chain and a set of

query short sequences with assumed accuracy expressed by the

penalty function. In case of DNA sequences, both chains, the

reference sequence (long) Ref = {R1, ..., Rn} and the query

sequence (short) Qry = {Q1, ..., Qm} consist of symbols

from 5th element set {A, C, G, T and X}, which stand for 4

DNA symbols and un unknown symbol. We need to stress up

that by an alignment we not necessarily look for exact match

between sequences, but we allow some differences (distance)

expressed by the penalty function (1).

A. Smith-Waterman Algorithm

We can distinguish offline (indexed) and online searching

techniques in the field. The hashing methods, investigated and

490 A. PUŁKA, A. MILIK

T

C

T T CT

T

A

G T A

match

mismatch

insertion

deletion

Reference sequence
Q

u
e

ry
s
e

q
u

e
n

c
e

Fig. 1. Example of an array filled by S-W algorithm. The dotted line shows
the path for best alignment.

Pi- , j-1 1 Pi- , j1

Pi, j-1
Pi, j

DI

DDD()Q , Ri j

Fig. 2. Iterative evaluation of the scores from the equation (1).

improved for years, are not sufficient for this purpose and

elementary online techniques are based on dynamic program-

ming [4]. The fundamental methodology is based on Smith-

Waterman algorithm [5] where the best alignment is evaluated

recursively by the filling in the matrix of n+1 by m+1 cells.

(see Fig. 1). The penalty function determining the movement

within the array is expressed by the following equation:

Pi ,j =

Pi−1 ,j−1 +∆i ,j match/mismatch
Pi ,j−1 +∆ ,j insertion
Pi−1 ,j +∆i , deletion

(1)

where:

∆i ,j =

{

0 when Qi = Rj (match)
∆M otherwise (mismatch)

(2)

Cells hold partial scores (penalties) of the optimal path

running through them. The first element of the matrix contains

initial values and the following steps are computed recursively

according to the optimal scores for the internal entries based

on their neighborhood (Fig. 2).

B. Lipton Lopresti Simplification

Lipton and Lopresti [16], as first researchers, noticed that

the appropriate selection of penalties has strong impact on the

evaluation efficiency of the original S-W (Smith-Waterman)

algorithm. We have also found that the direct approximation

of the algorithm very quickly reaches the limits – we call it

the saturation level of the efficiency. Our investigations of the

numerical algorithm [21] have showed that it is possible to

reduce the number of elements and simplify the structure by

eliminating the sequential logic and increasing the number of

asynchronous processing elements.

At first we have assumed the smallest integer values of

penalties for the S-W algorithm [5], i.e.:

1

0

1

0

1

1

2

0 0 00

3

4

0 0 0

0

0

1

1

1

1

0

2

1

2

2

1

3

1

2

1

2

2

23 1

2

1

T T CT G T A

T

C

T

A

0

Fig. 3. Array from Fig. 1 filled with penalties evaluated according to the
formula (3).

∆i ,j = 2 mismatch
∆I = ∆ ,j = 1 insertion
∆D = ∆i , = 1 deletion

(3)

And initialized the edge rows and columns of the array with

values:

∀
0 < i ≤ Qlength

Pi ,0 = i (4)

∀
0 < j ≤ Rlength

P0 ,j = 0 (5)

Fig. 3 presents the fragment of the array from Fig. 1 filled

with the values evaluated from the formula (3). We have

denoted initial values in the upper row (above the array) (4)

and on the left column (5) (just before the first column of the

array) by boldfaces. Then, we have proved some interesting

properties of the array [21]:

Property 1:

∀
0 < i ≤ Qlength

0 < j ≤ Rlength

Pi−1 ,j−1 ≤ Pi ,j ≤ Pi−1 ,j−1 + 2

Pi ,j−1 − 1 ≤ Pi ,j ≤ Pi ,j−1 + 1

Pi−1 ,j − 1 ≤ Pi ,j ≤ Pi−1 ,j + 1
(6)

Property 2:

∀
0 < i ≤ Qlength

0 < j ≤ Rlength

P1: Pi ,j = Pi ,j−1 +∆x

P2: Pi ,j = Pi−1 ,j +∆y
(7)

where: ∆x ∈ {−1, 0,+1}; ∆y ∈ {−1, 0,+1}.

Property 3:

∀
0 < i ≤ Qlength

0 < j ≤ Rlength

0 ≤ Pi ,0 ≤ i (8)

AN EFFICIENT HARDWARE IMPLEMENTATION OF SMITH-WATERMAN ALGORITHM BASED ON THE INCREMENTAL APPROACH 491

Pi- , j-1 1 Pi- , j1

Pi, j-1
Pi, j

Qi

Rj

Pi- , j-1 1 Pi- , j1

Pi, j-1
Pi, j

Qi

Rj

Dx

Dy

dx dx

dydy

M

M

Fig. 4. Schematic diagram showing the idea of the growth trend functions.

Fig. 5. Function table for the horizontal growth trend function ∆x.

Fig. 6. Function table for the horizontal growth trend function ∆y.

III. MAIN IDEA OF THE APPROACH

The proposed approach relies on the above considerations

and properties. The main idea of the hardware algorithm

optimization is based on the observations of horizontal and

vertical growth trends within the matrix. Fig. 4 presents both

evaluation schemes for a given cell. To obtain the new value

of the penalty for a cell Pi ,j we have to find the horizontal

(δx) or vertical (δy) growth function, where symbols x and y
denote the growth trends in horizontal and vertical direction,

respectively. The third argument of these functions the variable

M reflects the result of comparison between the current query

symbol Qi and the reference symbol Rj , so both functions

depend on three arguments: x, y and M . Moreover, as we can

see in the symbolic function tables (truth tables in Fig. 5 and

6) both growth functions: x and y are symmetrical (identical)

with respect to the variables δx and δy:

∆x = fx(δx, δy,M) = fy(δy, δx,M)

∆y = fy(δx, δy,M) = fx(δy, δx,M)
(9)

Fig. 7. The elementary unit ∆SW evaluating the growth trend function for
a single cell.

Fig. 8. The pipeline structure based on the accumulation of the horizontal
growth trends.

Actually, the function tables are truth tables. The symbols

from the tables have real logical meaning, i.e. they denote

appropriate combinatorial functions: the symbol “+1” stands

for the increment (INC), the symbol “−1” corresponds to

the decrement (DEC) and “0” means no operation (NOP). In

the next section we will discuss the problem of coding of

these operations and their impact on the quality of the final

implementation.

This leads to the development of the basic building block

of the growth trend based Smith-Waterman (∆SW) implemen-

tation. Fig. 7 presents the structure of the elementary unit

∆SW. It delivers growth coefficient values for both ∆x and

∆y calculations.

The current value of the penalty for a given (current) cell

Pi ,j can be evaluated in two ways (depending on the selected

growth trend function) as a result of the accumulation of the

subsequent growth trends values, i.e.:

Pi ,j = Pi ,0 +

j
∑

k=1

δxi ,k; and Pi ,0 = i

Pi ,j = P0 ,j +

i
∑

l=1

δxl ,j ; and P0 ,j = 0

(10)

IV. MAIN ISSUES OF HARDWARE IMPLEMENTATION

In the previous sections we have presented how the original

software (mathematical) algorithm has been converted to hard-

ware structure. We have reduced the computational complexity

thanks to the optimal selection of penalties and growth trend

function. The obtained solution in comparison to the previous

applications [21] and other approaches [10], [15] looks very

promising, but there are several problems that should be solved

492 A. PUŁKA, A. MILIK

before the final hardware implementation begin to work.

Otherwise the initial optimization of the algorithm could be

neglected by unreasonable technology mapping. In this section

we present considerations concerning details of the hardware

implementation. We focus on the selection of the growth trend

function, coding styles and the trace back implementation.

A. Selection of the Growth Trend Function

From the expressions (9) and (10) we can find that there

are two alternative methods of the penalty calculation with

the same architecture of a basic cell. We can operate in one

of two possible directions: horizontal (parallel to the row)

or vertical (parallel to the column) basing on functions ∆x

or ∆y , respectively. Theoretically both functions are identical

(symmetrical), however, in the case of the application to chain

alignments, the more convenient implementation is the one that

operates in the axis parallel to the reference sequence. In the

presented example the reference pattern is placed in the row

(along x axis) of the array, so the circuit should utilize ∆x

function. This approach allows calculating the final value of

the elements of P systolic array by successive summation of

growth coefficients (equation (10) and Fig. 8). This structure

is able to process a single input symbol per clock cycle in

pipelined fashion. The algorithm property (the convergence for

a mismatch) allows eliminating complicated data flow control

for the pipeline processing.

B. The Optimal Coding Style

Functional tables presented in Fig. 5 and Fig. 6 describe

growth trends functions symbolically. To obtain final imple-

mentation we need to replace symbolic values “+1” and “−1”

with real codes. Our first solution presented in [21] was the

direct implementation of the algorithm with application of

incrementing/decrementing counters (counting registers). The

idea was based on the observation of the tables, which contain

only few zeroes, so we can code active bit count corresponding

to “±1” and the next bit responsible for counting direction

(up or down). However, taking into account specificity of the

hardware implementation in FPGA structures, we found this

solution not optimal. So, we have decided to use semi-one-

hot coding style, where every column and row of the table

is coded in two bits: {δx1; δx0} and {δy1; δy0}, respectively.

The output function – the growth trend function SW of a basic

building block also consists of two bits: {∆x1; ∆x0}. This

philosophy allows optimally using the LUTs of the FPGA

resources.

Fig. 9 presents the full truth table for the single ∆SW block

(combinations “11” are not used (no meaning), so they consist

of don’t cares). Logical equations for horizontal growth trend

function ∆x are following:

∆x1 = δy0 ∧ (M ∨ δx1)

∆x0 = δy0 ∨ (M ∧ δx0) ∨ (M ∧ δx0 ∧ δy0)
(11)

00 00 00 00 01 01

10 10 10 10 01 00

01 01 01 01 01 01

00

01

10

11

000 001 011 010 110 111 101 100

Ø Ø

Ø

+ +_ _

+
_

d dy y1 2

M d dx x1 2

D Dx x1 2

Fig. 9. Final coding for horizontal growth trend function ∆x.

D QD Q

D QD Q

D QD Q

R2[j] Q2[j]

R1[j]

R0[j]

Q1[j]

Q0[j] LUT3

LUT4
MD Q

D QM[Q]

R[j]

D Q

LUT SRL
a. b.

Fig. 10. Implementation of the match unit.

C. Some Problems of the Structure Mapping in Hardware

The original S-W algorithm transformations allow us to

obtain the structure with extremely small calculation com-

plexity. It is mainly based on combinatorial operations that

constitute simple finite state machine (FSM). However we

have identified some problems of final implementation and

hardware mapping. The high level description assures only

the functional correspondence that is not always optimal in

the case of hardware resources. Modern FPGAs offer a lot

of features that allow flexible and efficient implementation of

different functions. The synthesis tool is not always able to

optimally map the design as many of aspects are not described.

Very often the algorithmic approach does not lead to the

efficient implementation. A simplified and well implemented

form of the algorithm is obtained by application of different

methods of algorithm analysis and optimization. The match

unit is the example of a low level mapping. It compares

two symbols equality taken from the query and the reference

sequences. The direct implementation of the equality operator

is presented in Fig. 10a. It requires 6 D flip-flops (3 bit

symbols) for the query and the reference and 2 LUT generators

to implement the combinatorial part. The specific usage of

a comparator assumes that before the match process begins,

the query sequence is transferred to registers. The query

symbol can be considered as a programmable constant value.

Following this idea we can implement the match unit that

is based on LUT configured as the programmable length

shift register (SRL in Fig. 10b) that consumes 3 D flip-

flops and a single LUT. This implementation reduces resource

requirements and also the propagation delay by about 50%

AN EFFICIENT HARDWARE IMPLEMENTATION OF SMITH-WATERMAN ALGORITHM BASED ON THE INCREMENTAL APPROACH 493

D

LUT
F

Dx0

LUT
G

DR2

Q

CE

D

FF

Q

CE

D

Dx0

Dx1

Q

CE

D

Dy0

DR0

Q

CE

D

Dy0

Dy1

Q

CE

D Q

CE

DR1

EQ

Dx1

Dy1

D

Dy0

Q

CE

D

Dx0

Q

CE
LUT

G

LUT
GLUT

G

LUT
F

LUT
F

LUT
F

Fig. 11. Final mapping of the match unit.

from two layers to a single one.

Finally, the entire ∆SW cell can be implemented into 2

slices for families based on 4-input LUTs. A detailed exem-

plary mapping is depicted in Fig. 11. The short combinatorial

path, which depth does not exceed two layers and short distant

programmable connections guarantee a very short propagation

time. The 6-input LUT FPGA families (Virtex-5 and later

(Xilinx)) exhibit a little worse resource utilization. In general,

the implementation of the basic cell requires: 2 slices, 7 flip-

flops, one shift register and four 6-input LUTs or six 4-input

LUTs.

D. The Trace Back Implementation

The original Smith-Waterman algorithm [5] evaluates cost

of the optimal path (alignment) in a form of penalty function

(1), but to obtain the exact region (to localize) of the best

alignment we need to perform the backtrack. This trace back

operation recreates the original path of the algorithm run.

Because of the fact that the implemented pipeline based on

the direct software procedure transformation into hardware

implementation does not remember results of intermediate

operations [21], it is necessary to introduce other mechanisms

or to store the entire path. In our previous works we have

introduced software-based procedure – the algorithm HIPAS

[21] which is able to reconstruct the entire path (trace back)

basing only on the final score. The main drawback of such a

solution is necessity of stalling the pipeline for approximately

3 × n clock cycles (where n is the length of the query

sequence). This solution is good if we expect only few checks

per sequence.

An alternative solution is additional hardware structure

that should be added to basic building blocks (array cells).

Fig. 12 presents the general idea of the hardware trace back

solution. After each step of the systolic array evaluation

process information necessary for reconstruction of the move

is shifted (delayed) to be available (if needed) later. This

scheme constitutes a kind of symmetrical structure to the

original array (Fig. 12). If the system detects the good score

Fig. 12. The concept of the hardware trace back based on delay line.

Pi- , j-1 1
Pi- , j1

Pi, j-1
Pi, j

MR 11

Match / Mismatch:
added marker “11”

Pi- , j-1 1
Pi- , j1

Pi, j-1
Pi, j

MR 01

Insertion:
added marker “01”

Pi- , j-1 1
Pi- , j1

Pi, j-1
Pi, j

MR 10

Deletion:
added marker “10”

Fig. 13. Mechanism of marker registers updating.

(low penalty) below a given assumed threshold indicating that

the region of good alignment has been localized, data from

the output of this delay line is connected to the trace back

structure and we can find the position of the beginning of the

good alignment region.

This solution requires additional registers – marker regis-

ters (MR) responsible for remembering “moves” during the

systolic array analysis (evaluation of S-W algorithm). When

the procedure expressed by (3) is executed the contents of the

cells are updated with a new (current) value of the penalty

and the marker register is uploaded from the appropriate

source (left, upper diagonal or upper cell). The contents of

the register are supplemented by the current marker, i.e. the

code of the last move. This code reflects the minimal value of

the S-W algorithm (equation (1) and Fig. 1). Each marker is

coded on two bits: “00” corresponds to “no move” (unused),

“01” – vertical move (insertion), “10” – horizontal move

(deletion) and “11” – diagonal move (match/mismatch). This

mechanism, for ea given cell Pi ,j is illustrated in Fig. 13. In

other words, when a given pipeline stream reaches the end

(the final comparison of symbols is done), we have already

entire trace and the location of the best alignment (Fig. 14).

The trace back mechanism is activated by penalty threshold

block (THR in Fig. 12), which generates activation signal I for

the first cell (the last symbol). And the activation signals I back

propagate through the array reconstructing the entire path. As

it was mentioned above, from each cell there are possible three

moves “up” (vertical), “left” (horizontal) and “diagonal”, so

we need to supply each cell with the additional logic and

connections between adjacent cells. We call these blocks trace

back units (TBU). Each TBU is fed by delayed (not current!

– see Fig. 12) contents of appropriate marker register and

activation signals of previous neighbor cells (Fig. 16). TBU

is responsible for generation of activation signal to only one

of the adjacent cells (Fig. 15). This methodology allows for a

494 A. PUŁKA, A. MILIK

1

0

1

0

1

T

C

T T CT

T

A

G T A

0

0

1

1

1

1

0

2

1

2

2

1

3

1

2

1

2

2

23 1

2

1

5

4

4

3

5

2

2

3

3

4

4

3

3

2

6

6

5

7

4

4

3

5

4

65 5

4

3

T

C

A

A

1

T

1

0

2

2

2

4

3

2

2

1

G AA A C G

1

2

1

2

1

1

1

2

1

3

3 3

3

3

3

3

33 4

3

2

5

3

2 3

5

4

4

4

4

4

3

5

5

4 3

3

4

4

5

54 6

6

5

MR 11 10 11 11 11 11 11 11 00

analysis direction

Fig. 14. Example of the good alignment score and the marker register for
a sink cell with best score. Reconstructed path consists of shaded cells. (The
initial edge values have been removed to increase readability).

Fig. 15. Scheme of the trace back unit (TBU).

Fig. 16. Fragment of the trace structure with four adjacent TBUs.

very quick and simple reconstructing of the entire trace back

path.

E. The Final Analysis of the Resource Requirements

In this subsection we summarize our considerations con-

cerning implementation and try to determine hardware re-

sources requirements for the entire SW system (together with

the trace back path). In case of FPGA-based designs, the

number of Look Up Table inputs is one of the most important

factors determining the amount of required resources. For

considered Xilinx families there are 4 and 6 inputs LUT

generators. Let’s assume that the unit is described by the query

length QL and the maximal admitted number of insertions

and deletions is not grater then d. It is assumed for rational

purposes that QL ≫ d.

According to the previously assumed values, the number

of basic units, i.e. the number of ∆SW cells N∆SW equals

to the length of the query sequence currently processed QL.

Actually, from the practical point of view it is better to add

some margin, but we can assume that the coefficient d covers

this margin. So, the total number of basic cells in the trace

back is expressed by:

NTB =

RL
∑

i=1

(2 · d+ 1)−

d−1
∑

i=1

i =

= RL · (2 · d+ 1)−
d · (d− 1)

2

(12)

And the total number of 2-bit markers (MR) in the pipeline

adjust shift register:

NSHR =
d−1
∑

i=1

i+

RL
∑

i=d

2 · i =
RL − d

2
·
[

d+ (d+ 1)·

· (RL − d− 1)
]

−
d · (d− 1)

2

(13)

After evaluation of these numbers we can proceed to the

mapping phase and the estimation of the possible implementa-

tion capabilities of a given, selected device. It is worth empha-

sizing that the unit requirements are quite large in comparison

to other circuit’s resources. The required shift register units

are responsible for the implementation of the delay cycles

necessary to adjust appropriate moment of the data arrival

to the trace back processing unit. The implementation of the

cycle adjust unit is well supported by modern FPGAs. The

mentioned operation can be carried out by a LUT working in

the shift register mode and the programmable delay time Tn is

included in the range 〈1, 2Li〉 (where Li denotes the number

of inputs of the LUT generator). To obtain the maximum

processing efficiency of the system the D flip-flop, located

next to the LUT, also should be utilized. For the considered

families of FPGA devices, it is possible to implement up

to 17-bit shift registers for 4-input LUTs or 33-bit shift

register for 6-input LUTs (unfortunately technologically unit

incorporates 64 stages, but only 32 of them are available

in shift register mode). So the equation for shift register

requirements expressed by LUT items is as follows:

NSHR =
d−1
∑

i=1

⌈ i

max(Tn)

⌉

+

RL
∑

i=d

⌈ 2 · i

max(Tn)

⌉

(14)

Now, we can calculate the logic requirements for the desired

length of the reference symbols and the desired match. To

make the comparison lucid and legible in terms of FPGA

devices we have used number of LUTs as a basic factor (Table

I). It is justified also due to the fact that our architecture is

very regular and basically only short connections between

neighboring cells have been utilized (as well in terms of

an FPGA architecture and the functional concept). The unit

consists of three basic items that are: the ∆SW pipe, SRL –

AN EFFICIENT HARDWARE IMPLEMENTATION OF SMITH-WATERMAN ALGORITHM BASED ON THE INCREMENTAL APPROACH 495

TABLE I
RESOURCE REQUIREMENTS FOR FULL SMITH-WATTERMAN

IMPLEMENTATION EXPRESSED IN LUT6

Parameters Components Complexity Total

Query Max. ∆SW TB SRL number

length Dist. (LUTs) (LUTs) (LUTs) of LUTs

(symbols) (symbols)

512 15 4096 31504 7966 43566

1024 15 8192 63248 31813 103253

1024 31 8192 128032 31325 167549

1536 18 12288 113322 71409 197019

the pipeline result adjust register and the trace back systolic

unit (TB). It is assumed that 85 – 90% of circuit resources can

be assigned to the entire algorithm. The resource requirements

have been determined for Virtex 5 VLX families. This family

allows implementing the accelerator computing board thanks

to PCIe embedded endpoints. As a reference, the LUT count

is taken XC5VLX330T with the array 240×108 CLBs that in

total gives 207360 LUTs with D-FF items.

It appears that with growing length of the reference se-

quence the linear growth of the ∆SW pipe and the trace back

unit is observed. Similar conclusions can be drawn regarding

the admitted region of the fitting described by “Max. Dist.” and

the trace back unit requirements. However, when the length

of the reference sequence grows the requirements of the unit

responsible for pipeline operation data adjust increase very

quickly (two times faster than for other resources). The general

logic requirements can be reduced by the implementation of

RAMB36 units in a form of ring registers with the constant

capacity.

V. CONCLUSIONS

We have presented a new approach to the application

of modern high-density programmable hardware devices to

computational biology. The main novelty of our approach,

which allows optimizing the algorithm towards the final tech-

nology and modifying classical programming techniques with

hardware-based solutions, is the application of the modern

advanced design tools together with behavioral description of

the algorithm in HDL. Moreover, we have split the searching

process into two steps: a dynamic programming search and

an examination of the selected patterns. The latter can be

carried out by software based algorithm HIPAS [21] and/or

the growth trend based trace back described in the paper.

The final analysis of potential candidates can be performed

effectively off-line for all queries as a single quick process.

The obtained results, i.e. operating frequencies (2–3 times

bigger) and density of the processing elements on the chip

show that, in comparison with the previous works [8], [10],

[11], [22], [23] our methodology, however not covering all

possible cases so far, is a significant step forward in the field.

Designed computing accelerator has been implemented in

ML-505 board. The on board FPGA device offers the em-

bedded PCI Express communication core. This allows con-

Fig. 17. Computational efficiency of different methodologies.

structing a high bandwidth data and a control interface to

transfer large amount of data. Together with the highly efficient

query algorithm reconfigurable computing board can offer

outstanding computation performance in genome calculation

or other pattern matching tasks especially for very long input

sequences.

The algorithm implementation process and its efficient

mapping is a very challenging task. The HDL languages have

been developed for about 30 years, however, they are not able

to cover the wide range of aspects required for algorithmic

approach implementation. Observations of the algorithm fea-

tures bring out few interesting theorems that allow its further

optimizations. The work described in [11] presents a very

interesting approach based on automated generated systolic

arrays (descriptions generated from C to VHDL by compilers).

In that approach authors reported that it can process queries up

to 1024 symbols with the maximum frequency of 174 MHz.

The methodology described in our paper is based on Verilog

description, which on one hand is closer to the algorithm

(mimics the C-coded algorithm) and on the other hand is closer

to the hardware and allows to take benefits of the hardware

properties of FPGAs’ structures. We are able to deal with

queries consisting of up to 32400 symbols with the frequencies

400-600 MHz (within XC5VLX330T structure) under the

assumption that we do not use the trace back. Actually, thanks

to the regularity of the entire structure, we are able to almost

evaluate any configuration of multiple queries at the same time,

which gives the total number of 32400 symbols, i.e. n×m =

32400 (where: n is the number of queries and m stands for

the query sequence length). Comparing to the multi-core im-

plementations on Intel Xenon and Intel-Italium-2 applications

reported in, the throughput of our system, expressed in GCUPS

(giga cell-updates per second) is about 4000 faster (200 versus

0.049), so the methodology proposed here is comparable (even

little better) to the one reported in [11]. As to computation

efficiency the entire reference chain (genome) can be analyzed

in less than 8 seconds. The proposed methodology has also

been compared to other approaches: FASTA, BLAST and the

multi-core processing system implemented in graphics card on

general purpose computing machines [21]. Fig. 17 presents the

results of these comparisons: the computation efficiency for

query references of different lengths. The plot refers to search

procedure in 91,694,534 amino acids chains. The diagram

496 A. PUŁKA, A. MILIK

contains two versions of the SW methodology, implemented in

two major FPGA families Spartan 3 and Virtex 5. It is worth to

emphasize that the search times of the presented programmatic

approach are dependant on a query sequence length. Providing

that the pipelined structure is able to hold entire sequence, it

is possible to obtain results in the constant time and such a

solution is limited only by the basic cell performance.

The new formula of the ∆SW algorithm radically changes

data representation and reduces the complexity of the cell. Ex-

cellent operation parameters like very low hardware resource

consumption per cell, very long query sequences directly

processed and extremely high operation frequencies show

usefulness of carried out research works. The obtained results

show radical improvement in comparison to the direct and

first optimized implementations of S-W algorithm. The pre-

sented methodology enables to reduce the resource utilization,

simplifies the data and control path and increases the system

throughput. The entire structure is very compact, neighboring

cells are very close to one another and their interconnections

are relatively short. We have managed to avoid the long signal

distribution lines and thanks to this we have minimized the

delays. Moreover, the delays are in practice reduced to LUTs

generators, so the structure is very flat (one level logic).

The trace back processing based on the growth trend

analysis is very simple, performed on the bit level. We have

performed the worst case analysis of the trace back delays. We

have found that the total delays of the LUT generator together

with routing resources for the single layer (between adjacent

cells) are: 590 ps and 540 ps for the family 1 and family 3

(see Virtex-5 Data Sheet [20]) respectively. So it appears that

for the longest sequence with full trace back consisting of

1536 symbols (Table I) and the lower frequency (400 MHz),

the entire pipeline has to be stalled for approximately 906 ns

(363 clock cycles). We can conclude that for the proposed

application, if the number of expected (searched) alignments

is small (just a few) it is better to use HIPAS algorithm [21].

Otherwise, we have to implement the trace back hardware.

REFERENCES

[1] GenBank. (2011) The official web of national center for biotechnology
information. [Online]. Available: http://www.ncbi.nlm.nih.gov/

[2] E. Pettersson, J. Lundeberg, and A. Ahmadian, “Generations of sequenc-
ing technologies,” Genomics, vol. 93, pp. 105–111, 2009.

[3] H. S. Xu, W. K. Ren, X. H. Liu, and X. Q. Li, “Improving sequence
alignment using class-specific score matrices,” in Proceedings of ICBBE
2008, The 2nd International Conference on Bioinformatics and Biomed-

ical Engineering, 2008, pp. 70–73.
[4] D. Gusfield, Algorithms on strings, trees and sequences. Cambridge

University Press, 1997.

[5] T. F. Smith and M. S. Waterman, “Identification of common molecular
sub-sequences,” Journal of Molecular Biology, vol. 147, pp. 195–197,
1981.

[6] FASTA. (2011) Sequence comparison at the university of virginia.
[Online]. Available: http://fasta.bioch.virginia.edu/

[7] M. C. Herbordt, J. Model, Y. Gu, B. Sukhwani, and T. VanCourt, “Single
pass, blast-like, approximate string matching on fpgas,” in Proceedings
of the 14th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, Washington, DC, USA, 2006, pp. 217–226.
[8] Y. Liu, D. Maskell, and B. Schmidt, “Cudasw++: optimizing smith-

waterman sequence database searches for cuda-enabled graphics pro-
cessing units,” BMC Research Notes, vol. 2, no. 1, p. 73, 2009.

[9] S. A. Manavski and G. Valle, “Cuda compatible gpu cards as efficient
hardware accelerators for smith-waterman sequence alignment,” BMC

Bioinformatics, p. S10, 2008.
[10] K. Benkrid, Y. Liu, and A. Benkrid, “High performance biosequence

database scanning using fpgas,” in Processing of 2007 ICASSP, IEEE

International Conference on Acoustics, Speech and Signal, vol. 1, april
2007, pp. 361–364.

[11] B. Buyukkurt and W. A. Najj, “Compiler generated systolic arrays for
wavefront algorithm acceleration on fpgas,” in Proceedings of FPL

2008, International Conference on Field Programmable Logic and
Applications, sep 2008, pp. 655–658.

[12] I. T. S. Li, W. Shum, and K. Truong, “160-fold acceleration of the smith-
waterman algorithm using a field programmable gate array (fpga).” BMC
Bioinformatics, vol. 8, p. 185, 2007.

[13] T. Oliver and B. Schmidt, “High performance biosequence database
scanning on reconfigurable platforms,” in Proceedings of 18th Inter-

national of Parallel and Distributed Processing Symposium 2004, april
2004, pp. 192–199.

[14] Y. Yamaguchi, T. Maruyama, and A. Konagaya, “High speed homology
search with fpgas,” in Proceedings of Pacific Symposium on Biocomput-
ing02, 2002, pp. 271–282.

[15] N. Hireche, J. M. P. Langlois, and G. Nicolescu, “A systolic array for
sequence comparison based on two-logic-levels processing element,” in
Proceedings of NEWCAS 2007, IEEE Northeast Workshop on Circuits
and Systems, aug 2007, pp. 73–76.

[16] R. Lipton and D. Lopresti, “A systolic array for rapid string comparison,”
in Proceedings of Chapel Hill Conference on VLSI, 1985, pp. 363–376.

[17] R. Sastry and N. Ranganathan, “A systolic array for approximate
string matching,” in ICCD ’93, Proceedings of 1993 IEEE International

Conference on Computer Design: VLSI in Computers and Processors,
oct 1993, pp. 402–405.

[18] F. Zhang, X.-Z. Qiao, and Z.-Y. Liu, “A parallel smith-waterman algo-
rithm based on divide and conquer,” in Proceedings of Fifth International

Conference on Algorithms and Architectures for Parallel Processing

2002, 2002, pp. 162–169.
[19] TimeLogic. (2011) Decypher fpga biocomputing systems. [Online].

Available: http://www.timelogic.com/
[20] Xilinx. (2011) The official web site of the xilinx company. [Online].

Available: http://www.xilinx.com/
[21] A. Milik and A. Pułka, “Hardware oriented optimization of smith-

waterman algorithm,” in Proceedings of ICSES 2010, IEEE International

Conference on Signals and Electronic Systems, Gliwice, Poland, sep
2010, pp. 319–322.

[22] S. Dydel, K. Benedyczak, and P. Bala, “Enabling reconfigurable hard-
ware accelerators for the grid,” in Proceedings of PAR ELEC 2006,
International Symposium on Parallel Computing in Electrical Engineer-

ing, sep 2006, pp. 145–152.
[23] B. Phoophakdee and M. J. Zaki, “Genome-scale disk-based suffix tree

indexing,” in Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data. New York, USA: ACM, 2007,
pp. 833–844.

