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Fuzzy Extreme Analysis

in Time- and Frequency Domains
Włodzimierz Pogribny, Marcin Drzycimski, and Zdzisław Drzycimski

Abstract—Very often, we are interested in the shape of a signal
or an envelope of the signal or its spectrum. Classical extreme
analysis (CEA) produces too many minor details of a signal shape.
This fact, in the context of telecommunications, does not allow
us to ensure a significant coefficient of a signal compression.
Another option for signal analysis, based on the Delta Modulation
(DM), lacks sufficient dynamic range at a relatively low sampling
rate. One more “true envelope” manner is based on the cepstral
analysis, and requires too many operations.

Other methods are used for the definition of a signal envelope.
The discrete Hilbert transform (DHT) is only expedient to
capture an envelope of a narrowband signal and, moreover,
requires too many mathematical operations. Other manners
based on decimation, as well as the use of a signal rectifying
followed by low-pass filtering do not always ensure sufficient
accuracy and signal compression coefficient.

Fuzzy EA (FEA) is free from similar drawbacks. Its first
and second differences are compared with no zero limits, and
that allows us to take into consideration only major details of
the signal or spectrum shape. Consequently we obtain both an
envelope of wideband signal, and a signal significant compression
in real time. This article focuses on FEA features connected
with the aforementioned tasks. Apart from the FEA algorithm,
the article outlines some methods of signal reconstruction after
FEA in both domains, and the structure of the FEA specialized
processor. FEA application in both domains is demonstrated
through examples.

Keywords—Extreme analysis, envelope extraction, signal com-
pression.

I. INTRODUCTION

I
N order to conduct a signal shape analysis, both CEA [1]–

[4] and DM [5] are frequently used. Of these, the first and

second methods are connected with the signal shape analysis.

The first method, which is based on the CEA, operates

by comparing differences between signal adjacent samples to

zero. That leads us to obtain too many minor details which

do not allow us to identify the main features of the signal

shape. This limits the speed of signal processing as well as its

compression and transmission.

The second method uses different kinds of low-bit DM,

especially the Adaptive Differential Pulse Code Modulation

(ADPCM). This allows us to accurately pick out the signal

extremes, but only by using a sampling frequency which

exceeds Nyquist’s. Otherwise the procedure does not ensure a

sufficient dynamic range [5].

On the other hand, for the definition of a signal envelope,

the following 4 methods are often used: DHT [6], [7], the
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decimation [8], the low-pass filtering after signal rectifying

[9] and “True-Envelope” estimator [10].

The classical operation is based on analog HT algorithm

[6]:

x̃(t) =
1

π
p

∫

∞

−∞

x(τ)

t− τ
dτ (1)

Hence direct DHT algorithm is obtained in the form [6], [7]:

x̃i =
N
∑

m=−N

xmhi−m (2)

where x(t) and {xm}Nm=−N – input signal in analog and

discrete forms, x̃(t) and {x̃m}Nm=−N – results of analog HT

and DHT, p-principal value of the analog convolution, {hm}
– impuls response which is connected with one of the analog

HT convolution [7]. Here xm = x(mT ) and T – a sampling

period. On the basis of this algorithm, an analytical signal is

obtained: zi = xi + jx̃i. Hence its instantaneous amplitude in

discrete and analog forms is:

{|zi|}
N
i=−N =

{

√

x2
i + x̃2

i

}N

i=−N
,

|z(t)| =
√

x2(t) + x̃2(t) (3)

If the input signal is narrowband, for example

x(t) = A(t) sinωt, and its envelope A(t) is changing more

slowly than the signal itself, then, taking into consideration its

HT result x̃(t) = A(t) cosωt and using (3), we immediately

obtain the envelope: |z(t)| = A(t) This also means that it is

extremely problematic to achieve a calculation of reasonable

accuracy for a broadband signal envelope. Apart from this,

DHT requires an inconveniently large number of mathematical

operations: about (2N + 1)2 in the direct case (2) and about

(2N + 1) log2(2N + 1) when FFT is used instead of the

direct algorithm [6], [7]. This fact limits the application of

DHT in real time systems.

Based on decimation, the next option [8] is very simple

but not accurate enough, especially when high a compression

factor is needed.

The method which uses low-pass filtering after signal rec-

tifying [9] does not always ensure sufficient accuracy of an

envelope, especially when sharp signal changes take place.

The last “True-Envelope” method [10] applies to the fre-

quency domain only. It is based on an iterative cepstral

technique, and performs a band-limited interpolation of the

prominent spectral peaks. This requires many complicated

operations and iterations, again limiting its implementation in

fast-acting real-time systems.
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An alternative is the Fuzzy EA technique, which does not

suffer from any of the previously mentioned drawbacks. It is

expedient to apply it to study and to compress different kinds

of random signals in both time and frequency domains as well

as to define their envelopes. As opposed to CEA, its limits are

changeable, unequal to zero, and are established in relation

to a signal character. Being assigned separately for the first

and second differences, they define the “fuzzy” signal rise,

constancy and diminution, that provides the researcher with

appropriate maxima and minima. Aforementioned differences

and limits allow us to take into consideration only the major

details of the signal or spectrum shape. This also enables us

to obtain both an envelope (even an envelope of a wideband

signal), and significant compression of the signal in real time.

In connection with the fact that until now, no direct comparison

of FEA effects in both domains has been made, the purpose

of this article is to study FEA features connected with the

abovementioned tasks. Apart from the FEA algorithm usage,

the article outlines some techniques of signal reconstruction

after FEA in both domains, and the structure of an FEA

specialized processor. FEA application in both domains is

demonstrated through examples.

II. FEA ALGORITHM

Extreme analysis is based on backwards differences ∇xi

and ∇xi+1 [1] among three current adjacent samples of a

signal x(t). This can be depicted for xi−1, xi, xi+1 as:

∇xi = xi − xi−1, ∇xi+1 = xi+1 − xi (4)

These differences are sometimes called “increasing differ-

ences”.

Focusing only on the analysis of signs of the successive

differences (4) allows us to identify the severe rise, change-

lessness, and diminution of a signal as well as its rigorous

and unrigorous maxima and minima. However, in many cases

this procedure is accompanied by the detection of a lot of tiny

details which play an insignificant role. They disturb the study

of the main fragments of a signal or spectrum shape, and at

the same time result in an accumulation of needless data.

Our approach is based on the analysis not only of the signs

of the first and second differences, but also their values, com-

paring those with non zero setting boundaries. Then we can

define a signal rise, diminution, and its “fuzzy” changelessness

within the boundaries. On the other hand, it allows us to

sharpen the recognition of “distinct” and “indistinct” rigorous

and unrigorous maxima and minima.

For this, it should be expedient to depict a distinct rise (5),

fuzzy changelessness (6) and distinct diminution (7) of the

signal as follows:

∇xi > ǫ, ∇xi+1 > ǫ, (5)

|∇xi| ≤ ǫ(ǫ), |∇xi+1| ≤ ǫ(ǫ), (6)

∇xi < −ǫ, ∇xi+1 < −ǫ, (7)

where ǫ, ǫ(s) – set a priori boundaries of “fuzziness”.

On the basis of those differences we can depict all fuzzy

extremes. Then, distinct rigorous maximum (8) and minimum

(9) of a signal are represented as follows:

∇xi > ǫ, ∇xi+1 < −ǫ (8)

∇xi < −ǫ, ∇xi+1 > ǫ (9)

In addition to these, we have four fuzzy distinct unrigorous

maxima and minima. In the case of the inequalities

∇xi > ǫ, |∇xi+1| ≤ ǫ(s) (10)

or

|∇xi+1| ≤ ǫ(s), ∇xi+1 < −ǫ (11)

or

∇xi < −ǫ, |∇xi+1| ≤ ǫ(s) (12)

or

|∇xi| ≤ ǫ(s), ∇xi+1 > ǫ (13)

we have: distinct unrigorous maximum following the signal

rise (10), distinct unrigorous maximum following the signal

changelessness (11), distinct unrigorous minimum following

the signal diminution (12), and distinct unrigorous minimum

following the signal changelessness (13). Using these inequali-

ties provides us with a general algorithm of the fuzzy extremes

finding:

∀∇x∃E((((∇xi > ǫ) ∧ (∇xi+1 < −ǫ))

∨((∇xi < −ǫ) ∧ (∇xi+1 > ǫ))

∨((∇xi > ǫ) ∧ (|∇xi+1| ≤ ǫ(s)))

∨(|(∇xi| ≤ ǫ(s)) ∧ (∇xi+1 < −ǫ))

∨((∇xi < −ǫ) ∧ (|∇xi+1| ≤ ǫ(s)))

∨((|∇xi| ≤ ǫ(s)) ∧ (∇xi+1 > ǫ))) 7→ E) (14)

Here E means the appearance of the extreme, 7→ is a

symbol of a sequence. The first conjunction of inequalities in

brackets depicts the occurrence of distinct rigorous maximum,

the second one means the appearance of distinct rigorous

minimum. The other conjunctions describe distinct unrigorous

extremes: maximum following the signal rise, maximum after

the signal fuzzy changelessness, minimum before the signal

fuzzy changelessness and minimum after the signal fuzzy

changelessness.

We should note that the algorithm (14) is a universal one,

and independent of the method of digital representation of the

signal samples. Therefore Delta Modulation steps may be used

instead of differences [5].

For a more accurate signal analysis, as well as its reconstruc-

tion after FEA, it is expedient to use the additional analysis

of the secondary signal backwards differences value:

∇2xi+1 = ∇xi+1 −∇xi = xi+1 − 2xi + xi−1 (15)

which is accompanied by the appearance of “indistinct” un-

rigorous fuzzy extremes. When the condition

|∇2xi+1| > δ(n) (16)
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takes place, where δ(n) – sets a priori boundary of “in-

distinctness” of a signal rise or diminution, then indistinct

unrigorous fuzzy maximum or minimum of a signal takes

place in the sample xi. In fact, indistinct unrigorous fuzzy

extremes characterize some side bulges and dents of a signal

shape. Obviously, this method, in comparison to the one based

only on the first differences (14), leads to an increase in the

extremes’ number but at the same time it allows us to obtain

a more exact signal analysis, as well as its reconstruction after

FEA.

We can see that the CEA strict rules used to describe the

character of the signal’s changes (including its extremes [1]–

[4]) are derived from the abovementioned inequalities (5)-(14)

if both ǫ and ǫ(s) equal to 0.

Similarly, for frequency domain, a signal sample’s differ-

ences {∇xk} in (14) can be replaced with its consecutive

spectrum component differences {∇Xk = ∇X(k)}, where

∇X(k) = X(k)−X(k− 1), and in effect, the algorithm can

be written down as:

∀∇X∃E((((∇Xi > ǫ) ∧ (∇Xi+1 < −ǫ))

∨((∇Xi < −ǫ) ∧ (∇Xi+1 > ǫ))

∨((∇Xi > ǫ) ∧ (|∇Xi+1| ≤ ǫ(s)))

∨((|∇Xi| ≤ ǫ(s)) ∧ (∇Xi+1 < −ǫ))

∨((∇Xi < −ǫ) ∧ (|∇Xi+1| ≤ ǫ(s)))

∨((|∇Xi| ≤ ǫ(s)) ∧ (∇Xi+1 > ǫ))) 7→ E) (17)

Secondary spectrum differences have the form:

∇2Xi = ∇Xi −∇Xi−1 = Xi − 2Xi−1 +Xi−2

∇2Xi+1 = ∇Xi+1 −∇Xi = Xi+1 − 2Xi +Xi−1 (18)

Indistinct, unrigorous fuzzy extreme occurs when the fol-

lowing condition is met

|∇2Xi+1| > ǫ(max) (19)

where boundary ǫ(max) corresponds to δ(n) in the time domain

(16). Besides this, the extreme takes place in the spectrum

component Xi. In that way we can depict “bulges” and “dents”

in the spectrum. These “indistinct” extremes improve the

quality of the analysis as well as the spectrum reconstruction

after FEA.

Obviously, gaining only an insignificant number of the

distinct and indistinct extremes and distances between them

instead of all samples of a signal realization leads to a signif-

icant signal compression. That compression is very important

for data transmission and recording tasks. We can depict

a compression factor for FEA result in the following form:

C =
Ncs

ncs + (n− 1)ci
(20)

where N – general number of input signal samples, n –

total number of the extremes, cs – code word length of the

values of extremes and ci – code word length of the intervals

between extremes. The extreme values and intervals allow

us to reconstruct a signal accurately by using appropriate

techniques.

Now let us consider a particular event, where FEA is used

to extract a signal envelope. For that, we propose the use

of a twofold EA. Firstly, a modulated narrow-band signal

with zero constant component is rectified and, afterwards, its

strict maxima are defined on the basis of CEA. The maxima

represent the envelope samples. Next, these samples undergo

FEA according to (14) and (16) so as to obtain “distinct”

and “indistinct” extremes as main details of an envelope.

These extremes are the basic samples of the envelope, and,

after corresponding interpolating, enable us to reconstruct it.

Additionally, this leads to an envelope significant compression

with minimal loss of accuracy.

For the frequency domain, the first step is connected with

both FFT algorithm to define amplitude, and phase spectra

of a signal and CEA to extract envelopes of those spectra.

The second one is based on FEA that is carried out on both

envelopes according to (17) and (19).

III. SIGNAL AND ENVELOPE RECONSTRUCTION AFTER

FEA

Here we consider two methods of signal and envelope

reconstruction after FEA. The first approach is based on a

linear interpolation of the extreme samples combined with low

pass filtering of the interpolation result afterwards. The second

is connected with a non-linear approximation of a signal on

the basis of these samples.

A linear interpolator leads to rough reconstruction of a

signal after FEA according to the algorithm [5]:

x̂k = x
(e)
i−1 +

x
(e)
i − x

(e)
i−1

ri
k (21)

where: x̂k = x̂(kT ) – k-th sample of a signal in i-th segment

of the interpolation; factor ri is a difference between numbers

of the both border samples which correspond to the i-th and

i − 1-th extremes. Besides this, ri + 1 is a total number of

samples in this segment whilst k = 0, ri – a current sample

number on the segment; x
(e)
i−1 and x

(e)
i – the value of next

extremes after FEA on the borders of i-th segment of the

interpolation. Let us note that the first segment begins with

an initial sample x0 of a signal, that is, the first extreme is

x
(e)
0 = x0. The linear interpolator generates samples and fills

an interval between two sequential extremes with the samples.

Therefore, that rough reconstructed signal is connected with

all the extremes and the intermediate samples as well as with

the number {ri} of periods T between the extremes.

Afterwards, that signal is entered to a smoothing digital filter

with either a constant or adaptive impulse response (IR). The

first case is simpler and is based on a convolution operation

of a signal with the inalterable IR:

yn =

M−1
∑

m=0

x̂n−mhm (22)

where {yn} – the output of filtering; {x̂m} – a signal after

linear interpolation; {hm}M−1
m=0 – weight factors of IR.

On the other hand, a general adaptive filtering algorithm

on the basis of an error analysis in the time domain can be
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Fig. 1. Comparison of the use of linear and hyperbolic interpolations to an
envelope reconstruction. Band-pass signal is in the range 300-600Hz, envelope
extremes were obtained using the FEA method. In both cases the compression
factor is 119,97.

represented as follows [11]:

yn =

M−1
∑

m=0

x̂n−mp(m,σy)hm (23)

where {p(m,σy)} – individual adaptation coefficients for the

corresponding weight factors, and σy – mean square error

(MSE) on a set of the n extremes:

σy =
( 1

n− 1

n
∑

r=1

(x(e)
r − yr)

2
)1/2

(24)

The adaptation ability of the filtering consists of correspond-

ing changes of an IR’s weight factors under the influence of

MSE. In the simplest case, the adaptation coefficient can be

common for all weight factors and has the form p(σy). Then

formula (22) is transformed into the following:

yn = p(σy)

M−1
∑

m=0

x̂n−mhm (25)

In this case, the adaptation process consists in choosing the

whole corresponding IR.

A decision about changing the weight factors is made on the

basis of a criterion σy > / < σass where σass is the assigned

MSE of a signal reconstruction.

For example, if σy ≤ σass then p(·) = 1 and values of

{hm}M−1
m=0 will not be changed.

When σy > σass two events can take place. Firstly, if
n
∑

r=1

sgn(x(e)
r − yr) > 0 then the weight factor values should

be increased, e.g. by the choice p(·) = 1, 5. Secondly, in the

opposite case, when

n
∑

r=1

sgn(x(e)
r − yr) < 0, the values should

be decreased, e.g. by setting p(·) = 0, 7.

In some cases it is expedient to base the filtering adaptation

on an error analysis in the frequency domain [12]. For that, we

should operate on a power spectrum error of the reconstructed

signal that allows us, analogously to the algorithms (24) and

(25), to change the IR in an appropriate way. The filtering

TABLE I
ENVELOPE RECONSTRUCTION AFTER FEA IN THE TIME DOMAIN (1ST

TEST SIGNAL)

Compression

ǫ, ǫ(s) δ(n) factor C SNR [dB]

0 - 14,87 14,74
0,0002 0,001 6,50 41,27
0,0005 0,010 11,59 20,18
0,0007 0,002 8,11 32,25
0,0010 0,002 8,79 30,59
0,0020 0,004 11,27 24,58
0,0020 0,008 13,20 21,04
0,0020 0,040 16,46 18,66

effectiveness, in both cases, depends mainly on the character

of the signal and its spectrum. Some drawbacks of the depicted

algorithms are the complication of the necessary hardware

realization, as well as the occurrence of a delay connected

with the filtering process duration.

Better approximation results in comparison to the algorithm

depicted by (21) and (22) can be obtained using a non-linear

interpolation [13], [14]. In the work [13] the hyperbolic inter-

polation for the non-linear approximation has been proposed

as optimal. For that interpolation we assigned the next initial

conditions. Values of a function x̂k = x̂(kT ) in the points of

neighbouring (i − 1)-th and i-th extremes are x
(e)
i−1 and x

(e)
i .

The signal x̂(t) derivatives in these points equal 0. This allows

us to obtain a system of four equations, hence we can write

down the expression to the hyperbolic interpolation:

x̂k = −2(x
(e)
i − x

(e)
i−1)

( k

ri

)3

+ 3(x
(e)
i − x

(e)
i−1)

( k

ri

)2

+ x
(e)
i−1

(26)

All denotations in the formula (26) are the same as in (21).

We can demonstrate the advantage of this technique via the

example of the reconstruction of an envelope of rectified mod-

ulated sine signal, Fig. 1. after FEA, the linear interpolation

together with low-pass filtering was used, as well as hyperbolic

one.

We can see that the hyperbolic interpolation leads to more

accurate signal reconstruction than the linear one together

with low-pass filtering (21) at the same compression factors.

Additionally, it is both simpler and faster because of its

foundation on simple mathematical operations only.

IV. SIMULATION METHOD AND RESULTS

The effectiveness of the FEA method was examined in

the context of its accuracy and compression factor (20), in

depending on the boundaries of “fuzziness” ǫ, ǫ(s) and δ(n).
As an example, below are listed some of the results of studying

the extraction of two test signal envelopes, and reconstruction

on the basis of the abovementioned algorithms in comparison

with the well-known decimation method [8] by using different

decimation factors. Additionally, a signal-noise ratio (SNR)

was used for the evaluation of the accuracy of an envelope

reconstruction as follows:

SNR = 10 lg
Ψ2

x

σ2
x

(27)
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TABLE II
AMPLITUDE SPECTRUM ENVELOPE RECONSTRUCTION AFTER FEA IN

FEQUENCY DOMAIN (1ST TEST SIGNAL)

ǫ, ǫ(s) δ(n) Compression factor C SNR [dB]

0 - 1,41 19,74
0,02 2 4,68 30,47
0,05 5 5,56 25,18
0,10 5 7,79 24,27
0,15 0,3 10,51 23,14
0,20 0,4 14,63 20,73
0,30 0,6 21,33 18,14
0,50 2,5 29,52 17,25

where mean power of an envelope is:

Ψ2
x =

1

n

n−1
∑

r=0

(x(e)
r )2 (28)

and an approximation MSE is:

σx =

√

√

√

√

1

n

n−1
∑

r=0

(x
(e)
r − x̂r)2 (29)

Here n is a quantity of an envelope maxima {x
(e)
i }ni=0

determined on the basis of rigorous CEA, {x̂i}
n
i=0 – the

samples of the envelope reconstructed after FEA at the same

points.

The first test signal was English speech which was filtered

in a band 300-500 Hz and, afterwards, rectified. Its duration

was 1 second and it consisted of 8000 samples.

Table I presents SNR values for its envelope which was

extracted and processed using FEA and hyperbolic interpo-

lation in the time domain. The simulation was carried out

using different ǫ, ǫ(s) and δ(n) values to study their impact

on the compression factor C and SNR. As Table I shows, the

SNR values in the range of 30-32 dB can be acquired at good

compression factors between 7 and 9. As was to be expected,

further widening of the “fuzziness” boundaries increases the

compression factor by worsening the SNR.

Tables II and III present the effects of the use of FEA in the

frequency domain for the processing of amplitude and phase

spectra respectively. Similarly to the previous example, SNR

values for envelope extraction and reconstruction after FEA

are presented for different ǫ, ǫ(s) and δ(n) values to show the

their impact on the compression factor and SNR. In this case,

TABLE III
PHASE SPECTRUM ENVELOPE RECONSTRUCTION AFTER FEA IN

FREQUENCY DOMAIN (1ST TEST SIGNAL)

ǫ, ǫ(s) δ(n) Compression factor C SNR [dB]

0 - 1,43 12,61
0,1 0,2 1,06 50,68
0,7 2 1,35 22,90
1,0 2 1,52 20,82
1,5 3 1,88 14,75
2,0 4 2,21 13,24

TABLE IV
ENVELOPE EXTRACTION USING DECIMATION (1ST TEST SIGNAL)

Decimation factor SNR [dB]

2 28,99
5 14,27

10 7,01
20 6,72
30 6,17
40 5,72
50 4,51

FEA confirms its effectiveness for amplitude spectrum when

the compression factor of an amplitude spectrum is around 5,

while SNR is around 31dB and 10 when SNR is around 23

dB. Better compression factor (around 11 or better) can be

achieved, but this causes the SNR drop.

As the simulation results show, in most cases the use of FEA

for processing a phase spectrum gives a low compression and

SNR. Therefore FEA is inexpedient for processing a phase

spectrum with a large number of extremes.

Table IV presents SNR values for a well-known method

of envelope extraction based on a decimation algorithm in

the time domain [8]. The SNR values are given for different

decimation factors.

It is noticeable that generally, in this case, worse SNR takes

place than when FEA was used. It should be noted that even

though Nyquist’s criterion was met for decimation factors 2

and 5, the SNR corresponding values were still low. Obviously,

low- pass pre-filtering would slightly improve SNR for higher

decimation factors (10 and more) as the aliasing effect would

be eliminated.

Fig.2 shows an example of an envelope extracting of the

first test signal with the use of the CEA in the time domain.

Fig.3 shows the envelope reconstruction after both FEA and

decimation in the time domain to compare them.

Fig. 4 illustrates an envelope restoration of the first test

signal after FEA in the frequency domain. In this case, the

Fig. 2. First test signal envelope extracting with using rigorous EA (CEA)
in the time domain.
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Fig. 3. Envelope restoration of the first test signal after FEA and after
decimation in the time domain.

signal envelope was reconstructed after IFFT of its amplitude

and phase spectra, which had before undergone the FEA in

this domain. In all cases a hyperbolic approximation for an

envelope reconstruction was used. The reconstruction, after

FEA, of an amplitude spectrum (FEA FQ Domain (amplitude))

is accompanied by a compression factor C = 10, 54 when

SNR= 23, 14 dB and after FEA of a phase spectrum (FEA

FQ Domain (phase)) correspondingly by C = 1, 88 if SNR is

14,75 dB. On the other hand, in the time domain, the envelope

reconstruction after FEA is connected with C = 10, when

SNR is 25,94 dB, whilst after decimation the values C = 10
and SNR= 7, 01 dB take place.

The second test signal had a heartbeat character. Its form

in the time domain after rectifying, as well as its extracted

envelope after CEA and a hyperbolic approximation, are

shown in Fig.5.

Table V shows the simulation output of the second test sig-

Fig. 4. Envelope restoration of the first test signal after FEA in the frequency
domain.

Fig. 5. Second test signal envelope extraction with the use of rigorous EA
(CEA) in the time domain.

nal processing in the time domain. The very good compression

factor C (18 and more) with high SNR (50 dB and more)

should be noted here. It is the effect of more “stable” signal

envelope and the choice of suitable coefficients of fuzziness.

The difference between classical EA (when ǫ and ǫ(s) are equal

to 0 and without δ(n)) and FEA is noticeable: FEA provides

better accuracy because of the use of unrigorous extremes.

Tables VI and VII show simulation outputs of this signal

processing in the frequency domain. For amplitude spectrum,

compression factor C as well as SNR are worse than for the

first test signal in the same domain. This is contrary to the bet-

ter result of the second test signal FEA processing in the time

domain. As it was expected, there is a significant improvement

when FEA is used for processing a phase spectrum, due to the

calmer shape character of that spectrum.

In comparison to the result of the previous test signal

processing (shown in Table IV), the decimation algorithm gave

Fig. 6. Envelope restoration of the second test signal: after FEA in the time
domain and decimation.
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Fig. 7. Envelope restoration of the second test signal after FEA in the
frequency domain.

much better results for the second test signal. As table VIII

shows, it allows us to obtain SNR= 53 dB for the compression

factor C = 2 and 28.5 dB for C = 10. Similar to the previous

case, SNR drops at higher decimation factors.

Fig.6 and Fig.7 illustrate an effect of the second test signal

envelope reconstruction after FEA in both domains, as well as

after the decimation. In both cases, hyperbolic approximation

was used to restore an envelope. In these examples, the am-

plitude spectrum envelope reconstruction after FEA (FEA FQ

Domain (amplitude)) is accompanied by compression factor

C = 9, 36 when SNR is 25,82 dB and after FEA of a phase

spectrum (FEA FQ Domain (phase)) correspondingly 8,92 and

15,43 dB. On the contrary, the envelope reconstruction after

FEA in the time domain is characterized by C = 19, 04 and

SNR= 50, 85 dB whilst after decimation there are C = 10
and SNR= 28, 49 dB.

V. FEA ANALYZER

The structure of a specialized processor realizing FEA

algorithm is shown in Fig.8. It consists of: analog to dig-

ital converter A/D, first and second delay elements on one

sampling period delay, first subtractor SUB for obtaining first

differences, second subtractor for the calculation of second

differences, two comparators responsible for the detection of

extremes, an OR gate, a switch SW for transmitting all extreme

TABLE V
ENVELOPE RECONSTRUCTION AFTER FEA IN THE TIME DOMAIN (2ND

TEST SIGNAL)

ǫ, ǫ(s) δ(n) Compression factor C SNR [dB]

0 - 26,32 12,76
0,0002 0,001 18,10 51,55
0,0002 0,002 18,18 50,93
0,0005 0,002 18,52 50,93
0,0007 0,002 18,78 50,91
0,0010 0,002 19,05 50,85
0,0020 0,010 19,51 40,90
0,0300 0,010 21,51 38,68

TABLE VI
AMPLITUDE SPECTRUM ENVELOPE RECONSTRUCTION AFTER FEA IN

FREQUENCY DOMAIN (2ND TEST SIGNAL)

ǫ, ǫ(s) δ(n) Compression factor C SNR [dB]

0 - 1,34 17,97
0,02 2 4,16 42,98
0,05 2 5,56 46,79
0,15 0,33 7,82 42,13
0,2 0,4 8,60 25,85
0,2 5 9,58 25,78
0,2 3 9,36 25,82
0,3 3 10,71 19,74
0,5 5 13,27 17,79
1 5 15,36 11,09

TABLE VII
PHASE SPECTRUM ENVELOPE RECONSTRUCTION AFTER FEA IN

FREQUENCY DOMAIN (2ND TEST SIGNAL)

ǫ, ǫ(s) δ(n) Compression factor C SNR [dB]

0 - 1,33 5,73
0,1 0,2 2,41 55,44
0,5 2 4,83 18,58
0,7 2 5,73 17,57
1 2 6,91 20,50

1,5 3 8,92 15,43
2 4 10,06 13,13

samples {xextr}, a counter CT for calculating the distance

between extremes, and a clock CLK for controlling the whole

structure.

After PCM procedure, input signal samples {xi} are for-

warded to the first subtractor unit. The subtractor calculates

the first difference value ∇xi = xi − xi−1 using current xi

and delayed xi−1 samples. Next, this result is forwarded to

the second subtractor to obtain the second difference value

analogously. The first and the second differences are then

compared with ǫ, ǫ(s) and δ(n) – set a priori boundaries of the

“fuzziness” and “indistinctness” of a signal change to detect

distinct and indistinct fuzzy extrema. When either extreme

is detected, an appropriate control signal is generated by the

corresponding comparator. Then, via the OR gate, this signal

turns on the switch which passes an extreme sample xextr to

the first output of the processor. Apart from this, that signal

influences the counter action that causes the passing of extreme

distances to the second output of the processor. After that

counter is reset.

VI. SUMMARY

As the abovementioned experiments show, FEA is an ef-

fective means of signal analysis and compression, as well as

envelope extraction. It is expedient for use in processing both

narrowband and wideband signals in the time and frequency

domains. Its peculiarities follow from its operating not only on

signs, but also on values of the first and second differences by

using different boundaries for comparison. Thanks to the fact

that it picks up only major details of the signal or spectrum

shape, FEA allows us to obtain a significant compression of

a signal at high accuracy of its reconstruction afterwards.
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Fig. 8. Block scheme of FEA specialized processor working in the time domain.

In particular, FEA leads to the much better capture of an

envelope than the classic method based on direct decimation.

For example, for the same envelope FEA in the time domain

allows us to obtain SNR≈ 41 dB and compression factor 6.5,

as opposed to the direct decimation with decimation factor 5

when SNR is about 14dB. FEA demonstrates its advantages

in the frequency domain as well – for the processing of an

amplitude and phase spectra.

It should be noted that the compression coefficient of FEA

sufficiently depends on a signal character. For longer and more

“steady” parts of the input signal (e.g. voice signal with a lot

of “silent” fragments) compression coefficient can be reached

even to around 120 for the time domain, still assuring better

SNR than the classic envelope extraction method. Further op-

timisation of the compression ratio is possible by the reduction

of the number of bits used to transmit the extreme distances.

It has been demonstrated that in most cases, hyperbolic ap-

proximation should be recommended for signal reconstruction

after FEA. Its accuracy is very close to the one of signal

reconstruction on the basis of linear interpolation together with

an adaptive low-pass filtering at the same compression factors.

However, the hyperbolic approximation is simpler and faster

because it is based solely on simple mathematical operations.

The structure of a specialized processor for FEA is simple,

economical, and fast. That makes it attractive to use in

different real-time systems. Its universality promotes its use

TABLE VIII
ENVELOPE EXTRACTION WITH THE USE OF DECIMATION (2ND TEST

SIGNAL)

Decimation factor SNR [dB]

2 53,51
5 38,33

10 28,49
20 14,51
30 10,83
40 9,68
50 7,41

in a wide range of applications including telecommunications,

physics, and medicine.
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