
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 1, PP. 15–20

Manuscript received December 31, 2011; revised March 2012. DOI: 10.2478/v10177-012-0002-x

Input Variable Partitioning Method

for Decomposition-Based Logic Synthesis targeted

Heterogeneous FPGAs
Mariusz Rawski

Abstract—The functional decomposition has found an applica-
tion in many fields of modern engineering and science, such as
combinational and sequential logic synthesis for VLSI systems,
pattern analysis, knowledge discovery, machine learning, decision
systems, data bases, data mining etc. It is perceived as one of the
best logic synthesis methods for FPGAs. However, its practical
usefulness for very complex systems depends on efficiency of
method used in decomposition calculation.

One of the most important steps in functional decomposi-
tion construction is selection of the appropriate input variable
partitioning. In case of modern heterogeneous programmable
structures efficiency of methods used to solve this problem be-
comes especially important. Since the input variable partitioning
problem is an NP-hard, heuristic methods have to be used to
efficiently and effectively search for optimal or near-optimal
solutions.

The paper presents a method for bound set selection in
functional decomposition targeted FPGAs with heterogeneous
structure. This heuristic algorithm delivers optimal or near
optimal results and is much faster than other methods.

Keywords—Functional decomposition, heterogeneous FPGA,
bound set selection.

I. INTRODUCTION

W ITH rapid growth of traditional FPGA industry, het-

erogeneous logic blocks are often used in the actual

FPGA architectures such as Xillinx Virtex-5 and Altera Stratix

III series. An FPGA structure can be described as an array

of programmable logic elements (cells) interconnected by

programmable connections. Early FPGAs used a logic cell

consisting of a 4-input lookup table (LUT) and register.

Although the basic architecture of FPGAs has not changed

dramatically since their introduction in the 1980s, present

devices employ larger numbers of inputs (6-input for Virtex-5

and 7-input for Stratix III) and have other associated circuitry.

Another enhancement extensively used in modern FPGAs are

specialized embedded blocks, serving to improve delay, power

and area if utilized by the application, but waste area and

power if unused.

How to handle this kind of heterogeneous design network

to generate LUTs with different input sizes in the mapping

is a very important and practical problem. The existing CAD

tools are not well suited to utilize all possibilities that modern

heterogeneous programmable structures offer due to the lack

of appropriate synthesis methods. Typically, after the logic

This work was partly supported by the Ministry of Science and Higher
Education of Poland – research grant no. N N516 418538 for 2010-2012.

M. Rawski is with the Institute of Telecommunications, Warsaw Univer-
sity of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland (e-mail:
rawski@tele.pw.edu.pl).

synthesis stage, technology-dependent mapping methods are

used to map design into available resources [1], [2]. However,

such an approach is inefficient due to the fact that the quality

of postsynthesis mapping is highly dependent on the quality

of technology independent optimization step [3]. Recently,

efforts have been made to develop methods based on functional

decomposition that would allow for efficient utilization of

heterogeneous structure of FPGA [4]. This method is designed

specifically to implement FIR filters using the concept of

distributed arithmetic. In [5] there were proposed advanced

synthesis methods based on functional decomposition that

utilizes embedded memory block as large LUTs.

Functional decomposition is a logic synthesis method that

has recently gained much recognition [6]. The main reason is

the evolution of field programmable gate-arrays (FPGAs) as

a new technology for digital system implementation. Architec-

ture of FPGA is based on the lookup table as basic building

block, where an n-input LUT is capable of implementing any

Boolean function of up to n variables. Thus, logic synthesis

for LUT-based FPGAs must transform a logic network into

network that consists of nodes with up to n inputs only. Each

node of such network can be then implemented by a single

LUT. For this reason, for the case of implementation targeting

FPGA structure, functional decomposition is perceived as

one of the best logic synthesis methods. However modern

FPGA devices have very complex structure. Today’s FPGAs

are entire programmable systems on a chip (SoC) which

are able to cover an extremely wide range of applications.

Their heterogeneous structure enforces development of new

functional decomposition based synthesis methods that could

take advantage of such architecture of nowadays FPGAs.

In the functional decomposition process the following three

factors play an extremely important role: an appropriate input

variable partitioning, decision which (multi-valued) function

will be computed by a certain subsystem and encoding of the

subsystem’s function with binary output variables.

In the paper a heuristic method of input variable partitioning

is described that is suitable for decomposition-based logic

synthesis for FPGAs with heterogeneous structure. Application

of this method for construction of the input variable partition

allows reducing the search space to a manageable size while

keeping the high-quality solutions in the reduced space.

II. PRELIMINARY INFORMATION

A. Architectures of Modern FPGAs

The technological advancements in Field Programmable

Gate Arrays in the past decade have opened new paths

16 M. RAWSKI

for digital systems design engineers. The FPGA maintains

the advantages of custom functionality like an ASIC, while

avoiding the high development costs and the inability to make

design modifications after production. An FPGA structure can

be described as an array of LUT-based programmable logic

elements (cells) interconnected by programmable connections.

Each cell can implement a simple logic function (of a limited

number of inputs) defined by a designer’s CAD tool. A typical

programmable device has a large number (64 to over 1 000

000) of such cells, that can be used to form complex digital

circuits. The ability to manipulate the logic at the gate level

means that the designer can construct a custom processor to

efficiently implement the desired function. The technological

progress in microelectronics in the past decade has changed

this picture by introducing embedded specialized blocks into

structure of FPGA chip.

Modern FPGA devices have very complex structure. To-

day’s FPGAs are entire programmable systems on a chip

(SoC) which are able to cover an extremely wide range of

applications. The Altera Stratix III and Xilinx Virtex-5 families

of devices, both using a 65 nm manufacture process, can

be used as examples of contemporary FPGAs. The basic

architecture of FPGAs has not changed dramatically since

their introduction in the 1980s. Early FPGAs used a logic cell

consisting of a 4-input lookup table (LUT) and register. Present

devices employ larger numbers of inputs (6-input for Virtex-5

and 7-input for Stratix III) and have other associated circuitry.

Another enhancement extensively used in modern FPGAs are

specialized embedded blocks, serving to improve delay, power

and area if utilized by the application, but waste area and

power if unused. Early embedded blocks included fast carry

chains, memories, phase locked loops, delay locked loops,

boundary scan testing and multipliers. More recently, multi-

pliers have been replaced by digital signal processing (DSP)

blocks (which add support for logical operations, shifting,

addition, multiply-add, complex multiplication etc.), allowing

designers to use methodology known from DSP programming.

Some architectures even contain hardware CPU cores.

The basic building block of logic in the Stratix III ar-

chitecture is the adaptive logic module (ALM). Each ALM

contains a LUT-based resources that can be divided between

two combinational adaptive LUTs (ALUTs) and two registers.

Combinational ALUTs may have up to eight inputs. An ALM

can implement various combinations of two functions, any

function of up to six inputs and certain seven-input func-

tions. In addition to the adaptive LUT-based resources, each

ALM contains two programmable registers, two dedicated

full adders, a carry chain, a shared arithmetic chain, and

a register chain. This dedicated resources allow efficiently

implementing various arithmetic functions and shift registers.

TriMatrix embedded memory blocks provide three different

sizes of embedded SRAM: 640 bit (in ROM mode only) or

320 bit memory logic array blocks (MLABs), 9 Kbit M9K

blocks, and 144 Kbit M144K blocks.

The elementary programmable logic blocks in Xilinx Virtex-

5 FPGAs are called slices and are organized in Configurable

Logic Blocks (CLBs). The CLBs are the main logic resources

for implementing sequential as well as combinatorial circuits.

Each CLB element is connected to a switch matrix for access

to the general routing matrix. A CLB element contains a pair

of slices. Each slice has four 6-input function generators

(LUTs), embedded multiplexers, carry logic, and four regis-

ters. The function generators can implement any arbitrarily

defined six-input Boolean function. Each function generator

can also implement two arbitrarily defined five-input Boolean

functions, as long as these two functions share common inputs.

In addition to the basic LUTs, slices contain three multiplex-

ers. These multiplexers are used to combine up to four function

generators to provide any function of seven or eight inputs in

a slice. Virtex-5 CLBs also support distributed memory – each

look-up table can be configured to operate as a 64-bit memory.

The block RAM in Virtex-5 FPGAs stores up to 36K bits of

data and can be configured as either two independent 18 Kb

RAMs, or one 36 Kb RAM.

As was already mentioned specialized embedded memory

blocks (EMB) make it possible to implement data storage

modules, such as shift registers or RAM blocks. In many cases,

though, the designer does not need such elements in design

or not all such resources are utilized. This chip area need not

be wasted, however, if the unused memory arrays are used

to implement logic. Configuring the arrays as ROM results

in large lookup-tables that might very efficiently implement

some logic circuits. The memories act as very large logic cell,

where the number of inputs is equal to the number of address

lines and the number of output is equal to the size of memory

word. Since the size of address and memory word of single

EMB can be configured in several different ways it can act as

logic cell of different sizes.

Such architecture of modern programmable FPGAs greatly

extends the space of possible solution during the process of

mapping the design into FPGA structure. Unfortunately this

heterogeneous structure of available logic resources greatly

increases the complexity of mapping algorithms. The existing

CAD tools are not well suited to utilize all possibilities that

such modern programmable structures offer due to the lack of

appropriate logic synthesis methods.

B. Serial Functional Decomposition

Functional decomposition relies on breaking down a com-

plex system into a network of smaller and relatively indepen-

dent co-operating sub-systems, in such a way that the original

system’s behavior is preserved [7], [8].

The set X of function’s input variables is partitioned into

two subsets: free variables U and bound variables V, such

that U ∪ V = X . Assume that the input variables x1, . . . , xn

have been relabeled in such way that: U = x1, . . . , xr and

V = xn−s+1, . . . , xn.

Consequently, for an n-tuple x, the first r components are

denoted by xU , and the last s components, by xV .

Let F be a Boolean function, with n > 0 inputs and

m > 0 outputs, and let (U, V) be as above. Assume that

F is specified by a set F of the function’s cubes. Let G be

a function with s inputs and p outputs, and let H be a function

with r + p inputs and m outputs. The pair (G,H) represents

a serial decomposition of F with respect to (U, V), if for every

INPUT VARIABLE PARTITIONING METHOD FOR DECOMPOSITION-BASED LOGIC SYNTHESIS TARGETED HETEROGENEOUS FPGAS 17

Fig. 1. Schematic representation of the serial decomposition.

minterm b relevant to F , G(bV) is defined, G(bV) ∈ {0, 1}p,

and F (b) = H(bU , G(bV)). G and H are called blocks of the

decomposition (Fig. 1).

In [8] a theorem based on concept of blankets can be found

that describes the existence of the serial decomposition.

Theorem 1. Let βV , βU , and βF be blankets induced on the

function’s F input cubes by the input sub-sets V and U , and

outputs of F , respectively.

If there exists a blanket βG on the set of function F ’s input

cubes such that βV ≤ βG, and βU · βG ≤ βF , then F has

a serial decomposition with respect to (U, V).

The process of functional decomposition consists of the

following steps:

• the selection of an appropriate input support V for block

G (input variable partitioning),

• the calculation of the blankets βU , βV and βF ,

• the construction of an appropriate multi-block blanket βG

(this corresponds to the construction of the multi-valued

function of block G),

• the creation of the binary functions H and G by rep-

resenting the multi-block blanket βG as the product of

a number of certain two-block blankets (this is equivalent

to encoding the multi-valued function of block G defined

by blanket βG with a number of binary output variables).

In a multilevel decomposition, this process is applied to

functions H and G repetitively, until each block of the

obtained in this way net can be directly mapped in a logic

block of a specific implementation structure [9].

The practical usefulness of functional decomposition for

very complex systems is limited by lack of an efficient method

for the construction of the high quality sub-systems. In the sub-

system construction process one of the most important steps

is to select an appropriate input support (bound set) for sub-

systems, thus efficiency of input variable partitioning method

has the great impact on quality the whole logic synthesis.

III. INPUT VARIABLE PARTITIONING

The selection of an appropriate input variable partitioning

is the main problem in functional decomposition. The choice

of sets U and V from set X determines the construction of

an appropriate blanket βG which satisfies Theorem 1.

The input variable partitioning is NP-hard problem. For

function F of n input variables and the size k of set V
the number of possible solutions is described by binomial

coefficient:

l =

(

n

k

)

=
n!

(n− k)!k!
.

Early methods ware based on enumeration of all partitions

of fixed size [10]–[13]. However, when n and k is large

evaluating all partition is too time consuming. There are two

types of algorithms solving this problem. One of them are

algorithms finding decompositions without using any search

heuristics. The basic idea of these algorithms is to limit the

search to some input variable partitions. This is done by

using different functional methods to choose which partitions

will be evaluated. These methods select partitions through

Reed-Muller expansions, Fourier transforms, binary difference

equations, and technology-based mappings [9], [14], [15].

When synthesis is performed for FPGA with heterogeneous

structure an algorithm must take into account that such archi-

tectures deliver building blocks of different sizes, thus bound

sets of different sizes have to be examined. For large functions

the solution space is so huge that heuristic method for solving

this problem has to be used.

In [16] the input variable partitioning method based on

information relationship measures was presented, which pro-

duced optimal or sub-optimal results for factions of consider-

able size. However information relationship measures may be

used for analyzing combinational functions described by truth

tables only.

A very efficient method was presented in [17] where an

application of evolutionary algorithms for solving input par-

titioning problem was proposed for decomposition based on

cubes. This heuristic method of bound set selection turns out

to be very efficient when applied for decomposition method

based on ROBDDs as on [18]. In [19] a method based on

evolutionary algorithms was proposed that was adopted for

heterogeneous FPGAs.

IV. ITERATIVE INPUT VARIABLE PARTITIONING

ALGORITHM

The method presented in this paper is based on observations

made while examining evolutionary algorithms. The analysis

of best possible solutions for given Boolean function results in

interesting observations [17]. If partitioning of input variable

set X into variables belonging to set U and belonging to set

V that leads to optimal decomposition are examined, it can be

noticed that certain variables appear in bound set often than

others. This suggests that some variables are more predestined

to be included in bound set and other to be included in free

set when constructing good input variable partitions.

In [20] has been shown that there is a strong correlation of

number of values in the sub-functions of the serial functional

decomposition represented by the number of blocks in βG with

the decomposition’s quality. Thus the number of blocks in βG

can be used to assess the quality of decomposition. Table I

18 M. RAWSKI

presents the best solutions of input variable partitioning for

plan example Boolean function from standard Microelectron-

ics Center of North Carolina benchmark set [21]. This function

has 13 inputs and 25 outputs.

Each row of Table I describes one partitioning of input

variable set X = x1, . . . , x13 into variables belonging to set

U (marked by digit ’1’) and belonging to set V that leads to

optimal decomposition (according to of the number of blanket

βG’s blocks). It presents the best solutions for different sizes

of sets V and U , as well as the frequency of appearance of

given input variable in V set. It can be easily noticed that

certain variables appear in bound set often than others. For

example variable x1 appears in V set for 16 solutions listed

in Table I, while x2 does not belong to V set for any of

the best solutions. This suggests that some variables are more

predestined to be included in V and other to be included in

U set when constructing good input variable partitions.

There is another interesting observation that can be made.

Let us assume that the V set is created in a way that it consists

of variables that according to analysis of optimal U and V sets

are least appropriate to be in bound set. As we could expect,

the quality of decomposition for such selected V set will be

very poor. However, if we move “good” variable from set U
to set V and “bad” variable from set V to set U , the quality of

decomposition most probably will be improved. If we further

swap more “bad” and “good” variables further improvement

will been obtained.

Let us create a set V = x2, x3, x4, x9 with variables that

according to Table I are least appropriate to be in this set. Thus

free set will be U = x1, x5, x6, x7, x8, x10, x11, x12, x13. The

quality of decomposition measured with the number of blanket

βG’s blocks is 16 – the worst possible for this size of V .

However, if “good” variable x1 is moved from set U to set

V and “bad” variable x2 from set V to set U , the quality of

decomposition is now 15, so it has improved. If we now swap

variables x3 and x12, the decomposition will have quality 11,

so further improvement has been obtained.

The method presented in this paper is based on identification

of “good” variables by iteratively placing every input variable

in test set of arbitrary selected variables. If improvement is

obtained variable is marked as “promising”. Appropriately

performed selection process allows identifying V sets of very

good quality. This algorithm can be described as “simplified”

evolutionary algorithm, where individuals representing good

solutions are composed of “good” genes identified in set of

test individuals.

The outline of the algorithm is presented on List. 1. First,

test set T is constructed, that will be used to evaluate the

quality of input variables. For every variable that is not already

in set T a bound set V is created that holds it along with

variables from T . Then the quality of decomposition with such

bound set is evaluated and stored in table Q. Then partial

bound set Vp is constructed by selecting variables of best

quality according to table Q. Since variables from set T were

not evaluated none of them can be selected for partial bound

set Vp. In the last step set Vp is extended with variable that

delivers the best quality. In this step variables from set T are

also evaluated and thus have a chance to appear in final bound

set VR. There are parameters (size of test set, size of partial

bound set Vp) that can be used to control the algorithm.

1 / / I n p u t : X − s e t o f i n p u t v a r i a b l e s

2 / / n − number o f i n p u t v a r i a b l e s

3 / / t − s i z e o f t e s t s e t

4 / / p − s i z e o f p a r t i a l bound s e t Vp

5 / / k − s i z e o f bound s e t VR

6 / / R e s u l t : VR − bound s e t

8 / / Crea te t e s t s e t T

9 T = ∅ ;

10 f o r i = 1 t o t b e g i n

11 T = T ∪ xi ;

12 end

13 / / E v a l u a t e q u a l i t y o f v a r i a b l e s

14 f o r i = t+ 1 t o n b e g i n

15 Ti = T ∪ xi ;

16 V = Ti ;

17 U = X − V ;

18 Q[i] = e v a l u a t e(U, V) ;

19 end

20 / / C o n s t r u c t p a r t i a l bound s e t

21 f o r i = 1 t o k − p b e g i n

22 f o r j = t+ 1 t o n b e g i n

23 i f Q[j] i s max b e g i n

24 Vp = Vp ∪ xj ;

25 Q[j] = 0 ;

26 end

27 end

28 end

29 / / Find b e s t e x t e n s i o n o f p a r t i a l bound

s e t

30 f o r i = 1 t o n b e g i n

31 i f xi /∈ Vp b e g i n

32 V = Vp ∪ xi ;

33 U = X − V ;

34 Q[i] = e v a l u a t e(U, V) ;

35 end

36 e l s e b e g i n

37 Q[i] = 0 ;

38 end

39 end

40 / / C o n s t r u c t f i n a l bound s e t

41 VR = Vp ;

42 f o r i = 1 t o p b e g i n

43 f o r j = 1 t o n b e g i n

44 i f Q[j] i s max b e g i n

45 VR = VR ∪ xj ;

46 end

47 e l s e b e g i n

48 Q[i] = 0 ;

49 end

50 end

51 end

52 re turn VR ;

Listing 1. Outline of the bound set selection algorithm

INPUT VARIABLE PARTITIONING METHOD FOR DECOMPOSITION-BASED LOGIC SYNTHESIS TARGETED HETEROGENEOUS FPGAS 19

TABLE I
BEST INPUT VARIABLE PARTITIONING PROBLEM SOLUTIONS OF PLAN EXAMPLE

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

|U | = 10, |V | = 3, |βG| = 5

1 1 1 1 1 1 0 1 1 1 1 0 0

1 1 1 1 1 1 0 1 1 1 0 1 0

1 1 1 1 1 1 0 1 1 1 0 0 1

1 1 1 1 1 0 0 1 1 1 1 0 1

1 1 1 1 0 1 0 1 1 1 1 0 1

1 1 1 1 0 0 1 1 1 1 1 0 1

1 1 1 0 1 1 0 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 1 0 1 1 0

0 1 1 1 1 1 1 1 1 0 1 0 1

0 1 1 1 1 1 1 0 1 1 1 1 0

0 1 1 1 1 1 1 0 1 1 1 0 1

0 1 1 1 1 1 1 0 1 0 1 1 1

0 1 1 1 1 1 0 1 1 1 1 1 0

0 1 1 1 1 1 0 1 1 1 1 0 1

0 1 1 1 1 0 1 1 1 1 1 0 1

0 1 1 1 0 1 1 1 1 1 1 0 1

0 1 1 0 1 1 1 1 1 1 1 1 0

|U | = 9, |V | = 4, |βG| = 7

0 1 1 1 1 1 0 1 1 1 1 0 0

|U | = 8, |V | = 5, |βG| = 11

0 1 1 1 1 1 0 1 1 1 0 0 0

0 1 1 1 1 1 0 1 1 0 1 0 0

0 1 1 1 1 1 0 0 1 1 1 0 0

|U | = 7, |V | = 6, |βG| = 17

0 1 1 0 1 1 0 1 1 0 1 0 0

Frequency of appearance in V set

16 0 0 3 3 3 13 4 0 5 3 16 13

V. RESULTS

In Table II there is presented the comparison of results

obtained with the new selection method and results obtained

by systematic search and evolutionary algorithm described

in [19]. For each method search time is presented, as well

quality of decomposition for bound set of size from 5 up

to 8. Systematic search delivers optimal results, however for

large function the search requires unacceptably long time to

find solution. Since evolutionary algorithm is a probabilistic

method average quality for 10 searches is presented. Results

obtained with this method are optimal or near-optimal, while

the search time is much shorter than in case of systematic

search.

Algorithm based on new method presented in this paper

requires several times shorter search time, while delivering

solutions of comparable quality. This method performs very

well even for large Boolean functions. It can be further im-

proved by applying beam search, that would allow identifying

many “promising” V sets.

VI. CONCLUSIONS

The usefulness of functional decomposition for very com-

plex systems depends on efficiency of an algorithm used for

the selection of bound and free variables. There are efficient

methods based on evolutionary algorithm. The method of

bound set selection presented in this paper delivers results

of similar or comparable quality to results obtained from the

evolutionary algorithm, but does it several times faster. These

features make the proposed heuristic method very useful for

decomposition-based synthesis of large systems that will be

implemented in heterogeneous programmable structures.

REFERENCES

[1] J. Cong and K. Yan, “Synthesis for fpgas with embedded memory
blocks,” in Proceedings of the 2000 ACM/SIGDA eighth international
symposium on Field programmable gate arrays, ser. FPGA ’00.
New York, NY, USA: ACM, 2000, pp. 75–82. [Online]. Available:
http://doi.acm.org/10.1145/329166.329183

[2] S. Krishnamoorthy and R. Tessier, “Technology mapping algorithms for
hybrid fpgas containing lookup tables and plas,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 22, no. 5, pp. 545–559, 2003.

[3] M. Rawski, T. Łuba, Z. Jachna, and P. Tomaszewicz, The
Influence of Functional Decomposition on Modern Digital

Design Process. Springer, 2005, inbook 17. [Online]. Available:
http://www.springerlink.com/content/p775582342t64847/

[4] T. Sasao, Y. Iguchi, and T. Suzuki, “On lut cascade realizations of fir
filters,” in DSD. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 467–475.

20 M. RAWSKI

TABLE II
COMPARISON OF THE NUMBER OF BLOCKS IN BLANKET βG OBTAINED BY THE SYSTEMATIC METHOD, HEURISTIC METHOD BASED ON

EVOLUTIONARY ALGORITHM AND NEW METHOD FOR DIFFERENT SIZE OF SET V

Systematic search Evolutionary algorithm New method

Time [s] 5 6 7 8 Time [s] 5 6 7 8 Time [s] 5 6 7 8

9sym 0.6 6 7 6 4 35.4 6.0 7.0 6.0 4.0 0.6 6 7 6 4

Clip 0.927 14 18 22 30 25.0 14.0 18.0 22.0 30.0 1.0 14 18 22 30

TEST 1.185 1 1 1 1 27.2 1.0 1.0 1.0 1.0 1.3 1 1 1 1

Sao2 1.992 9 11 13 10 18.4 11.0 13.0 15.0 10.0 2.0 9 11 13 10

APEX4 3.804 29 57 113 208 112.6 29.0 57.0 113.0 208.0 3.8 29 57 113 208

f 12 10 61.9047 6 7 6 5 87.2 7.4 7.0 6.0 5.0 62.2 6 7 6 5

f 12 100 62.6307 16 28 30 15 63.7 31.0 45.0 30.0 15.0 62.7 16 28 30 15

f 12 1000 135.373 32 64 127 229 207.8 32.0 64.0 128.0 232.0 132.4 32 64 127 229

dek05 h 287.573 11 17 26 41 62.3 11.0 17.0 26.0 41.0 3.0 11 17 26 41

Alu4 290.576 25 39 71 88 58.8 25.8 42.2 77.8 96.7 3.0 25 39 78 125

Misex3 386.529 13 23 40 66 89.8 13.7 23.3 40.6 70.4 4.1 14 26 45 85

f9r 10872.2 – – – – 325.9 1.0 1.0 1.0 1.0 17.3 1 1 1 1

Duke2 12240.9 – – – – 40.9 7.0 8.0 9.0 11.0 2.0 7 9 11 13

Misex2 24018.6 – – – – 23.2 2.9 2.9 3.5 4.0 1.0 2 2 3 5

Vg2 31756.6 – – – – 31.1 5.0 6.3 6.8 7.5 1.5 5 6 8 14

Seq 1.77E+07 – – – – 210.7 5.0 6.4 7.4 8.6 12.5 5 7 8 9

Apex1 2.23E+07 – – – – 125.5 5.2 6.3 7.7 8.9 7.5 6 7 9 10

Apex3 7.94E+07 – – – – 102.7 7.0 8.0 9.7 11.6 6.2 7 8 10 12

E64 1.67E+08 – – – – 76.4 6.0 7.0 8.0 9.0 3.4 6 7 8 9

100X100 2.30E+09 – – – – 30.1 1.0 1.0 1.0 1.0 1.4 1 1 1 1

APEX5 2.05E+11 – – – – 335.5 2.1 2.2 2.5 3.6 44.4 2 2 2 2

[5] M. Rawski, P. Tomaszewicz, H. Selvaraj, and T. Łuba, “Efficient
implementation of digital filters with use of advanced synthesis
methods targeted fpga architectures,” in 8th Euromicro Conference
on DIGITAL SYSTEM DESIGN, Architectures, Methods and Tools

DSD’05, C. Wolinski, Ed., IEEE Computer Society. Portugal:
IEEE Computer Society, 2005, inproceedings, pp. 460–466. [Online].
Available: http://portal.acm.org/citation.cfm?id=1100234

[6] C. Scholl, Functional Decomposition with Application to FPGA Synthe-

sis. Kluwer Academic Publisher, 2001.
[7] M. Rawski, “Decomposition of boolean function sets,” Electronics and

Telecommunications Quarterly, vol. 53, no. 3, pp. 231–249, 2007.
[8] J. A. Brzozowski and T. Łuba, “Decomposition of boolean functions

specified by cubes,” Journal of Multiple-Valued Logic and Soft Comput-
ing, vol. 9, pp. 377–417, 2003.

[9] T. Łuba, H. Selvaraj, M. Nowicka, and A. Kraśniewski, “Balanced
multilevel decomposition and its applications in fpga-based synthe-
sis,” in Novel Approaches in Logic and Architecture Synthesis, A. M.
Gabriele Saucier, Ed. Chapman and Hall, 1995, pp. 109–115.

[10] R. Murgai, N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Improved logic synthesis algorithms for table look up
architectures,” in ICCAD, 1991, pp. 564–567.

[11] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “Bdd based decomposition
of logic functions with application to fpga synthesis,” in Proceedings

of the 30th international Design Automation Conference, ser. DAC ’93.
New York, NY, USA: ACM, 1993, pp. 642–647. [Online]. Available:
http://doi.acm.org/10.1145/157485.165078

[12] T. Sasao, Logic synthesis and optimization, ser. Kluwer
international series in engineering and computer science.
Kluwer Academic Publishers, 1993. [Online]. Available:
http://books.google.pl/books?id=GuaV re0DF8C

[13] H. Sawada, T. Suyama, and A. Nagoya, “Logic synthesis for
look-up table based fpgas using functional decomposition and support
minimization,” in Proceedings of the 1995 IEEE/ACM international

conference on Computer-aided design, ser. ICCAD ’95. Washington,
DC, USA: IEEE Computer Society, 1995, pp. 353–358. [Online].
Available: http://dl.acm.org/citation.cfm?id=224841.225063

[14] M. Perkowski, “A survey of literature on function decomposition.
final report for summer faculty research program,” Wright Laboratory,
Sponsored by Air Force Office of Scientific Research, Bolling Air Force
Base, DC and Wright Laboratory, Tech. Rep., September 1994.

[15] W. Wan and M. A. Perkowski, “A new approach to the decomposition
of incompletely specified multi-output functions based on graph
coloring and local transformations and its application to fpga
mapping,” in Proceedings of the conference on European design

automation, ser. EURO-DAC ’92. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1992, pp. 230–235. [Online]. Available:
http://dl.acm.org/citation.cfm?id=159754.161757

[16] M. Rawski, L. Jóźwiak, and T. Łuba, “Efficient input support selection
for sub-functions in functional decomposition based on information
relationship measures,” Journal of Systems Architecture, vol. 47, no. 2,
pp. 137–155, 2001.

[17] M. Rawski, “Efficient variable partitioning method for functional de-
composition,” Electronics and Telecommunications Quarterly, vol. 53,
no. 1, pp. 63–81, 2007.

[18] P. Morawiecki and M. Rawski, “Method of input variable partitioning
in functional decomposition based on evolutionary algorithm and binary
decision diagrams,” Proc. of IEEE 2008 Conference Human Systems

Interaction, 2008.
[19] M. Rawski, “Evolutionary algorithms in decomposition-based logic

synthesis,” in Evolutionary algorithms, E. Kita, Ed. Intech, 2011.
[20] M. Rawski, L. Jóźwiak, and T. Łuba, “The influence of the number of

values in sub-functions on the effectiveness and efficiency of functional
decomposition,” Proceedings of the 25th EUROMICRO Conference,

IEEE Computer Society, pp. 86–93, 1999.
[21] S. Yang, “Logic synthesis and optimization benchmarks user guide

version 3.0,” 1991.

