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Abstract—The aim of this work was to design a System on
Programmable Chip (SoPC), that implements the Whirlpool
Hash Function (WHF) algorithm. An assumption of the project
was to use an embedded soft-processor NIOS II controlling the
whole system, which functionality was extended by a custom logic
in order to improve the used algorithm efficiency. This paper
presents the Whirlpool Hash Function realized in several SoPC
configurations, which differ in implementation complexity and
performance.
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I. INTRODUCTION

HASHING functions are specific type of one-way crypto-

graphic functions, that are able to process finite length

data and produce small fixed size output called hash. Because

for a specific data the produced hash is unique, the hashing

functions are widely used for the purpose of data integrity

verification and message authentication schemes. Like most

of the cryptographic functions, the hashing functions perform

heavy and complex computations on large amounts of data [1].

For that reason the throughput of cryptographic functions is an

important factor and often such functions must be realized in

dedicated embedded systems. Such type of dedicated system

was used for the purpose of this paper in order to implement

one of the hashing functions – the Whirlpool hashing function.

Embedded systems are the specialized processor systems

operating under the real-time conditions. This kind of designs

are realized as a hardware/software systems, where software

is responsible for functionality and allows easy modification,

while hardware solutions are used to increase the performance

of complex or heavy computational subroutines [2]. Nowadays

microelectronics’ technology, especially new solutions in FP-

GAs (Field Programmable Gate Arrays), allows to implement

microprocessor and subsystems on one integrated circuit [3].

This type of solution is called System on Programmable Chip

(SoPC). SoPC is a great tool allowing to conduct designing

in an easy and efficient way, even of hardware/software co-

synthesis systems.

This paper presents the SoPC implementation of the

Whirlpool hash function realized in a few system configu-

rations, which differ in software/hardware co-synthesis pro-
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portions. Each following realization offloads software tasks to

hardware, improving whole system performance. Results of

these realizations are compared with prepared software im-

plementations of the Whirlpool function performed on system

based on general purpose processor.

II. THE WHIRLPOOL FUNCTION

The Whirlpool is a one way hash function, which algorithm

was based on a substantially modified Advanced Encryption

Standard (AES). This function takes a message up to 2
256 bits

(1064 terabytes, in length) and returns a 512-bit hash message

[4].

In the Whirlpool function algorithm there can be indicated

tree main stages of message processing (Fig. 1): padder stage,

W cipher round stage, and message compression scheme stage

[1]. In the first stage, based on Merkle-Damgård strengthening,

to a message ’1’ bit followed by a variable number of ’0’

bit is added, is such a way that message can be divided into

equal 512 bits blocks, where in last 256 bits of last block, the

length of original message is stored. During ten rounds of the

W cipher round stage each padded block is transformed into

8 × 8 byte arrays and undergo specific bit operations in four

internal stages: (γ) the non-linear, (π) the cyclic permutation,

(θ) the linear diffusion and (σ) key addition stage. During

the non-linear γ stage the individual bytes are remapped to

a different value. The cyclic permutation π stage performs

a cyclic rotation of columns of the matrix, where each column

is moved downwards by the index value of shifting column.

The linear diffusion θ stage is the operation of multiplication

the input data matrix by a matrix generator. The key addition in

Whirlpool function simply means performing of 512-bit XOR

operation between hash state and specially generated key [1],

[4].

After all ten rounds of the W block stage in the last

step a compression is performed, where according to the

Miyaguchi-Preneel hashing scheme a following next blocks of

data are given under XOR operation with their hashed form

and previously obtained hash state, so as the result the 512

bit hash is obtained [1]. Exact Whirlpool’s function algorithm

and mathematical model is widely described in [4].

III. SYSTEM ON PROGRAMMABLE CHIP

A Field-Programmable Gate Array (FPGA) is a type of

logic chip that can be programmed with use of specific

Hardware Description Languages (HDL). The HDL allows to

define FPGA-based system components in ANSI C like source

codes, which can be synthesized into the hardware logic.
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Fig. 1. High level block diagram of Whirlpool.

The FPGA circuits possess the same advantage of possibility

to implement specialized systems like in ASIC (Application

Specific Integrated Circuit) technology. However, due to fully

programmable structure at the same time the FPGAs allow

reducing costs of designed realizations and redesign systems

even after production process [5].

One of the greatest advantages of using the FPGA structures

is that, they allow to use IP Cores (Intellectual Property

Cores), which are the defined in HDL standardized system

components, that can be used among different FPGA-based

devices. One of the most advanced IPs that can be used in

the modern FPGAs are the soft-processor cores – the models

of a specific general purpose processors (CPUs) allowing the

FPGA structures to perform C/C++ applications [5]. There

is also possibility to add IP cores defined by user with

non-specified architecture restrictions, that can handle any

desired tasks.With use of special computer-aided design tools

(CAD) IP Cores can be used to design digital circuit in

a FPGA chip, what results in creation of the dedicated fully

functional system (System on Programmable Chip) embedded

in programmable chip [6]–[8].

For the purpose of described in this paper the Whirlpool

function embedded SoPC realizations, the Altera’s FPGA-

based development board DE2-70 was used [9]. With use

of the Altera SoPC Builder and Quartus II CAD tools, on

single FPGA structure there were embedded some components

creating together a fully functional embedded computer system

[7], [8]. The main elements used in designed system were the

NIOS II 32 bit soft-processor, 32MB SDRAM controller and

communication serial interface protocol JTAG-UART [10].

The DE2-70 board is equipped in the 50 MHz system clock.

However, with use of the phase locked loop (PLL) available

on the Altera Cyclone II FPGA chip it was possible to increase

the system clock frequency to the 100 MHz, which supplied

all of the designed SoPC system components. Optionally in

couple implementations there were added some user defined

components, which were able to perform partially or in whole

the Whirlpool algorithm in the dedicated hardware.

IV. SOFTWARE REALIZATION (PC & SOPC)

The Whirlpool function like most of a cryptographic func-

tions, was designed for hardware implementation [4]. This

algorithm is mainly based on substitution and permutation

operations, which are the bit operations, so the effective

realization of this algorithm is not easy to be implemented

on systems using just general purpose processors [4], [11].

However two fully software realizations of the Whirlpool func-

tion were prepared and performed on PC’s general purpose

processor (Intel Core 2 Duo CPU L7500 2 × 1.6 GHz) and

on SoPC system equipped with the NIOS processor. First

Fig. 2. Scheme of bytes shifting during the cyclic permutation stage.

realization was performed with most optimized C program

version of the Whirlpool function, which code was found on

the Whirlpool function creators page [4]. Software optimiza-

tion of this Whirlpool function implementation was based on

look-up tables containing results of conversions of some por-

tions of algorithm, which gives better efficiency in exchange

for greater memory usage. Second software realization was

performed with C program developed on the basis of the

Whirlpool hash function hardware compression scheme, that

can be found in [1], [4]. In this software implementation all

cryptographic calculations were performed according to the

original Whirlpool function algorithm operations translated to

the ANCI C sequential codes. Such prepared program consists

of a large number of nested loops, that are not efficiently

performed in GPU. For example the cyclic permutation stage

is based on shifting bytes in loop separately in each column

(Fig. 2).

V. HARDWARE ACCELERATED WHIRLPOOL

REALIZATIONS

In previous section it was mentioned that user defined logic

can realize any desired tasks. According to that assumption

the user can design a logic, which aim is to cooperate with

the soft-processor in order to increase its efficiency. Such

logic is called a hardware accelerator, or more precisely: the

hardware accelerator supporting software solution [6]. The

Whirlpool hash function SoPC implementations, described

in this section, were realized with use of such hardware

accelerators supporting the NIOS processor in computations.

There are two main types of hardware accelerators that

can be used in the SoPC systems equipped with the NIOS

processor. First type is called a custom instruction – user logic

that is built within the NIOS processor logic in order to extend

its instructions set (Fig. 3). This type of hardware accelerator

connects to the NIOS’ Arithmetic Logic Unit (ALU), what

limits a functionality of the custom instructions [6]. These

accelerators do not have direct access to the other SoPC system

components and they can possess only two 32-bit inputs and

single 32-bit output. On the other hand, such implementation

of the custom instructions brings an advantage in the way

of using these accelerators [6]. This type of user logic can

be easily embedded in the NIOS processor due to the SoPC
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Fig. 3. Custom instruction.

Builder tool, which allows for generation of a simple macro

functions, through which the software can call user defined

hardware instructions [12].

Custom components are the second and much more ad-

vanced type of hardware accelerators, which can be defined as

a user defined SoPC system standalone peripherals. Custom

components can possess any architecture and functionality

limited only by the size of a FPGA structure. One of the

greatest advantages of this type of hardware accelerator is

that, like any other peripherals they can work in parallel

to other SoPC system components including the CPU and

other user defined logic. Moreover, custom component can

be designed in such a way, that it can perform multiple

parallel operations inside of it and with any number of other

SoPC system components. However, such hardware accelera-

tor requires additional complex arbitration logic, that allows

for communication between designed component and other

system peripherals [6]. Moreover, in order to control such user

logic from the software level some specific control program

(driver) must be written. Development of such drivers is

simplified due to Hardware Abstraction Layer (HAL) routines

[13].

Designing FPGA-based SoPC system with user defined

custom peripherals requires knowledge about Avalon inter-

connection and interface system [14]. This interconnection

system, called also an Avalon bus, specifies easy-to-understand

port connections and protocols used between master and slave

components. Master components are components with master

ports, which initiate bus transfers, while slave components

are components with slave ports, which only accept transfers

initiated by the masters [5], [14]. It is possible that components

possess both master and slave ports. The Avalon bus supports

multiple masters and slaves, which interact each other with

supervision of arbitration logic.

A. WHF Realization Implementing the Custom Instructions

The above described custom instructions and custom com-

ponents were used in two different hardware accelerated WHF

realizations. For the purpose of these realizations the soft-

ware implementation of the original Whirlpool hash function

algorithm was analyzed in order to find the bottlenecks of

this algorithm. It was discovered that parts of software, where

bottlenecks were found were located in the W cipher block –

mainly every round stage where bit operations were performed

there was a bottleneck.

For the purpose of the first realization implementing the

Fig. 4. Single cycle cyclic permutation function operation realized in custom
instruction.

hardware accelerators, all the W block round software func-

tions ((γ) the non-linear, (π) the cyclic permutation, (θ) the

linear diffusion and (σ) key addition stage) were replaced

by custom instructions embedded in the NIOS processor .

Due to such design all functions, where bit operations were

performed, could be efficiently realized in hardware. For

example, the cyclic permutation (π) function, that in software

was realized with use of large amount of nested loops, could

be implemented in hardware in such a way, that proper custom

instruction just after obtaining some block of data was able to

return this data blocks with properly rearranged bytes (Fig. 4).

Moreover, each of the W block functions was easy to

implement in custom instructions. The non-linear stage γ

could be implemented as a simple logic using very small

substitution tables, which outputs were mixed with proper

processed byte’s bits according to the algorithm. The linear

diffusion stage θ was realized as a simple shift and add logic

mixing all bits in the processed block of data. Finally the key

addition stage σ was realized as a 512 bit adder equipped

with a small register file, that stores the Whirlpool rounds

key constants. Beside W cipher block functions rest of the

Whirlpool function algorithm was implemented in software,

which due to special automatically generated opcode could use

designed custom instructions like a typical software functions

[1], [4]. Each custom instruction could be called by using

following macro code template:

result = CUSTOM_INSTRUCTION_ID(selectorN,

dataA, dataB);

Parameters dataA and dataB are the two 32-bit input

values. Parameter selectorN is a 8-bit signal value that can

determine different custom instruction internal operations.

B. WHF Realization Implementing the Custom Component

Accelerator

In the second designed hardware accelerated realization,

a created custom component was used, that implemented the

whole Whirlpool hash function algorithm in a dedicated hard-

ware, called WHF accelerator. In this realization the software

role was limited only to initiation of the WHF accelerator

and indication data which should be processed. The WHF

accelerator was designed in such a way, that after initiation

it was able to read indicated data directly from the system

memory. When hash was ready the WHF accelerator was able

to interrupt the processor in order to signal the end of data

processing and in follow the NIOS CPU was able to download

the hash result directly from the WHF component’s internal

registers.
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C. WHF Accelerator – Architecture and Operation

Because the WHF accelerator peripheral was designed as

a dedicated non-standard logic, some explanations to its ar-

chitecture and operations are needed. The WHF accelerator is

a set of co-operating, working in parallel modules visible for

the SoPC system as a single component (Fig. 5). There can be

distinguished four sub-modules: component’s control, master

read, padder and W block module. Additionally there can be

distinguished modules used as a functional blocks processing

the data according to the Whirlpool function algorithm (padder

and W block modules) and modules, which implement the ar-

bitration logic (control and master read modules). The control

module mediates between the WHF accelerator and the NIOS

soft-processor. This module is responsible for accelerator ini-

tiation and for informing the NIOS about component’s status.

Also the control module is equipped with the register files

storing the hash result. The read master module is responsible

for transactions controlled by the WHF accelerator, which

results in reading directly from the SDRAM memory to the

accelerator the required data to be processed by the Whirlpool

function. The padder and W block modules contain logic

responsible for data processing according to the algorithm. It is

important to indicate that the master read module is equipped

with the Altera FIFO (SCFIFO) buffer used for the purpose

of storing read, but not processed by the padder module data

[15]. Due to use of such buffer the data acquisition process

could be smoothly performed.

The whole designed WHF custom component works in such

a way, that when NIOS initiates the WHF accelerator it passes

to the accelerator the base address and length of a desired data.

Based on this information the WHF accelerator proceeds with

16-bit reads from SDRAM to the WHF component’s internal

FIFO buffer. The FIFO buffer holds data for padder, which

organizes them into 64 byte arrays. In follow prepared block of

data are passed to the W block module, which simultaneously

operates on all of the 512 bit data processing them ten times in

all round stages ((γ) the non-linear, (π) the cyclic permutation,

(θ) the linear diffusion and (σ) key addition stage) (Fig. 6) [1].

All round stages were using the logic similar to that used in

the WHF realization using the custom instructions. When hash

is ready, the control module sends done signal interrupting

NIOS, which can read result directly from internal registers

of WHF accelerator. Like it was mentioned, all cooperating

modules work together in parallel. So in the same time the

control modules supervise the WHF accelerator, the master

read performs memory reads and the padder and W block

modules perform the data processing.

The WHF accelerator operates in parallel to the other SoPC

system components including the NIOS processor, so the

software can perform other tasks while waiting for result of

hardware accelerator. For the same reason the control of the

user defined component from the software level requires use of

some specific methods. Because the CPU performs operations

in sequence, the software must contain proper loops in order

to be able to check component’s status from time to time. Like

in the case of custom instructions, the communication between

the NIOS processor and the Whirlpool Accelerator periphery

Fig. 5. Whirlpool function hardware accelerator.

Fig. 6. Diagram of the implementation of the Whirlpool W-Block module.

depends on the HAL input/output macros [13]. The software

that controls designed WHF accelerator was involving only

two types of mentioned HAL macro commands:

IOWR_32DIRECT(COMPONENT_BASE_ADDRESS,

OFFSET, DATA);

IORD_32DIRECT(COMPONENT_BASE_ADDRESS,

OFFSET, DATA);

The command IORW 32DIRECT means 32-bit write

transaction from the NIOS processor to the component

and IORD 32DIRECT means 32-bit read transaction

from the component to the NIOS processor. Parameter

COMPONENT BASE ADDRESS indicates to which

SoPC component the read/write operation is performed. The

OFFSET can be considered as a identifier of one of the

operations, that periphery can perform. DATA parameter is

used to pass 32-bit value of data or memory address. Created

WHF software depending on OFFSET value was controlling

the custom periphery, which after decoding passed instruction

was able to return its status, was initiated to read indicated

data, or was requested to return a ready hash result.

D. WHF Accelerators – Important Observations

Both hardware accelerated realizations have been burdened

with some drawbacks. In the realization using the custom

instructions there was a problem caused by port architecture,
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which as standard is limited only to two 32 bit inputs and one

32 bit output. In the case of hash function where big block of

data must be passed to custom logic, it was necessary to write

a ANSI C control program, which constantly writes and reads

small portions of data to/from custom instruction . To pass and

read single 64-byte block of data to the custom instructions,

there have to be done 16 read/write function calls. Each such

read and write supervised by processor wastes time and does

not allow for great increase of performance. Also due to the

same reason, the custom instructions had to be extended with

functions, that composed portions of data into 64-byte blocks

and decompose them into the 32-bit words.

In the case of design involving the custom component as

a hardware accelerator, the main problem was a complexity of

the arbitration logic that was responsible for synchronization

of all transactions between accelerator and SoPC system. Also

the created C program had to be carefully considered in order

to optimize proper communication between NIOS processor

and WHF accelerator.

VI. RESULTS

In Table I the results of different Whirlpool hash function

realizations, described in previous sections, are presented.

Column Realization ID indicates the realization type:

• PC opt/SoPC opt – PC/SoPC optimized software real-

ization

• PC/SoPC soft – PC/SoPC not optimized software real-

ization (based on original WHF algorithm)

• SoPC CI – SoPC WHF accelerated by Custom Instruc-

tions

• SoPC WHF – SoPC WHF accelerated by Custom Com-

ponent (WHF Accelerator)

In the C code column there are values of C code size

after compilation of software part realized in the embedded

systems. The system resources usage is presented in the

FPGA Resources column, and achieved realization efficiency

expressed as transfer speed was presented in the last column.

Each realization was tested on 64 kB data iterated 1000 times.

For the purpose of the PC opt and SoPC opt realizations,

the most optimized ANSI C software implementation of the

Whirlpool algorithm was used. Thus, obtained results of these

realizations show the maximum performance, that can be

achieved by the software implemented Whirlpool function

executed in given system, where processor was not supported

by any functionality extension method. The PC realizations

were performed in order to obtain the results of the implemen-

tation of the Whirlpool algorithm performed on the general

purpose CPU, which possess rich architecture and very fast

clock. Thanks to these realizations, it was possible to check,

if the NIOS processor-based systems, implemented in FPGAs

supplied by lower clock frequencies, will ever achieve the

higher efficiency of performing given task, than the high power

general purpose processor. The SoPC CI realization imple-

menting the custom instructions and SoPC WHF realization

created with use of custom component, were developed in

order to improve the performance achieved by the software

implemented Whirlpool function performed in the SoPC soft

realization. Process of creating of each realization was charac-

terized by varying levels of difficulties in their implementation.

Moreover, the way of implementation of each method of

increasing the functionality of the NIOS processor, affected

the results achieved by each realization.

Analysis of the results achieved by testing the SoPC realiza-

tions allows to notice, how with the increasing degree of the

hardware acceleration, the efficiency of whole implementation

improves. The pure SoPC software realizations are character-

ized by low efficiency simce it performs complex calculations

on large blocks of data in a CPU supplied by very low clock.

With additional dedicated logic improving the efficiency of the

complex calculations realized in the hardware, the size of C

program decreases, but the FPGA resources usage increases,

leaving much less space where additional functionality can be

implemented. The SoPC realization using the WHF accelerator

delivers much better results than the optimized software WHF

realization performed on PC equipped with advanced CPU.

However, the SoPC WHF realization uses a lot of the system

resources despite the fact that its functionality is limited only

to perform the WHF calculations.

In the SoPC CI realization each W block was implemented

in the separate custom instruction. The software, during each

of the W block rounds, performed large amount of hardware

function calls, what took much of the execution time. For

that reason, despite of offloading to the hardware the most

bottleneck parts of the Whirlpool algorithm, the SoPC CI

realization does not bring any spectacular results.

VII. SUMMARY

Modern FPGA technology, the Hardware Description Lan-

guages and advancement CAD tools allow to design in easy

way fully functional embedded systems performing the desired

tasks in most efficient way. In this article, based on the

Whirlpool hash function algorithm, the methods of hardware

acceleration of the software solutions in the embedded SoPC

systems were presented, along with discussion of their ad-

vantages and disadvantages. Moreover, it was shown how

efficiently the complex and heavy computational cryptographic

function can be implemented in the FPGA-based embedded

system. All realizations presented in this article were different

in implementation complexity and proportion of the software

to hardware functionality, which allowed thoroughly to exam-

ine both the process of creating embedded system as well as

the impact of various configuration changes on the obtained

results.

Very important conclusions resulting from this work are

related to the methods of hardware acceleration of the software

solutions. The hardware method of expanding the functional

capabilities of the NIOS soft-processor allow to obtain a huge

increase in efficiency in implementations supported by them.

The resulting increase in performance compensates the low

frequency of clocks used in the FPGA devices. It was shown

that, depending on type of the hardware accelerator used

for the software solutions, and depending on the volume

of the functionality of the software-implemented operations

elevated to hardware, different performance growth can be

achieved, that is combined with different level of consumption
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TABLE I
RESULTS OF REALIZATIONS OF SYSTEMS PERFORMING THE WHIRLPOOL FUNCTION

Realization ID System Clock [MHz] Code [kB] FPGA Resources #LC Transfer [Mb/s]

PC opt 1600 – – 102

PC 1600 – – 0.96

SoPC opt 100 43 4478 (7%) 0.31

SoPC soft 100 28 4478 (7%) 0.03

SoPC CI 100 16 6985 (10%) 2.48

SoPC WHF 100 11 17597 (26%) 165

of the FPGA resources. With more and more functionality

of the system moved to hardware , an increase in resource

consumption can be observed, as well as significant increase

of the realization efficiency. For this reason in the limited

resources realizations, the use of the NIOS processor extension

methods is associated with maintaining an appropriate propor-

tion between resources usage and performance increase.
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