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Abstract—This paper presents synthesis algorithms for Gener-
alised and Multi Threshold Threshold Gates. Both algorithms can
be applied to generate circuit structures for arbitrary Boolean
functions. We present gate’s formal models, synthesis algorithms
and complexity estimations of the resulting structures.
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I. INTRODUCTION AND RELATED WORK

A
CCORDING to the International Technology Roadmap

for Semiconductors (ITRS) [1] complementary metal-

oxide semiconductor (CMOS) circuits will satisfy the growing

requirement for high performance for another 10–15 years.

However, advances in nanoelectronics have already brought

out a number of nanoscale devices which can be used in

implementation of complex functions [2]. Devices such as

resonant tunnelling diodes (RTDs), quantum cellular automata

(QCA), carbon nanotubes, nanowires or single electron tran-

sistors demonstrate a negative differential resistance (NDR)

property which can be exploited to implement logic gates. The

focus on RTDs ensues from the fact that they allow to improve

characteristics of both analog and digital electronic circuits

in terms of switching frequencies and functional versatility.

Moreover, RTDs are the most matured NDR devices used as

building blocks of NDR-based logic circuits. A number of

models and simulation methods has been suggested for RTDs

[3]–[5]. Nevertheless, it’s worth to note that other devices

featuring NDR property can also be used as building blocks of

electronic circuits that are capable of implementing complex

Boolean functions in a single gate structure. For example,

papers by Bhattacharya et al. and Le et al. [6], [7] depict the

possibility of utilising such devices and present successful re-

sults of SPICE simulations for circuits implementing different

Boolean functions.

The ability to implement threshold functions results from

regions with positive and negative slope in device I-V charac-

teristic (Fig. 1(C)). The most important parameter to describe

such characteristic is the peak current I . Circuits made of NDR

elements have a voltage divider structure composed of two

(or more) serially connected NDR elements. Such circuits can

have two stable operating points (Fig. 1(C)) and consequently

can operate in one of two output states (LOW and HIGH).
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The state of the device depends on the relation between peak

currents of the load and driver elements – Il and Id. This

relation is invariable (either Il > Id or Il < Id), however, if

NDR-transistor pair is connected in parallel to either load or

driver element, then the state of the circuit can be controlled

by external signal xi (see Fig. 1(B)). For the circuit presented

in Fig. 1(B) when input signal xi is high then the sum of the

peak currents of the driver and the additional NDR element

Ii is greater than peak current of the load. This enforces the

circuit to operate in LOW state. When xi is low then the peak

current Ii does not sum up with Id that is now smaller than

Il forcing the circuit to operate in HIGH state. The additional

NDR-transistor pair enables to control the relation between

load and driver currents and consequently to implement an

inverter function.

Modifications of the circuit’s operating point are possible

only when supply voltage is clocked in a four-phase scheme

(Fig. 1(A)). In the first phase the supply voltage increases

and the circuit evaluates its state based on the sum of peak

currents of NDR elements located in upper (load) and lower

(driver) branches of the circuit and the input signals; In the

second phase the supply voltage is high and the state of the

circuit is latched – changes of input signals do not influence the

circuit state and output; Third phase resets the circuit while in

fourth phase circuit awaits for changes of input signals. Device

that operates in such a four-phase clocking scheme is called a

monostable-bistable transition logic element (MOBILE) [8].

Circuits operating in MOBILE regime are capable of im-

plementing threshold gates but can be also developed to

implement more complex, non-threshold Boolean functions.

This paper considers two such structures: Multi Threshold

Threshold Gates (MTTGs) [9], [10] and Generalised Threshold

Gates (GTGs) [2], [11] (Fig. 2). Both structures are fea-

sible when RTDs and heterostructure field-effect transistors
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Fig. 1. Four-phase scheme of Vcc voltage (A), structure of an inverter gate
(B), graphical solution for operating point of an inverter gate (C).
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Fig. 2. General structure of GTG (left) and MTTG (right).

(HFETs) are used and the circuit operates in MOBILE regime

[6], [12].

As presented in [9] the MTTG circuit composed of n + 1
parallelly connected branches computes weighted sum of n
binary inputs and quantises its result. Each branch of MTTG

structure is constructed of an RTD-transistor pair where each

RTD has different parameters (i.e. peak current) and is ac-

tivated with one input signal. MTTG structure presented in

[9] implements only some Boolean functions – precisely, any

2–input Boolean functions and single threshold functions of

n > 2 variables (e.g. AND, OR).

GTG structure differs significantly since all but one RTD

elements can have the same parameters (peak currents) and are

activated by serial-parallel network of transistors implement-

ing unate functions of up to n variables [2], [11], [13], [14].

Therefore GTG gate structure broadens capabilities of MTTG

gates enabling to implement the same functionality by using

smaller number of NDR elements and in less complex gate

structure. This approach results in reduction of the number of

branches that is now related to the complexity of the Boolean

function implemented rather than the number of inputs. Our

earlier paper [14] shows that using unate functions to activate

circuit branches enables to implement any n-input Boolean

function in a GTG circuit composed of at most n+2 branches.

Avedillo et al. [2], [9], [10] have proposed MTTG and

GTG circuits structures and have shown that such circuits can

implement some Boolean functions. However, those papers are

focused on presenting some examples of NDR-based circuits,

and did not deal with their general properties or synthesis

methods. The first paper that has verified whether the NDR-

based circuits can implement complex Boolean functions was

presented by Berezowski [11]. He focused on GTGs assuming

that all but one NDR devices have equal peak currents and

proposed compact iterative model of such circuits (1).

Another paper by Avedillo et al. [15] explored both types of

circuits, proposed logic models and presented that these gates

can implement non-threshold functions. Research on MTTG

was later continued by a number of authors (e.g. [16], [17])

that used different elementary MTTG gates to construct pro-

grammable logic elements capable of implementing Boolean

functions of up to 4 variables. However, similarly to previous

papers, they didn’t deal with general properties, models and

synthesis algorithms for MTTG and GTG structures.

II. GENERALISED THRESHOLD GATE

A. Formal Model

Generalised threshold gate structure has several advantages

over MTTG: (i) simpler structure of the circuit – it consists of

less branches and NDR elements than the equivalent MTTG

gates; (ii) in contrast to the MTTG identical NDR elements

can be used that are activated by serial-parallel (SP) networks

of transistors (iii) there is no need to use complementary

transistor pair. Taking advantage of the second property Bere-

zowski [11] proposed to implement Boolean functions in a

GTG structure according to iterative formula

Yl(X
n) =







0 l = 0,
Yi−1(X

n) +Ni(X
n) for odd l,

Yi−1(X
n)Ni(Xn) for even l.

(1)

An important contribution of the above formula is the ability

to determine Boolean function implemented by means of the

activation functions of every branch. Relying on formula (1)

Berezowski has verified that no more than 4 unate functions

Ni(X
n) are necessary to implement any logic function of at

most 4 variables. This verification, however, has been done

through exhaustive examination of all possible combinations

of four input unate Boolean functions Ni(X
n), and so no gen-

eral conclusions on features of GTG gates has been derived.

Apart from presenting the first formal model of the GTG

circuit Berezowski [11] brought in a concept of GTG operation

where upper and lower branches are activated by turns, thus

changing the output state of the gate. As for further analysis,

with no loss of generality we can assume that Y (0n) = 0.

Then the activation of the upper branch (odd indexed) switches

gate output to logic 1 while the lower branch (even indexed)

switches the output to zero. Activation of the subsequent upper

branch yields 1 again and so on. Since Y (0n) = 0 then the

N2(X
n) function from the first lower branch (that forces gate

output to 0) needs no activation for input vectors x that are

in the off-set of N1(X
n) (denoted as 0(Ni(X

n))). This results

from the fact, that N1(X
n) switches Y (X) function’s output

to 1 only for such vectors x that belong to N1(X
n)’s on-

set (denoted as 1(N1(X
n))) while for all x ∈ 0(N1(X

n))
gate output remains zeroed (see Fig. 3). Consequently, N2(X

n)
can be chosen so that 1(N2(X

n)) is a subset of 1(N1(X
n)),

since including other minterms in N2(X
n) function does not

influence the resulting function Y (Xn). The same property

holds for other pairs of Ni(X
n), Nj(X

n) functions, i.e.:

1(Nj(X
n)) ⊆ 1(Ni(X

n)) (2)

for any i < j.

Observe, that (2) allows for two functions Ni(X
n) and

Nj(X
n) to be equal. We propose to restrict functions Ni(X

n)
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Fig. 3. Structure of GTG gate implementing XOR(X4) function and
Carnough-based interpretation of activation functions.

Fig. 4. Venn diagrams to present relations between activation functions
Ni(X

n), Nj(X
n), Nk(X

n) and Nl(X
n) for any i < j < k < l.

further and assume that none of two activation functions are

equal, i.e.:

1(Nj(X
n)) ⊂ 1(Ni(X

n)), (3)

for any i < j.

The assumption mentioned above is significant for the

model proposed in [11]. Consequently we obtain that for any

two functions Ni(X
n), Nj(X

n) and i < j

Ni(X
n)Nj(X

n) = Nj(X
n). (4)

Further, assuming i < j < k < l following equalities hold

((Xn) symbol is neglected to keep the equations compact):

NiNj = NiNj +NiNj = Ni ⊕Nj (5)

Ni ⊕Nj +Nk = (Ni ⊕Nj)Nk +NkNi ⊕Nj

= Ni ⊕Nj ⊕Nk (6)

NiNj +NkNl = (Ni ⊕Nj) + (Nk ⊕Nl)

= Ni ⊕Nj ⊕Nk ⊕Nl. (7)

We pass over formal derivations of equations (5)-(7) providing

graphical interpretation instead (Fig. 4).

Following the relations given by (5)-(7) the model (1) for

the m-branches GTG can be mapped to

Y (Xn) =

⌊m

2
⌋

⋃

i=1

N2i−1(X
n)N2i(Xn) + δNm(Xn), (8)

where
⋃

denotes logic sum and δ equals 0 if m is even and

1 otherwise.

Using the above observation we can state the following:

Theorem 1: GTG gate composed of m branches with ac-

tivation functions N1(X
n), N2(X

n), . . . , Nm(Xn) such that

1(Nj(X
n)) ⊂ 1(Ni(X

n)) for any i < j, implements Boolean

function

Y (Xn) =
m
⊕

i=1

Ni(X
n). (9)

Proof: The proof is straightforward, as (9) follows from

observations (5)-(7) and GTG model (8):

Y (Xn) =
⋃⌊m

2
⌋

i=1
(N2i−1(X

n)⊕N2i(X
n)) + δNm(Xn)

=
⊕

m−δ

2

i=1
(N2i−1(X

n)⊕N2i(X
n))⊕ δNm(Xn)

=
m
⊕

i=1

Ni(X
n). (10)

B. Gate Synthesis

Synthesis of the GTG circuit is based on the observation

that every Boolean function can be represented as an EXOR

sum of unate functions Ni(X
n).

Theorem 2: Any Boolean function Y (Xn) can be repre-

sented as an EXOR sum of unate functions satisfying the

assumption of (3).

Proof: Since 1 is a unate function thus it is enough to

prove the theorem for functions Y (Xn) such that Y (0n) = 0.

For any such function there exists the smallest unate func-

tion N1(X
n) such that 1(Y (Xn)) ⊆ 1(N1(X

n)) (at least

N1(X
n) = 1). “The smallest” means that there is no other

N ′
1(X

n) such that 1(N ′
1(X

n)) ⊂ 1(N1X
n) and 1(Y (Xn)) ⊆

1(N ′
1(X

n)). Consequently, Y (Xn) can be represented as:

Y (Xn) = N1(X
n)⊕ Y1(X

n). (11)

If Y1(X
n) is unate then the theorem is proved. Otherwise

we can find the smallest unate function N2(X
n) such that

1(Y1(X
n)) ⊆ 1(N2(X

n)) – such function always exists and

differs from N1(X
n) as Y1(X

n) and N1(X
n) have no common

on-set minterms. Due to the same reason 1(Nj(X
n)) ⊂

1(Ni(X
n)) for every i < j which means that unate functions

get smaller (in terms of the number of on-set minterms) with

each step. The procedure is thus finite and returns Ym(Xn)
which is a unate function, and so Nm(Xn) = Ym(Xn).
Consequently, any Boolean function Y (Xn) can be represented

as an EXOR sum of unate functions:

Y (Xn) =
m
⊕

i=1

Ni(X
n), (12)

that satisfy (3).

Two important observations follow from the Theorem 2:

First, GTG circuit composed of m branches with activation

functions Ni(X
n) that satisfy (3) can implement arbitrary

Boolean function. Second, for a given Boolean function

Y (Xn) we can synthesise GTG circuit by the iterated compu-

tation of the smallest unate functions (Alg. 1).
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Algorithm 1 Synthesis of the GTG circuit

Require: n-variable Boolean function Y (Xn)
Ensure: unate functions Ni(X

n)
1: if Y (0n) = 1 then Y (Xn) = 1⊕ Y (Xn)
2: set i = 1,
3: find the smallest unate function Ni(X

n) covering Y (Xn),
4: if Y (Xn) = Ni(X

n) then exit algorithm
5: calculate Yi(X

n) such that

Y (Xn) = Ni(X
n)⊕ Yi(X

n),

6: while Yi(X
n) 6= 0 do

7: find the smallest unate function Ni+1(X
n) covering Yi(X

n),
8: calculate Yi+1(X

n) such thah

Yi(X
n) = Ni+1(X

n)⊕ Yi+1(X
n),

9: set i = i+ 1,
10: end while

III. MULTI-THRESHOLD THRESHOLD GATE

Similarly to the GTGs, the Multi Threshold Threshold

Gates (MTTGs) can also implement complex Boolean

functions drawing from negative differential resistance

property. However, in contrast to GTG, the Boolean function

implemented in MTTG structure, depends on the parameters

of NDR elements, each of which is activated with a single

transistor (not a SP network as for GTG).

A. Formal Model

The output of the MTTG circuit depends on the relation

between peak currents in the upper and the lower branches

(Fig. 2) of the circuit. Both currents can be determined

according to the laws of current flow. Consequently, MTTGs

can implement Boolean functions by proper adjustment of

peak currents of NDR elements (Ii,j) and controlling those

elements by input signals xi. Let Iu(X
n) and Il(X

n) denote

currents in the upper and the lower branches of the MTTG

circuit respectively. Boolean function implemented in such

MTTG structure is defined as

Y (Xn) =

{

1 iff Iu(X
n) > Il(X

n)
0 iff Iu(X

n) ≤ Il(X
n)

. (13)

Folowing the serial connection of multiple levels of NDR-

transistor pairs, the currents Iu(X
n) and Il(X

n) can be deter-

mined as

Iu(X
n) = min(I1(X

n), I3(X
n), . . . , Ilu(X

n)),
Il(X

n) = min(I2(X
n), I4(X

n), . . . , Ill(X
n)),

(14)

where odd/even indices refer to upper/lower branches of

MTTG structure. Further, actual value of the current Ij(X
n)

results from NDR-transistor pairs located in j-th level of the

gate – peak currents of NDR elements and actual input signals

xi that activate them. Therefore,

Ij(X
n) = Ij,0 +

∑n

i=1
Ij,ixi. (15)

Consequently, the Boolean function implemented in the

MTTG gate equals

Y (Xn) =







1 iff min(I1(X
n), I3(X

n), . . . , Ilu(X
n))

−min(I2(X
n), I4(X

n), . . . , Ill(X
n)) > 0

0 otherwise,
(16)

where Ij(X
n) are given by (15).

B. Gate Synthesis

Synthesis of an MTTG is more complex than that of a GTG

as in its structure the value of the peak current for each NDR

element needs to be found. For further analysis and with no

loss of generality from now on we will deal with Boolean

functions Y (Xn) such that Y (0n) = 0.

The proposed synthesis procedure follows from three facts:

(i) every Boolean function Y (Xn) can be represented as a

min /max composition of threshold functions Fi(X
n); (ii)

composition of min /max functions can be transformed to

a difference of two min functions each having a number

of arguments; (iii) any threshold function Fi(X
n) can be

represented by using corresponding hyperplane Hi(X
n) =

∑n

j=1 wjxj + Ti (wj is a real-valued coefficient and Ti is

a threshold) which separates function’s on-set and off-set:

Fi(X
n) = [Hi(X

n) > 0] =

{

0 iff Hi(X
n) ≤ 0

1 otherwise
. (17)

The following theorem formally states the first fact.

Theorem 3: Any Boolean function Y (Xn) can be rep-

resented as a min /max compound of threshold functions

Fi(X
n) (Fi for short):

Y (Xn) = min(Fm,max(Fm−1,min(. . . (min(F2, F1)) . . .))) (18)

such that any two functions Fi(X
n), Fj(X

n) satisfy:

min(Fi(X
n), Fj(X

n)) = Fj(X
n) if i < j are odd,

min(Fi(X
n), Fj(X

n)) = Fi(X
n) if i < j are even.

(19)

Proof: Assume Y (Xn) is not a threshold function such

that Y (0n) = 0 and 1(Y (Xn)), 0(Y (Xn)) denote its on-set

and off-set respectively. We can define a sequence of threshold

functions i = 1, 2, . . . ,m

Fi(X
n) =

{

t for x ∈ Xi = Xi−1 ∪ Si,
t otherwise,

(20)

where X0 = ∅, F0(X
n) = Y (Xn), t equals 0 if i is odd

and 1 otherwise, Si is a nonempty subset of 0(Fi−1(X
n)) ∩

0(Y (Xn)) and 1(Fi−1(X
n)) ∩ 1(Y (Xn)) for odd and even i

respectively.

Note that the above definition guaranties that Fi(X
n)s are

threshold functions – F1(X
n) is a threshold function since

in boundary case X1 contains single minterm only. Further,

F2(X
n) is also a threshold function since it can be constructed

from F1(X
n) by moving one (possibly more) minterm from

F1(X
n)’s off-set to its on-set and negating the output. A simi-

lar procedure can be applied to generate subsequent functions.

Functions (20) also satisfy condition (19) and their

min /max composition equals

min(Fm, (max(Fm−1,min(. . . , (min(F2, F1)) . . .)))) =

=

{

0 iff x ∈ S1 ∪ S3 ∪ S5 . . .
1 otherwise

(21)
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Fig. 5. Flow diagram providing an overview of the proposed threshold
decomposition algorithm.

Since all sets Si with odd indices are subsets of 0(Fi−1(X
n))∩

0(Y (Xn)) thus no two of them have common minterms and

the sum of all subsets equals 0(Y (Xn)). Therefore,

min(Fm, (max(Fm−1,min(. . . , (min(F2, F1)) . . .)))) =

=

{

0 iff x ∈ 0(Y (Xn))
1 otherwise

= Y (Xn).
(22)

Relying on the third fact we can represent Y (Xn) as a

min /max composition of hyperplanes Hi(X
n) representing

threshold functions Fi(X
n). Precisely, (18) can be transformed

to

Y (Xn) = min(Fm,max(Fm−1,min(. . . (min(F2, F1)) . . .)))
= [min(Hm,max(Hm−1,min(. . . (min(H2,H1)) . . .))) > 0] .

(23)

Composition of hyperplanes Hi(X
n) (23) can be trans-

formed to a difference of two min functions. This is done

through repeated application of two transformations:

min(H1, H2) = min(H1 + C,H2 + C)−min(C) (24)

max(H1, H2) = min(H1 +H2)−min(H1, H2). (25)

where C is some nonzero function of Xn.

Algorithm 2 Synthesis of the MTTG

Require: n-variable Boolean function Y (Xn)
Ensure: peak currents for all the NDR elements in MTTG structure

1: Find threshold decomposition of function Y (Xn) suitable for
min /max representation.

2: Represent threshold functions Fi(X
n) with corresponding hyper-

planes Hi(X
n).

3: Represent Y (Xn) as a min /max composition of hyperplanes
Hi(X

n).
4: Transform min /max representation to difference of two min.

Threshold decomposition is a crucial part of the MTTG

synthesis algorithm (Alg. 2) as the resulting threshold func-

tions must satisfy (19). To achieve this we propose an iterative

decomposition procedure (Fig. 5) which searches for linearly

separable sets of minterms (function FindThFun()). Checking

TABLE I
CAPABILITIES OF MTTG AND GTG GATES IN TERMS OF THE NUMBER

OF INPUTS AND THRESHOLDS OF BOOLEAN FUNCTIONS THEY CAN

IMPLEMENT

MTTG GTG
No. of No. of No. of No. of
inputs thresholds inputs thresholds

[2] ≤ 3 ≤ 2 [11] ≤4 ≤4
[10] ≤ 3 ≤ 3
[16] ≤ 3 1
[17] ≤ 4 ≤ 4
Our ≤ 8 ≤ 8 Our any any

for linear separability follows from the fact that any Boolean

function of up to 8 variables that is 2-assumable is also a

threshold function [18] (for functions of more than 8 variables

linear programming problem can be solved instead). Effi-

ciency is the benefit of checking 2-assumability as only some

minterms may violate this property thus reducing the number

of checks required [18]. To further simplify the algorithm,

decomposition procedure generates set of linearly separable

minterms W by choosing one minterm x(j) at a time from

the set of available minterms S and verifying if function

Fi(X
n) =

{

0 iff x ∈ W ∪ x(j)

1 otherwise
(26)

is a threshold function. Every execution of FindThFun() func-

tion takes previously found set of minterms W as input thus

ensuring that successive functions Fi(X
n) satisfy (19).

IV. CONCLUSION

We presented two synthesis algorithms that can be used

to synthesise arbitrary Boolean functions. Both algorithms

were evaluated and the complexity of the resulting gate

structures and synthesis algorithms themselves was analysed.

Complexity of both synthesis algorithms grows exponentially

with the number of input variables n. For MTTGs and Boolean

functions of more than 8 variables complexity increases even

more as additional linear programming problems need to be

solved. Nevertheless large computational complexity, these are

the first synthesis algorithms proposed in literature that allow

to synthesise arbitrary Boolean functions of up to 8 variables

efficiently. Table I compares capabilities of MTTG and GTG

gates presented in literature with our results. Table II gives

complexity estimations of the resulting MTTG and GTG gates,

which implement Boolean functions of up to 4 variables.

TABLE II
COMPLEXITY OF MTTG AND GTG GATES FOR BOOLEAN FUNCTIONS OF

UP TO 4 VARIABLES

No. of input No. of NDR elements No. of transistors
variables

GTG 1 3 1
2 3 ≤ . . . ≤ 4 2 ≤ . . . ≤ 3
3 3 ≤ . . . ≤ 5 3 ≤ . . . ≤ 7
4 3 ≤ . . . ≤ 6 4 ≤ . . . ≤ 32

MTTG 1 3 1
2 4 ≤ . . . ≤ 9 2 ≤ . . . ≤ 6
3 5 ≤ . . . ≤ 16 3 ≤ . . . ≤ 12
4 6 ≤ . . . ≤ 25 3 ≤ . . . ≤ 20
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Fig. 6. GTG and MTTG (left) gate structures that implement Y (Xn) = x1 ⊕ x2 ⊕ x3 function and transient simulation from SPICE software (right).

Complexity is estimated as the number of transistors and NDR

elements necessary to implement the gate.

In general an MTTG requires (k + 1)n transistors and

(k+1)(n+1) NDR elements to implement n-variable Boolean

function that has k threshold functions in its threshold decom-

position. There is a significant difference between both circuits

when the number of NDR elements is compared – for GTGs

the number of elements is proportional to the minimal number

of thresholds in threshold decomposition of a given Boolean

function. In case of MTTGs two factors influence the number

of NDR elements: the number of thresholds and the number

of input variables.

The SPICE software has been used to verify our synthesis

algorithms. Figure 6 presents GTG and MTTG gates that

implement Y (Xn) = x1 ⊕ x2 ⊕ x3 function and the result

of their transient simulation.

The algorithm for synthesising MTTG and GTG gates

for arbitrary Boolean functions proposed in this paper give

the possibility to further explore properties of NDR-based

gates and construct more complex and powerful electronic

circuits. Possible future applications include synthesis of com-

plex multiple input multiple output functions and powerful

programmable logic elements.
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