
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 1, PP. 85–94

Manuscript received January 15, 2012; revised March 2012. DOI: 10.2478/v10177-012-0012-8

Synthesis and Implementation of Reconfigurable

PLC on FPGA Platform
Adam Milik and Edward Hrynkiewicz

Abstract—The paper presents a set of algorithms dedicated
for synthesis of reconfigurable logic controllers implemented on
FPGA platform and programmed according to IEC1131 and
EN61131. The program is compiled to hardware structure with a
massive parallel processing. The developed method automatically
allocates resources and operations. It controls resource usage and
operation timing. Using mixed concept of operation allocation
that considers operation timing and forms combinatorial chains
of operations number of execution cycles can be reduced. An
example of logic functions, PID controller and mixed arithmetic
and logic programming examples are considered. Introducing the
automatic implementation method allows flexible implementing
the control algorithms. The maximal possible parallelism (limited
only by the algorithm dependencies and available resources) is
introduced.

Keywords—PLC, LD, IL, FPGA, high level synthesis, logic
synthesis, arithmetic circuits, reconfigurable hardware.

I. INTRODUCTION

THE Programmable Logic Controllers (PLC) have been in-

troduced in 1970s. In the beginning they were used as re-

lay control systems. However, together with fast development

of electronic technology, observed during last few decades, the

demands (high operating frequencies, handling of analogue

objects, increased reliability, etc.) of PLCs were constantly

increasing. Today, the areas of PLC applications include small

complexity processes as well as large manufacturing lines in

industrial plants.

General concept of a PLC is based on the micropro-

grammable circuits. It consists of two inseparable parts that

constitutes its operation. Those parts are hardware and soft-

ware. Hardware part is able to execute given set of logic and

arithmetic instructions. Software is an ordered sequence of

instructions that allows solving problem with use of given

hardware platform. This approach is very simple and effective

in case of programming and modifying program that can be

also called control algorithm [1], [2].

Modern PLCs belong to high level electronic and computing

devices, but a question arises: is it possible to improve

performance of those systems? This paper proposes solution

for direct hardware algorithm implementation.

A. Program vs. Hardware

All PLCs executes their tasks indirectly by executing or-

dered sequence of instruction. Operation of a PLC is based

The research work reported in the paper was supported by Ministry
of Science and Higher Education of the Republic of Poland, Grant No.
5391/B/T02/2010/38.

A. Milik and E. Hrynkiewicz are with the Institute of Elec-
tronics, Silesian University of Technology, Gliwice, Poland (e-mails:
{amilik,ehrynkiewicz}@polsl.pl).

on continues execution of control program in closed loop. For

external observer it seems that PLC responds simultaneously

to different signal changes applied to its input. In fact basic

concept of microprogramming assumes that complex tasks are

decomposed to serial chain of instructions. Control program is

processed in serial fashion instruction by instruction. Program

execution time is proportional to the number of instructions.

Different techniques of program acceleration are used.

There can be observed a continuous development of CPU

hardware architecture and optimizations of programming tech-

nique. Researches that are carried in domain of CPU archi-

tectures show possible solution in concurrent operation of

different bit-byte execution units or independent processors

[3], [4]. Other approach is based on event driven triggering of

program blocks that allow to save time by skipping program

blocks that haven’t changed since last calculation [5].

The most efficient approach is to construct hardware that is

able to perform control algorithm. It allows increasing opera-

tion speed several times. The response time is independent of

number of instructions. Each task is performed with constant

calculation time that does not dependent on number of tasks

computed by a controller.

This paper presents high-level synthesis approach that auto-

mates hardware platform design for process automatic control

designers with commonly used programming languages. This

approach is similar to high level programming languages

where generation of assembler is automatic and performed by

a compiler [6], [7], [8].

This paper presents the developed synthesis algorithm of

logic controller capable to process Boolean as well as fixed

point variables. Presented algorithm simplifies determining

the Boolean dependencies. The other novelty is incorporation

of arithmetic operation synthesis aimed for efficient resource

allocation.

II. RECONFIGURABLE CONTROLLER

A reconfigurable controller is a term that describes logic

controller with hardwired control program [9], [10], [11], [12].

A hardware platform must be able to perform at least static

reconfiguration in order to maintain programmability. Static

reconfiguration describes a reconfiguration process when de-

vice enters a special configuration mode [13]. Operation of

controller is suspended during static configuration. Normal op-

eration of controller is restored immediately after configuration

process is completed.



86 A. MILIK, E. HRYNKIEWICZ

Digital 
inputs

Analogoue
inputs

Input data 
interface

Processing unit
Output 

data 
interface

Reconfigurable Platform (FPGA)

Digital 
outputs

Analogoue
outputs

Communication 
and Control

Configuration and Supervision

Communication with 
other controllers

Operator

Fig. 1. The reconfigurable logic controller block diagram.

A. Controller Architectures

A general architecture of controller is presented on

schematic diagram Fig. 1. Central part of the reconfigurable

controller is called processing unit. The processing unit is

not able to operate by itself. To distribute object signals and

maintain operation of processing unit additional blocks are

needed. Not all components can be reconfigured inside con-

troller. Some blocks are determined by controller architecture

and selected method of data processing.

The logic controller process input signals from different

sensors and delivers control signals to actuators. Input and

output signals can be discrete or analogue. Those input and

output signals must be conditioned by interface modules and

converted into appropriate form. Next signals reach input

interface block that is a general structure of different interfaces

that are responsible for proper data exchange with modules.

The interface module architecture depends on user program re-

quirements. This approach allows taking benefits from recon-

figurability that allows choosing the most appropriate hardware

structure for input interface.

Controller operation depends on supervising and config-

uration unit. This unit maintains configuration process but

also enables to run, suspend and stop operation of configured

controller. Configuration data in this case can be compared

to The control program that is loaded into PLC CPU. The

configuration not only determines functionality but also the

internal hardware structure. The supervising unit is partially

constructed outside of the reconfigurable platform while it

must be able to operate when configuration is not loaded.

III. PROGRAMMING

The PLC programming methods have been inherited from

automation design like ladder diagram representing relay elec-

tric control systems. Different methodologies of description

have been standardized. The PLC programming is covered by

standards given by IEC1131 and EN61131 [14], [1] reference

manuals. Those manuals specify the methods of programming.

As the base for PLC programming can be assumed the

instruction list language (IL) and the ladder diagram (LD).

The high level languages like structured text (ST) and the

sequential functional chart (SFC) can be compiled or translated

to the instruction list that is the base of the controller operation.

The data processing model established by PLC hardware

Cycle Init

Input reading

Program Execution

Output writingPG Service

System Functions

Diagnostics TIN

TOUT

TCYCLE

Fig. 2. A PLC operation cycle.

and programming languages determines the interpretation of

instructions.

A. A PLC Data Processing Model

The calculation process of a PLC consists of reading inputs,

calculating the results and finally transferring the results to the

outputs Fig. 2. The calculations are carried out on the memory

array called process image memory. Entire memory is divided

into fragments that are assigned to the input signals, the output

signals and the internal markers. The process image memory

speeds up the calculation process and eliminates transient

results delivery to the controlled devices [2]. Moreover it

delivers quasi-concurrent control of concurrent processes.

The main difference in data processing can be observed

in LD representation and its processing. The ladder diagram

is inherited from electric diagrams of automatic control de-

vices. The diagram presents graphically energy flow through

switches and relays and other complex components. In general

it is assumed that energy flows through the components from

the left power rail to the right power rail (not always is shown

on the LAD diagrams). The program is organized into set

of networks. Entire program is processed in serial fashion

network by network. Depending on analysis method used by

a PLC itself or programming environment slightly differences

in operation can be observed. There are two basic approaches

based on column or row scan directions.

The column based processing method has been developed

by Modicon. The column based analysis is applied to single

network under processing. This method closely resembles

behaviour of the real hardware. The LD schematic is processed

column by column. Outputs are updated after processing all

preceding switches. When a switch representing the output

is used the value from the previous cycle is used. The

I0.0 O0.0 O0.0

I0.1

O0.0 I0.2 O0.1

2 5 8 11

1 4 7 10

3 6 9 12

Fig. 3. Column based LD network analysis.



SYNTHESIS AND IMPLEMENTATION OF RECONFIGURABLE PLC ON FPGA PLATFORM 87

I0.0 O0.0 O0.0

I0.1

O0.0 I0.2 O0.1

1 2 3 4

5 6 9 10

7 8

Fig. 4. Row based LD network analysis.

column based processing method requires creating an array

of temporary variables. The array size is determined by the

maximal number of rungs that can be recorded in one network.

It can be noticed that this method is dependant on the location

of items on the network.

The row based processing method is schematically shown

in Fig. 4 (used by Simatic PLCs.) The rung items (usually

switches) are analysed until reaching a coil or a junction.

The coil causes the immediate assignment of logic value.

The junction merges energy flowing from joined rungs (two

or more) and requires analysis of other rungs that contribute

energy (logic value) to the node. The analysis is stopped until

all contributing rungs are evaluated.

It can be noticed that results of logic calculation are de-

pendant on the components’ appearance order in the network.

In opposite to electric diagrams not all circuits with identical

netlists are evaluated in the same way. Designers get used

to the sequential manner of the analysis and the calculation

results propagation. It is expected that new implementation

will follow the well known processing rules of LD.

IV. A PLC TO HARDWARE COMPILATION MODEL

The LD schematic due to specific serial processing produces

different control flow than electrical schematic netlist imple-

mentation. The early implementation of the hardware PLCs

were oriented to the direct schematic implementation [15],

[10], [16]. A development of correct data processing model

is required for the proper generation of hardware structure

that behaves like the microprogrammable PLCs. The only

difference concerns its performance.

The microprogrammable processing is able to handle a

single variable at a time. This limitation is a source of

differences in the comparison to the massively parallel hard-

ware implementation. The compiler is also responsible for

optimizing generated structure according to the image memory

functionality by eliminating those statements, which results

are overwritten provided that they are not a part of other

expressions.

A. Previous Models of LD to Hardware Conversions

The proposed in [17], [18] model of LD translation model

consists of three graphs: the simultaneity graph, the depen-

dencies graph and the condensed simultaneity graph. The

simultaneity graph consists of nodes representing all coils in

the system. Unidirectional edges connect all nodes (coils) that

can be executed concurrently. The directed dependencies graph

records the coil dependencies. It presents the execution order

of rungs. Finally, after creating the dependencies graph and

all simultaneities are recorded the structure of controller is

created.

The approach presented in the algorithm is oriented to HDL

description rather than hardware synthesis. It produces circuit

that requires several steps to complete the operation. Is it

possible to introduce a synthesis method of lower complexity

and offering comparable or better results?

B. Proposed Model of IL and LD Synthesis

The LD and IL synthesis process combined with finite state

machines synthesis approach simplifies the entire synthesis

approach. The LD and IL due to the sequential processing

imply variable dependencies that should be properly recorded.

Building appropriate processing model allows reducing the

complexity of the compiler.

The creation of the compilation model requires building the

model of data processing in hardware. The main limitation

is the maintenance of sequential features of PLC defined by

programming methods and its data processing.

The processing model consists of the combinatorial part

responsible for implementing switches functionality. The re-

sults of combinatorial logic calculations are stored in registers.

Registers hold values between calculation cycles and assure

constant driving of object signals.

At the beginning a pure combinatorial function without

any feedback is considered Fig. 5A. This is the simplest

processing example. It does not depend on the outputs and can

be processed during a single calculation cycle. The switches

are translated into a combinatorial network that drives the data

input of the register. Figure 5 depicts all transformation stages

applied to LD that are required for obtaining the processing

O0.0I0.1I0.0

I0.2

D Q
I0.0 I0.1

1
O0.0

I0.2 CLK

D Q
I0.0

I0.1

O0.0

I0.2

CLK

A.

B.

C.

Fig. 5. Combinatorial function compilation: A. LD representation, B. Direct
translation, C. After optimization.



88 A. MILIK, E. HRYNKIEWICZ

O0.1I0.2O0.0

O0.1

O0.0I0.0 I0.1

I0.0

I0.1

O0.0

CLK

D Q

CE

O0.0

O0.1

I0.2

R1 R2

O0.1

Rung 
execution

D Q

D Q

CE

I0.0

I0.1

O0.1

I0.2

D Q

O0.0

O0.1

CLK

O0.0 D

A.

B.

C.

Fig. 6. Sequential LD dependencies implementation.

system. Each switch is substituted by AND gate. One of the

inputs is driven by the current logic value while the other one

is driven by switch signal. The junction inserts OR gate into

the translated structure that brings together all merged rungs.

In the optimization phase constants are propagated and gates of

the same type are merged. Further optimizations are possible

by applying combinatorial function minimizations algorithms

like Espresso or Exact of Quinee-McCluskey. Combinatorial

synthesis algorithms allow monitoring correctness of formu-

lated control statements informing about removed switches

(signals) in the optimization process.

Implementing a design where rungs depend on results of

other rungs requires implementing a sequential processing that

assures the proper result calculation and partial result distribu-

tion inside a system. Very important factor is the complexity of

the controller that manages data flow. Reducing complexity of

the calculation flow will also reduce the hardware overhead

connected with data flow management. The developed pro-

cessing model should reduce the number of processing cycles.

There are considered two cases of feedback signal use where

feedback signal update precedes the expression or follows it.

Fig. 6A presents the LD network where signal O0.0 is

fed to the next rung. This is a typical example of complex

combinatorial function implementation where the partial ar-

guments are shared and passed through intermediate nodes.

Programmer expects that the signal changes are propagated

thorough the cascade of switches during a single calculation

cycle. The calculation cycle is sequential with calculation of

O0.0 followed with calculation of O0.1 output. The schematic

diagram of LD hardware implementation is shown in Fig. 6B.

O0.1I0.2O0.0

O0.1

O0.0I0.0 I0.1

D QI0.0

I0.1

O0.1

I0.2

D Q

O0.0

O0.1

O0.0 Q

CLK

A.

B.

Fig. 7. The LD with memory loop.

The proper data flow is maintained by a simple ring counter.

The output of the counter activates register that represents

coil on the LD schematic. For the external observer outputs

are updated in the same cycle during the result write back

from the process image memory to the output modules. This

problem can be considered as a finite state machine synthesis.

The immediate update of outputs means that there are not

sequential dependencies that require sequential processing of

signals. The FSM synthesis approach distinguishes the current

state value and next state values. The current state value comes

from the memory block and here it is a register system that

holds the output or the marker. The next state value is worked

out by a combinatorial function. Registers for signal O0.0 and

O0.1 assure continues driving of the signal nodes. We can

introduce two types of signals one with D suffix representing

the next state value and the other with Q suffix representing

the current value.

Using presented approach the circuit can be implemented

in a form shown in Fig. 6C. The O0.0 signal that is processed

in the second rung is fed directly from the combinatorial unit

(net labelled O0.0 D).

Figure 7A presents the LD where the signal O0.0 is

used before it is updated in the current cycle. This is an

example of implementing a memory that delays a value for

one computation cycle. The same model of the finite state

machine implementation concept is used as in the previous

example. It is expected that a partially computed variable

will arrive in the next computation cycle. To address the

mentioned problem and assure the proper computation order

the variable I0.0 Q coming from the register is used. The

proposed implementation allows for simultaneous processing

of all variables independently of their dependencies without

splitting the operation into cycles.

The above considerations for the LD sequential processing

can be directly used in the IL synthesis. All described situa-

tions in the LD representation reflect the possible organization

of the processing flow of the IL.

The proposed computation model allows processing a com-

binatorial expression in a single computation cycle. In opposite

to models based on simultaneity and dependencies graphs the



SYNTHESIS AND IMPLEMENTATION OF RECONFIGURABLE PLC ON FPGA PLATFORM 89

proposed computation model offers the quickest calculation

and reduces the complexity of creating the custom processing

unit. It should be noticed that computation unit does not

require the additional flow control unit. The overhead of the

computation sequence controller has been eliminated.

C. Compilation Algorithm

The proposed compilation model can be put down in a form

of the algorithm for processing the combinatorial expression

in LD and IL forms. For the processing purposes the creation

of the logic expression evaluator is required. The evaluator

collects the partial logic expression during the LD analysis

or parsing of the IL. For evaluation purposes we can use

symbolic logic evaluator [19] or BDD package [20], [21],

[22]. Using BDD for partial evaluation potentially can lead to

inefficient variables ordering. Logic evaluator produces logic

expressions from processed rungs (LD) or instructions (IL).

Each expression has a reference counter. When the expression

is assigned the reference counter is increased. When the

expression is deassigned the reference count is decremented.

When the reference count reaches zero the user is given a

message informing that a given statement is not used. The

statement is disposed. It should be noticed that the expression

disposal is an iterative process of reducing the reference count

in all referenced expressions.

For the simplicity and consistency of the representation, a

system is considered as a set of variables regardless of their

origin (input, output or marker). The value of each variable

depends on the assigned expression from the expression col-

lection.

The processing starts with empty set of variables. Each time

the variable is referenced in a form of switch the read variable

operation is performed. The read variable operation looks up

for a variable in the variable collection. If the variable is not

found it is created. A newly created variable is assigned an

assignment expression of itself. It can be explained as the

reading of Q output of the variable register.

The current variable expression is added to the temporary

expression. The reference count for the expression is incre-

mented. When the variable is referenced as a coil it is equal to

the write variable operation. Similarly the variable is looked up

in the variable collection if variable can not be found the new

variable is created with the self assignment. The expression

of the returned variable is deassigned. If reference count of

deassigned expression reaches zero the notification message

is generated. The notification informs about unused statement.

This situation helps to detect potential errors in design. The

temporary expression is assigned to the variable.

The IL statements are processed in the same way as the LD

diagram. Figure 8 depicts the exemplary LD diagram and its

data structure obtained in the compilation process. The data

structure is constructed from two types of structures variables

and operations. The operation structure allows representing all

logic operation that can be handled. Reading (RD) and writing

(WR) operations holds the pointer to the variable (the variable

is not represented as a separate structure on the drawing). The

variable points to the expression that is currently assigned to it.

B.

WR AND

OPER

OPER

RD

VAR

RD

VAR

AND

OPER

OPER OR

OPER

OPER

I0.1VAR O0.0

NOT

OPER

RD

VAR O0.0

WR

VAR O0.1

I0.0

RD

VAR I0.2

O0.1I0.2O0.0

O0.1

O0.0I0.0 I0.1

A.

Fig. 8. The LD and its compiled data structure.

The operation capable of handling multiple arguments (AND,

OR) stores them in the argument expression list.

After completing the compilation process further low level

synthesis can be run. Alternatively, any of commercially avail-

able synthesis tools can be used to generate HDL description.

V. ARITHMETIC OPERATION IN RECONFIGURABLE PLCS

Until now the implementation of Boolean expression has

been considered. Special attention has to be paid for imple-

menting processing dependencies of programs created with use

of the LD and the IL.

The control functions of PLC require the implementation of

arithmetic operations and operations linking numerical values

with Boolean variables like comparison. The arithmetic oper-

ations are foundation of other complex blocks like counters,

timers or signal processing blocks like PID.

The implementation of arithmetic operations requires much

more logic resources than Boolean variable processing. The

arithmetic expression processing requires different approach

than in case of Boolean expressions.

A. Arithmetic Operations

The arithmetic expressions can be represented graphically

by a network of functional blocks (LD) or in a form of

statements (IL). Sometimes a mixed form of the representation

is used. It combines graphical and textual components in a

form of sequential functional charts (e.g. MATLAB Stateflow).

The mentioned standard forms of mathematical expressions’

representations are commonly used for building and designing

of the control algorithm. A lot of tools limit synthesis process

to the direct mapping of expressions into hardware form [10].

One of the simplest approaches can be called the program

representation. This method of mapping executes/assigns one

arithmetic operation into the calculation cycle. This approach



90 A. MILIK, E. HRYNKIEWICZ

requires building a specific arithmetic processing unit (ALU)

that processes data in a form of an embedded program (it can

be compared to Single Instruction Single Data unit – SISD

unit). The utilization of logic resources is limited, while the

calculation time is proportional to the number of operations

and all benefits of the massive parallel processing of Boolean

variables are wasted.

The other approach, which assigns the unique hardware

resource to each operation, can be called the direct hardware

approach. This approach promotes the fastest execution of the

calculation. The greedy hardware resource allocation strongly

limits the number of operations (arithmetic instructions) in

the entire program that can be processed (here allocated) by

the controller. The mapping algorithms apart from the control

algorithm representation must solve problems concerning the

reconfigurable controller framework allocation. This problem

concerns the proper data flow between input and output

modules and the control of data processing cycle [6].

The design of the arithmetic operation synthesis package

for a reconfigurable controller allows addressing mentioned

problems of a control program mapping. The package must

take into account the efficient resources allocation that are

limited by the utilized programmable circuit and must assure

the possible shortest calculation time. Further considerations

are limited to the basic four arithmetic operations.

B. Arithmetic Operation Support in FPGA

The FPGA devices are continuously developed to meet

different design requirements. Since the early implementation

they are equipped with different arithmetic support. Further

considerations are limited to Xilinx FPGA families. First

implemented arithmetic expressions were addition and subtrac-

tion. These blocks have been introduced for the first time it in

XC4000 families (the early third generation of FPGA devices).

Those LUT generators were supplemented with additional

hardware that implemented the direct carry chain among

vertically neighbouring cells. This relatively simple implemen-

tation allows improving implementation of adders, subtractors

and all addition based components e.g. counters, sequential

multipliers and dividers etc. The signal processing requires

fast multiplication. The combinatorial multiplier has been built

from adders (based on general purpose logic resources). A

typical combinatorial multiplier 16x16 bits allocates 266 LUT

generators. To improve the performance and reduce general

logic resource consumption multiplier cores have been imple-

mented starting from the Virtex II structure. There are im-

plemented 18 bit signed multipliers with selectable registered

or combinatorial inputs and outputs. The algebraic expressions

implementation considers the multipliers as atomic operations.

The Virtex 4 family brings first highly specialized component

for DSP implementation [23]. The DSP48 has taken the name

after accumulation adder width. The slightly modified and

better accommodated for DSP calculations version of the

DSP48 core has been implemented in derivative family Spartan

6 under name DSP48A [24]. The simplified block diagram is

presented on Fig. 9. The basic structure of the unit suggest

it use as multiply and accumulate unit (MAC). Data registers

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE48'd0

B

A

C

P

PC[47:0]

PC[47:0]

X

{D,A,B}

D Q

CE

Z

D

MFOUT[35:0]

D Q

CE

Fig. 9. The Spartan 6 DSP48A arithmetic core.

allow configuring modules to operate in pipelined fashion. The

signal paths (direct or registered) are statically configured. It is

possible to dynamically reconfigure the device. The dynamic

reconfiguration is not suitable for computation components

with the clock to clock cycle modification requirements. The

dynamic reconfiguration procedure requires exchanging entire

configuration frame. Some of the functions can be controlled

dynamically at the run time. The multiplexers X, Y and Z

are dynamically controlled. This allows for direct control of

the operations. It can be noticed that one of the multiplier’s

arguments can be calculated as the sum or difference of A and

D. The efficient use of DSP cores for implementing arithmetic

operations given by high level language requires creating

automatic tools that will aid designer in the implementation

process.

C. Data Flow Graph Model of DSP48A Unit

The DSP48A implements chained multiplication based on

addition. Blocks incorporate a signed 18x18 multiplier and fi-

nal stage 48 bit adder or subtractor. The final stage adder when

used as an accumulator has a 12 bit margin. The overflow can

be expected after accumulation of 4096 items. The hardwired

connections between arithmetic components does not allow

for direct mapping of basic operations separately. Internal

multiplexers allow controlling final stage adder arguments.

The operations implemented in DSP48 and DSP48A slightly

differ. These differences reflect used mapping procedures. The

DSP48 block implements the configurable three argument

adder (1)

P = Z ± (X + Y )
Z = {0, C, P, PC};X = {0, A×B,C};

Y = {0, A×B,P,A : B}
(1)

In this configuration both X and Y arguments are used by

the partial multiplication results (A×B). There is implemented

an ability of signed shifting of P or PC input right by 17

bits. It is useful for the implementation of long multipliers

(multiplicands longer than 18 bits).

P = C ± (A×B) (2)

When used with multiplier the structure allows to add or

subtract results of the multiplication from given argument (2).

The presented structure perfectly fits for implementing FIR

or IIR filters where the “multiply and accumulate” (MAC)



SYNTHESIS AND IMPLEMENTATION OF RECONFIGURABLE PLC ON FPGA PLATFORM 91

B

A

C

D Q

CE

P

D D Q

CE

D Q

CE

D Q

CE

D Q

CE

P

1

2

Cycle Operation

B DAC

Fig. 10. The DSP48A block diagram with respective operation data flow
graph.

D Q

CE

A

B

C

D Q

CE

D Q

CE

D Q

CE

D Q

CE

P

D Q

CE

D

D Q

CE

P

1

2

3

4

Cycle Operation

A B D

5

A

C

Fig. 11. The DSP48A pipelined mode block diagram with respective data
flow graph.

operation is commonly used. The DSP48A brings some mod-

ification in comparison to DSP48. The final adder adds only

two arguments:

P = Z ±X

Z = {0, C, P, PC};X = {0, A×B,D : A : B};
(3)

The additional 18-bit adder before multiplier can be by-

passed. Than the calculated result (4) is identical with (2).

P = C ± (A×B) (4)

Selecting additional adder allows calculating the sum or

difference of multiplier (5).

P = C ± (A× (D ±B)) (5)

This additional adder perfectly fits the requirements of the

symmetrical FIR implementation or other calculation with

symmetrically distributed coefficients. This ability is also

worth to embedding into the mapping procedure.

The arithmetic functionality is the most important factor of

the DSP blocks. There is additional architecture property that

strongly impacts scheduling and mapping procedures. Each

arithmetic stage inside the block can be connected directly (as

a combinatorial unit) or separated by registers (the pipelined

structure). The data path can be formed statically during

the configuration. In the run time the register path structure

can not be changed (only using the dynamic reconfiguration

methodology). That introduces two architectures here called

the combinatorial (Fig. 4) and the pipelined (Fig. 5). The

pipelined architecture of DSP48 offers maximal performance

of 400 – 500 MHz for DSP48 depending on the chip speed

grade [25], [26]. Combinatorial architecture exhibits reduced

performance between 250 – 317 MHz respectively. The com-

binatorial configuration offers better and simpler operation

allocation. The pipeline architecture requires insertion of an

empty cycle between the multiply and add or accumulate

operations and the pure addition. It was decided to select the

register buffered combinatorial structure of the unit.

VI. THE OPERATION MAPPING

The data flow graph – DFG set is used for the operation

mapping [19], [7]. The DFG can be directly mapped into

hardware, but usually it leads to the inefficient implementation.

In the direct mapping each operation node is assigned to a

separate hardware resource that offers the shortest calculation

time. It should be noticed that the assigned unit is used only

once per a calculation cycle that strongly reduces hardware

resources utilization. The limited number of resources avail-

able in the FPGA requires developing methods that distribute

the calculation in time (serially) and in the space (the parallel

calculation).

The proposed mapping algorithm is built of limited num-

ber of arithmetic and logic resources. It is oriented to use

DSP48 and DSP48A arithmetic blocks for implementing the

multiplication and addition or subtraction. The division is ac-

complished with use of separate core implemented in general

purpose logic resources.

The FPGA device is used as a main processing element

of the reconfigurable controller. The circuit is equipped with

the limited number of general purpose logic resources and

hardware DSP cores. The arithmetic operation processing unit

is a part of the whole controller that operates together with two

state (Boolean) variables processing unit. The constraint of the

limited number of resources is fully justified. The available

logic resources are partially reserved for Boolean variables

processing and the controller framework.

The mapping algorithm has been developed basing on

several well known mapping algorithms [7], [27], [28], [8],

[29]. The as soon as possible – ASAP, as last as possible

– ALAP and the list of scheduling algorithms constitute the

foundation for the formulation of the mapping operations

algorithm in the limited number of resources with dynamic

resource allocations. The mapping algorithm incorporates tim-

ing control that determines the operation execution sequential

timing.

The ASAP algorithm in each step allocates all operations

that arguments are known. The ALAP method determines the

last possible moment of time when the operation has to be

executed to maintain the proper calculation flow. Both methods

represent a greedy approach where no resource limits are

implied. The other simplification used in both methods is

the atomic operation time. Assigning the same duration for

different operations would require extending the calculation

cycle to match the longest operation in the set. Comparing mo-

ment of execution of given node in ALAP and ASAP method

the possible mobility range of variable can be determined.

The list method assigns calculation resources from the finite

set of computation resources to DFG nodes that arguments

are known. The set of operations is defined by available

computation resources before the scheduling procedure starts.

The proposed method is supposed to allocate the arith-

metic operations with use of DSP48 components for the

addition/subtraction and multiplication while the division is



92 A. MILIK, E. HRYNKIEWICZ

1

23

1 2

3

A. B.

Fig. 12. The DSP48 data flow graph mapping transformation.

1

2 3 1 2

3

0
B.

A.

ARG1 ARG2

ARG1 ARG2

Fig. 13. The DFG rules of nodes exchange and creation.

implemented with use of general purpose logic components.

The data flow and control unit developed as the result of

scheduling are also mapped in general purpose logic resources.

The algorithm begins from rearranging the DFG to DSP48

cores requirements. The most desired form of the graph

that can be mapped to the DSP units is form of branch

implementing accumulative addition. The previously reduced

and optimized graphs (Fig. 12A) are transformed into a form

of a vine branch (Fig. 12B). This transformation prepares

the DAG for DSP48 mapping. The transformation moves the

pointers among addition nodes. The commutative operation

(e.g. addition) allows exchanging the arguments. The graph is

transformed according to node exchange rules (Fig. 13). There

are considered two cases. The node under transformation is

marked with gray colour. The case A (Fig. 13A) considers

the ARG2 arc. If the ARG2 is an addition node than it is

placed in ARG1 and appropriate arguments are exchanged.

Described operation is applied to the node until the ARG2

does not satisfy described condition. The case marked with

B considers situation when both ARG1 and ARG2 nodes

are multiplication. To satisfy mapping requirements only one

multiplication is available. The mapping procedure creates new

addition node. The ARG1 from considered node is attached

to the ARG2 in newly created node while to the ARG1 is

assigned output of newly created node.

Presented mapping transformation allows determining a

lower bound of calculation cycles (CYMIN ). The minimal

number of calculation cycles can be obtained from calculating

number of elementary operations (OP) and number of available

DSP blocks. It is assumed that all n DSP units operate with

the full utilization.

CYMIN = ceil

(

OP

n

)

(6)

FREE

FREE

FREE

FREE

C
Y

C
Y

DSP 1A. B. DSP 1 DSP 2

DSP 1 DSP 2 DSP 3

C
Y

C.

Fig. 14. The long sequence of operations distributions.

The elementary operations are a pair of the addition type

(addition or subtraction) and multiplication nodes or an ad-

dition node type only. The previously made assumption still

holds in general case, where mainly the addition and the

multiplication are dominant and the division is a rarely used

operation.

The applied transformation creates the DAG in a form

of linear fragments that perform accumulative addition of

arguments. This transformation contradicts the requirements of

time reduction of operations and the parallel processing while

expansion of the tree height and the serialization of processing

are observed. The mapping process into DSP cores requires

distributing of mapped operations in space to assure approach-

ing to the CYMIN . During distribution we face the problem of

implementing long linear chain of operations (e.g. high order

FIR filter). In general the length of the chained operation can

exceed significantly the minimal number of calculation cycles

in worst case. For the purpose of minimizing the length of

linear fragments they can be split into smaller pieces. The idea

is presented in Fig. 14. The distribution operation takes into

consideration the device architecture. The DSP48 cores are

placed in columns. Each DSP48 uses direct PC lines to connect

with the unit placed above (Fig. 9). Dedicated connections

allow reducing use of general purpose programmable logic

resources and controlling complexity. There are presented

three cases of operation distributions among DSP48 units. The

case A (Fig. 14A) presents the implementation without the

distribution. The case B distributes operations between two

DSP48 units while case C considers distributions between 3

DSP48 units.
NA = CY

NB = 2 · CY − 2
NC = 3 · CY − 3

(7)

The performance in terms of basic operations is described

by (7). It can be noticed that during distributed execution of

the operation some units are released before completing the

calculation. Those freed units can be allocated for other calcu-

lations. The other problem that has to be addressed is timing

control of operation sequences that depends on result from



SYNTHESIS AND IMPLEMENTATION OF RECONFIGURABLE PLC ON FPGA PLATFORM 93

C
Y

2
C

Y
1
+

1
OP1A.

OP2

M
A

X
(C

Y
2
,C

Y
1
+

1
)

OP1

B.

OP2

Fig. 15. Reducing calculation time of dependant processes.�� � ��������� � ��������	 � ��
������� � �����	��� ���� � �����	�� � �����	
�������

���� !" #$%&'(
)$&% *'# ��

Fig. 16. The PID controller scheduled DFG.

other calculations. To reduce the calculation time and assure

the most possible parallel execution the operation mobility

range can be exploited. The operation mobility range allows

selecting the most suitable location for a given operation in a

sequence. The problem and the possible solution is shown in

Fig. 15. It presents the calculation of two chained operations.

The operation OP2 depends on the result from the operation

OP1. Moving a dependant operation node down to OP2 allows

to earlier starting calculation of the OP2 chain. Using the

operation mobility range approach the pipeline transport delay

must be taken into consideration for variable arrival scheduler.

The scheduling operation attempts to distribute operations in

time to assure the proper calculation flow and to achieve the

possible highest hardware utilization. To optimize data flow

and the variable multiplexing system the variable exchange is

performed. The optimization can be applied to the commuta-

tive operation and to the set of the same operations (Fig. 12).

The proposed process of the automatic implementation of

arithmetic expressions is used for PID controller implemen-

tation. The controller is given by the following set of discrete

differential equations (8) [30], [9].

Dn = Dn−1 + α · (En − En−1) + β · (En −Dn−1)
In = In−1 + γ ·Dn Pn = δ ·Dn Vn = In + Pn

(8)

The DFG has been generated from (8) and mapped accord-

ing to the developed methods. The automatically obtained im-

plementation assures the hardware utilization of 86% (Fig. 16).

O0.1M0.1M0.0

O0.1

I0.0 M0.0

I0.0 M0.1

SUB

#20

001

>

=

<

SUB

001

#35

>

=

<

D01

D00

Fig. 17. The LD with mixed arithmetic and logic operations.

A. Bringing together logic and arithmetic operations

Presented algorithms for Boolean operation synthesis and

the arithmetic operation synthesis require merging into one

the procedure that allows obtaining fully functional hard-

ware implemented logic controller. The concept introduced

for intermediate logic operation representation is extended

to incorporate the arithmetic expressions. The node set has

been enriched with arithmetic operations. The general node

represents elementary operations that can belong to logic or

arithmetic sets of operations.

An exemplary LD that combines logic and arithmetic op-

erations is presented in the Fig. 17. The LD presents imple-

mentation of the controller with the hysteresis. The switch

points are determined by constant values in SUB (subtract)

modules. This module not only calculates the difference but

also delivers the relation of subtracted values. The subtract

values are written to the marker space D00 and D01. Markers

are not used in calculation process and can be optimized.

The compiled diagram is presented in Fig. 18. During the

compilation process the DAG of the operation is created.

The nodes implement logic as well as arithmetic operations.

The scheduling of arithmetic operations is based on described

methods. Due to sequential nature of arithmetic operations

execution there appear sequential dependencies on Boolean

operations. Boolean operations are scheduled one cycle after

completing the arithmetic operations they are depend on. The

logic operations are always completed in a single cycle.

The arithmetic operations are conditionally triggered. Im-

plementation of this property requires the introduction of

the conditional write of results. The nodes that are writing

back arithmetic results are conditionally triggered. In proposed

implementation conditional enable expression enables write of

a result or its propagation to other blocks.

The tree of arithmetic operation can be merged provided that

the write operations are controlled by the same expression.

In case of tree-like structures and the proposed method of

the building data structure comparison of the pointers assures

condition equality.



94 A. MILIK, E. HRYNKIEWICZ

VAR

WR SUB

OPER

OPER

RD

RD

AND

OPER

OPER

OR

OPER

OPER

VAR D01

NOT

OPER

RD

VAR O0.0

WR

VAR O0.1

SGN

OPER

WR SUB

OPER

OPER

RD

VAR

RD

CONST#35

VAR D00

001

SGN

OPER

VAR 001

CONST#35

AND

OPER

OPER

RD

VAR I0.0

AND

OPER

OPER

RD

I0.0
CONST#20

COND

COND

VAR

RD

I0.0

VAR

RD

I0.0

Fig. 18. Compiled data structure of the mixed operations LD network.

VII. SUMMARY

The paper presents the complete set of algorithms for

synthesizing the reconfigurable logic controller. The synthesis

processes are carried out on standard representation of pro-

grams for PLCs. They are based on the ladder diagram (LD)

or the instruction list (IL) specifications. Implementation of

Boolean operations can be efficiently done in programmable

devices. The implementation of Boolean functions has been

presented in details at the beginning. The PLCs operation

also depends on arithmetic operations. In opposite to logic

operations implementing arithmetic operations requires much

more resources. The direct approach of the implementation

leads to inefficient results. The direct implementation is not

able to utilize specific properties of complex functional blocks

incorporated into modern FPGAs. There has been proposed

algorithm of arithmetic operation mapping into DSP48 blocks.

The proposed scheduling operation distributes operation in

time and space. It attempts to reduce entire computation time.

Finally, the complete synthesis algorithm has been presented.

It is able to process logic and arithmetic blocks.

The obtained results of automatic synthesis are very promis-

ing. The work over implementation of the package is contin-

ued. The based skeleton of the synthesis concept will be tested

with different optimization schemes.

REFERENCES

[1] H. Berger, Automating with STEP 7 in LAD and FBD - SIMATIC S7-

300/400 Programmable Controllers. Siemens AG., 2001.
[2] G. Michel, Programmable Logic Controllers - Architecture and Appli-

cations. John Willey & Sons, 1992.
[3] M. Chmiel, E. Hrynkiewicz, and A. Milik, “Concurrent operation of the

processors in bit-byte CPU of a PLC,” in Proceedings of IFAC World
Congress, July 2005.

[4] M. Chmiel and E. Hrynkiewicz, “Remarks on parallel bit-byte cpu
structures of programmable logic controllers,” in Design of Embedded

Control Systems, M. W. Adamski M. A., A. Karatkevich, Ed. Springer
Science + Business Media Inc., 2005, pp. 231–242.

[5] M. Chmiel, E. Hrynkiewicz, and A. Milik, “Compact PLC with event-
driven program tasks execution,” in Preecedings of 3rd IFAC Workshop

on Discrete Event System Design, DESDes’06, September 2006, pp. 99–
104.

[6] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis. McGraw-Hill
Inc., 1994.

[7] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis. Introduc-
tion to Chip and System Design. Kluwer Academic Publishers, 1994.

[8] A. Mishchenko. (2010) Abc: A system for sequential synthesis and ver-
ification. [Online]. Available: http://www.eecs.berkeley.edu/alanmi/abc/.

[9] A. Milik and E. Hrynkiewicz, “PID module for reconfigurable logic
controller,” in Proceedings of Programmable Devices and Systems 2000

Conf., Ostrava, Czech Rep., 2000.
[10] A. Milik, “High level synthesis - reconfigurable hardware implementa-

tion of programmable logic controller,” in Proceedings of IFAC Work-
shop on Programmable Devices and Embedded Systems, February 2006.

[11] S. Shanta and S. Dipali, “A new generation of PLC-an FPGA based
PLC,” in Proceedings of the SICE Annual Conference, SICE 2005
Annual Conference in Okayama, 2005, pp. 2367–2370.

[12] L. Yadong, Y. Kazuo, F. Makoto, and M. Masahiko, “Model-driven
programmable logic controller design and FPGA-based hardware im-
plementation,” in Proceedings of the ASME International Design En-
gineering Technical Conferences and Computers and Information in

Engineering Conference-DETC2005, 2005, pp. 81–88.
[13] Xilinx, DS-099, Spartan-3 FPGA Family, ver.2.1. Xilinx, 2006.
[14] International Standard IEC 1131, Programmable Controllers, Interna-

tional Electronics Commission Std. IEC, Geneva, 1992.
[15] J. Welch, “Translating unrestricted relay ladder logic into boolean form.”

Computers in Industry, vol. 20, pp. 45–61, 1992.
[16] S. Ichikawa, M. Akinaka, R. Kieda, and H. Yamamoto, “Converting

PLC instruction sequence into logic circuit: A preliminary study,” in
Proceedings of IEEE International Symposium on Industrial Electronics,
vol. vol.4, July 2006, pp. 2930–2935.

[17] D. Du, X. Xu, and K. Yamazaki, A study on the generation of silicon-

based hardware PLC by means of the direct conversion of the ladder

diagram to circuit design language. Springer London, 2010, vol. 49.
[18] D. Du, Y. Liu, X. Guo, K. Yamazaki, and M. Fujishima, “Study

on LD-VHDL conversion for FPGA-based PLC implementation,” The

International Journal of Advanced Manufacturing Technology, vol. 40,
pp. 1181–1190, 2009.

[19] A. V. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 1986.
[20] S. Akers, “Binary decision diagrams,” IEEE Transactions on Computers,

vol. C-27, pp. 509–516, June 1978.
[21] R. E. Bryant, “Graph based algorithms for boolean function manipula-

tion,” IEEE Transactions on Computers, vol. C-35, pp. 677–691, August
1986.

[22] S.-I. Minato, Binary Decision Diagrams and Applications For VLSI

CAD. Kluwer Academic Publisher, 1995.
[23] Xilinx, UG073, XtremeDSP for Virtex-4 FPGAs User Guide. Xilinx,

2007.
[24] ——, UG389, Spartan-6 FPGA DSP48A1 Slice. Xilinx, 2009.
[25] ——, DS302, Virtex-4 FPGA Data Sheet: DC and Switching Charac-

teristics. Xilinx, 2007.
[26] ——, DS162 Spartan-6 FPGA Data Sheet: DC and Switching Charac-

teristics. Xilinx, 2011.
[27] G. Hachtel and F. Somenzi, Logic synthesis and verification algorithms.

Springer, 1996.
[28] S. Hassoun and T. Sasao, Logic synthesis and verification. Kluwer

Academic Publisher, 2002.
[29] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational

and sequential mapping with priority cuts,” in Precedeenigs of Computer

Aided Design Conference. IEEE, 2007, pp. 354–361.
[30] R. J. Bibero, Microprocessors in Instruments and Control. John Willey

& Sons, 1990.


