
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 4, PP. 335–344

Manuscript received November 12, 2012; revised Decemer, 2012. DOI: 10.2478/v10177-012-0046-y

Modeling the Arithmetic Decomposition of

DA-LUT Block for Heterogeneous FPGA Structures
Michał Staworko and Mariusz Rawski

Abstract—Distributed arithmetic is well known technique of
designing FIR filters in FPGA devices. The quality of such filter
implementation strongly depends on synthesis results of the DA-
LUT block. Heterogeneity of modern FPGA structures introduces
new possibilities into implementation process, that may lead
to better results, but also makes it more complicated. This
paper presents the simple mathematical model for estimating
the necessary FPGA resources to implement DA-LUT using
decomposition-based approach. The model takes into account
the type of logic cells or memory blocks used for decomposition
process. The proposed model is helpful to determinate the DA-
LUT decomposition strategy for further automation of modified
distributed arithmetic decomposition method.

Keywords—Distributed arithmetic, FPGA, FIR filter, heteroge-
neous programmable structures.

I. INTRODUCTION

D
ISTRIBUTED ARITHMETIC (DA) provides multiplier-

less implementation of Digital Signal Processing (DSP)

functions. This technique gains popularity in Field Pro-

grammable Gate Arrays (FPGA) community since it is an

algorithm that can perform multiplication with use of lookup

tables (LUT), which are basic building blocks of FPGAs.

DA is mainly used for implementation of FIR filters and

may be used for time-frequency transformations. Longa et

al. [1], [2] shown the promising application of DA-based

filters in implementation of Discrete Wavelet Transform. Their

solution reached three times better performance with slightly

more occupied resources comparing to the implementation

using lifting scheme. Meyer-Base et al.[3] presented com-

parison of several implementations of FIR filters designed

using DA technique and RAGn algorithm [4]. DA-based filters

reached greater frequency but occupied in average 70% more

resources.

The main disadvantage of DA is the exponential growth of

DA-LUT blocks size with the number of its inputs, which

corresponds to the number of filter’s coefficients. Several

efforts have been made to reduce the DA-LUT size for

efficient realization of DA-based designs. Martiez-Peiro et al.

[5] proposed mapping the DA-LUT block into logic cells of

FPGA structure by grouping filter’s coefficients in small LUTs

corresponding to the size of logic cells, and then adding up

their outputs in a tree composed of two argument adders. Yoo

and Anderson [6] showed a recursive method to reduce the

block size introducing additional adders and 2×1 multiplexers.

Using this technique, the DA-LUT with N inputs can be

implemented using N 2×1 multiplexers and an adders tree.

Meher et al. [7] presented the DA-based architecture in form

M. Staworko and M. Rawski are with Institute of Telecommunications,
Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw,
Poland (e-mails: mstaworko@elka.pw.edu.pl; rawski@tele.pw.edu.pl).

of systolic array. This approach describes the architecture of

serial and parallel DA-based filters as one dimensional and two

dimensional systolic arrays. DA-LUT module was mapped as

a set of M input LUTs and adders connected in a cascade.

It was experimentally verified that using 4 input LUTs gives

the best results in terms of occupied resources (in experiments

homogeneous structure of Xilinx Virtex-E containing 4 input

logic cells was used). The forementioned methods that are

based on the dividing DA-LUT block into equal-sized parts

enable the rapid decomposition. Unfortunately those methods

do not take into consideration the heterogeneous structure

of programmable architectures and do not allow using the

embedded memory blocks. With rapidly growth of traditional

FPGA industry, heterogeneous logic blocks are often used in

the nowadays FPGA architectures such as Xillinx Virtex-5 and

Altera Stratix III series.

Recently, efforts have been made to develop methods based

on functional decomposition that would allow for efficient

utilization of heterogeneous structure of modern FPGAs. The

method presented in [8], [9] is designed specifically to imple-

ment FIR filters using the concept of distributed arithmetic. In

[10] advanced synthesis method based on functional decom-

position was proposed that utilizes embedded memory block

as large LUTs. Although those methods were reported to give

good quality results, their practical application is limited only

to filters containing small number of coefficients.

Arithmetic decomposition method presented by Rawski

[11] seems to be not limited by the number of coefficients

and particular size of the logic cell. Staworko and Rawski

[12] showed that this decomposition method applied to het-

erogeneous FPGAs allows to synthesize filters operating on

higher frequency and requiring fewer resources than typical

implementations made with industry standard tool Altera FIR

Compiler [13].

The presented paper introduces the simple mathematical

model for estimation of FPGA resources necessary to imple-

ment the DA-LUT depending on the type of logic cells or

memory blocks used for decomposition process. The proposed

model is helpful to determinate the DA-LUT decomposi-

tion strategy for automation of modified distributed arith-

metic decomposition method. This article is organized as

follows. Section 2 introduces preliminary information con-

cerning FPGA heterogeneity, structures of modern FPGA,

modified distributed arithmetic concept including short re-

vision of arithmetic decomposition concept and technology

mapping. Section 3 presents the simple mathematical model

for estimation of the arithmetic decomposition results, then

in section 4 the evaluation of the model for different cases

is presented and discussed. Finally section 5 presents short

summary.

336 M. STAWORKO, M. RAWSKI

II. PRELIMINARY INFORMATION

A. Heterogeneous FPGAs

Heterogeneity in FPGA may be straightforwardly consid-

ered as the presence of a variety of general-purpose logic cells.

It was shown, that the use of a different sized logic cells has

a positive effect on the number of utilized resources and the

performance of the system [14], [15]. The term heterogeneity

is also used to describe the enhancement of the general purpose

logic with dedicated circuits to gain FPGA performance.

Extending logic cell functionality with registers, adders and

fast carry lanes is known as soft-fabric heterogeneity, whereas

introducing additional separate blocks not paired with general

purpose logic, like embedded memory blocks, embedded mul-

tipliers is defined as tile-based heterogeneity [16]. It was also

shown, that extending the general purpose logic may improve

the performance of FPGA implementation and narrow the gap

between FPGA and ASIC systems [17], [16]. Modern FPGAs

offers both soft-fabric and tile-based heterogeneity and their

general purpose logic structure is composed of various sized

logic cells.

Logic cells are basic building blocks of FPGAs and may

be used to implement combinational functions, sequential and

arithmetic circuits. There is a tradeoff between the functional-

ity and performance of FPGA circuit depending on the number

of logic cell’s inputs. The architecture of logic block evolved

over time. One of the first commercial FPGA (Xilinx XC3000)

had sophisticated structure, but existing synthesis tools were

not able to use all of its potential [16], thus the next gener-

ations of FPGA were simplified to have homogeneous logic

cells containing only 4-input LUTs and the register. This logic

cell architecture was shown to give best functionality versus

circuit area [18]. The newer considerations of the problem by

Ahmed and Rose [19] showed, that in terms of propagation

time and circuit area the best configuration is obtained by

grouping 4 to 6-input LUTs in 3 to 10-element clusters.

That results led to development of the new architecture of

logic cells – the adaptive logic module (ALM) of Stratix II

FPGA, capable of implementing logic function from 4 up to 7

input logic function; [20] shows the methodology and design

decisions in details. The architecture of ALMs remains mostly

unchanged in newer generations of high performance Altera

devices form Straix III to Stratix V families. Heterogeneous

Stratix II logic cells, comparing with homogeneous Virtex-4

structure, containing only 4-input LUT, both designed in 90

nm CMOS technology, were shown to give better performance

with fever resources [21], [22]. Virtex-5 architecture is direct

successor of Virtex-4, enhanced with heterogeneous logic cell

structure. Solutions introduced to Virtex-5 logic cell remained

mostly unchanged in modern generations of Xilinx FPGAs.

Both Stratix and Virtex FPGAs contain embedded memory

blocks. Memory blocks are separated from the general purpose

logic cells. The natural application of memory blocks is to

implement large storage elements like RAMs, data buffers,

FIFOs etc. more effectively than general purpose logic cells.

However in designs, that do not require such a modules the

great part of FPGA is left unused (in the largest device

from Stratix III family embedded memory blocks constitute

23% of total die area [23]). Several projects have explored

TABLE I
CONFIGURATION OF ALMS AND EMBEDDED MEMORY BLOCKS IN

ALTERA STRATIX III

ALM MLAB Block M9K Block M144K

2× [4 × 1] 6 × 8 13 × 1 14 × 8
[5 × 1] [3 × 1] 6 × 9 12 × 2 14 × 9
[5 × 1] [4 × 1] 6 × 10 11 × 4 13 × 16
[5 × 1] [5 × 1] 5 × 16 10 × 8 13 × 18

[6 × 1] 5 × 18 10 × 9 12 × 32
[6 × 1] [6 × 1] 5 × 20 9 × 16 12 × 36

9 × 18 11 × 64
8 × 32 11 × 72
8 × 36

converting unused memory blocks into large lookup tables

which implement combinational functions [24], [25]. One step

further was made by the team lead by Łuba to use embedded

memories in FPGA to synthesize synchronous circuits [26],

[27], [28], [29].

Each Stratix III [30] ALM contains a look-up table based

resources, that can be divided between two combinational

adaptive LUTs (ALUTs) and two registers. Combinational

ALUTs may have up to eight inputs. An ALM can implement

various combinations of two functions, any function of up

to six inputs and certain seven-input functions (in extended

mode). In addition to the adaptive LUT-based resources, each

ALM contains two programmable registers, two dedicated full

adders, a carry chain, a shared arithmetic chain, and a register

chain. This dedicated resources allow efficiently implementing

various arithmetic functions, like two dual adders in arithmetic

mode or two ternary adders in shared arithmetic mode and

shift registers. TriMatrix embedded memory blocks provide

three different sizes of embedded SRAM: 640 bit (in ROM

mode only) or 320 bit memory logic array blocks (MLABs),

9 Kbit M9K blocks, and 144 Kbit M144K blocks. Table I

presents configurations of logic elements and embedded mem-

ory blocks of Stratix III as LUTs of various sizes (number of

inputs×number of outputs).

The elementary programmable logic blocks in Xilinx Virtex-

5 and Virtex-6 FPGAs [31], [32], called slices are organized

in Configurable Logic Blocks (CLBs). The CLBs are the

main logic resources for implementing sequential, as well

as combinatorial circuits. Each slice consists of 4 function

generators capable of implementing one 6-input (6×1) logic

function or two 5-input (5×2) logic functions with shared

inputs. Function generators in a slice can be paired using

dedicated multiplexers to obtain two 7×1 logic function and

all four slice function generators can be organized to fit one

8×1 logic function. Additionally fast carry logic can be used

to implement four dual adders, appropriate configuration of

logic generators as 3×2 compressors allows to implement four

ternary adders in one slice. In Virtex-6 additional registers

were introduced and the performance of ternary adders was

improved. CLBs of Virtex-5 and 6 also support distributed

memory – each look-up table can be configured to operate

as a 64-bit memory. Because of the LUT structure of the

Virtex-5 and 6, each LUT can be configured as a 64×1 or

32×2 RAM. However, when the slice is configured as RAM,

it can no longer perform logic functions. The block RAM in

Virtex-5 and 6 FPGAs [31], [33] stores up to 36K bits of

MODELING THE ARITHMETIC DECOMPOSITION OF DA-LUT BLOCK FOR HETEROGENEOUS FPGA STRUCTURES 337

TABLE II
CONFIGURATION OF SLICES AND EMBEDDED MEMORY BLOCKS IN

XILINX VIRTEX-5 AND VIRTEX-6

SLICE Block RAM 18K Block RAM 36K

4 × [5 × 2] 14 × 1 15 × 1
4 × [6 × 1] 13 × 2 14 × 2
2 × [7 × 1] 12 × 4 13 × 4

[8 × 1] 11 × 9 12 × 9
10 × 18 11 × 18
9 × 36 10 × 36

9 × 72

data and can be configured as either two independent 18 Kb

RAMs, or one 36 Kb RAM. Table II presents configurations of

logic elements and embedded memory blocks of Virtex-5 and

Virtex-6 as LUTs of various sizes (number of inputs×number

of outputs)

Such architecture of modern programmable FPGAs greatly

extends the space of possible solution during the process

of mapping the design into FPGA resources. Unfortunately

this heterogeneous structure of available logic resources also

greatly increases the complexity of mapping algorithms. The

existing CAD tools are not well suited to utilize all possibilities

that such modern programmable structures offer due to the

lack of appropriate logic synthesis methods [11].

B. Modified Distributed Arithmetic Concept

The distributed arithmetic is a method of computing the sum

of products:

y =

N−1
∑

n=0

c[n]× x[n], (1)

In many applications, a general purpose multiplication is

not required. This is the case of filter implementation, if filter

coefficients are constant in time. The partial product term x[n]
× c[n] becomes multiplication with a constant. Then taking

into account the fact that the input variable x is a binary

number:

x[n] =

B−1
∑

b=0

2bxb[n], where xb[n] ∈ [0, 1] (2)

the whole convolution sum can be described as shown in

y =

B−1
∑

b=0

2b
N−1
∑

n=0

c[n]× xb[n] =

B−1
∑

b=0

2bf(xb) (3)

Since c[n] are constant the second sum in (3) can

be implemented as a mapping f(xb), where xb =
(xb[0], xb[1], ..., xb[N–1]). The efficiency of implementations

based on this concept strongly depends on implementation of

the function f(xb). The preferred implementation method is to

realize the mapping f(xb) as the combinational module with

N inputs. The mapping f is a lookup table (DA-LUT) that

includes all the possible linear combinations of the coefficients

and the bits of the incoming data samples [34].

The concept of arithmetic decomposition of DA-LUT block

used in synthesis of FIR filters was proposed by Rawski

as modified distributed arithmetic method [11]. It allows to

use both general purpose programmable logic and embedded

memory blocks. It is based solely on arithmetic transforma-

tions and is dedicated to decompose functions of DA-LUT

block. The proposed concept takes advantage of distinctive

structure of DA-LUT block. The key operations are: orga-

nizing filter coefficients in groups and if necessary splitting

the values of filter coefficients into groups containing more

significant and less significant bits.

The operation of organizing N filter coefficients into L

groups, each containing Ki elements where:

L−1
∑

l=0

Kl = N, (4)

moreover Kl can only be equal to one of available sizes

Lini, is given by the expression:

y =

L−1
∑

l=0

Kl−1
∑

k=0

c[nl
k]× x[nl

k] =

=

B−1
∑

b=0

2b
L−1
∑

l=0

Kl−1
∑

k=0

c[nl
k]× xb[n

l
k] = (5)

=

B−1
∑

b=0

2b
L−1
∑

l=0

fl(x
l
b).

In this case function f(xb) has been decomposed into L

functions fl(x
l
b). The sum is partitioned into L independent

DA-LUTs. This allows to implement DA architecture with

smaller DA-LUTs and additional adders. Each DA-LUT has

Kl inputs and (⌈log
2
Kl⌉+ q) outputs, where q denotes the

number of greatest coefficient’s bits. The operation of group-

ing coefficients allows to significantly reduce the size of DA-

LUT. In contrast the operation of splitting does not reduce the

DA-LUT block, it only allows to match the size of DA-LUT

block to the available LUTs. In fact the splitting operation

makes the decomposed block even greater because the total

size of obtained sub-blocks is greater than input block and

the decomposition process introduces additional adder. The

presented model does not include the splitting process, thus it

is not presented in details.

Recursive and alternating use of these operations allows for

decomposing the DA-LUT block into sub-blocks, that have

the desired number of inputs and outputs. This allows the

adjustment of the parameters of the sub-blocks to the size

of LUTs corresponding to the available resources of FPGA.

The architecture of FIR filters designed for purposes of

modified distributed arithmetic method was presented in de-

tails in [12]. The main modules of the parallel filter structure

are tapped delay line, optional preadders, transposition, DA-

LUTs and final adder tree. For the purpose of described model

the most important part is DA-LUT structure, depicted in

Fig. 1. The DA-LUT block contains the sub-blocks that are

result of aforementioned arithmetic decomposition process and

the adder tree. The advantage of such organization of the

module is single layer of look-up tables which outputs are

added up in a single adder tree.

338 M. STAWORKO, M. RAWSKI

LUT
A
L
M

A
L
M

A
L
M

A
L
M

LUT

DA-LUT

LUT

LUT

LUT

+

+

+

Fig. 1. Structure of DA-LUT module.

C. Technology Mapping

Filters designed according to modified distributed arithmetic

method contain three generic types of elements: registers,

adders and LUTs. Delay tapped line registers and pipeline

register are implemented directly in programmable fabric

flip-flops. Adders are implemented with dedicated arithmetic

circuits located in logic cells. Dual and ternary adders are

implemented in Altera Stratix III FPGA soft-fabric using

arithmetic and shared arithmetic logic-cell modes respectively.

One ALM is able to fit two dual or ternary adders. Both types

of adders operate at the same speed. In Xilinx Viretx-5 and

6 FPGAs the dual adders are made directly using carry select

adder, to make ternary adder the function generators has to be

configured as 3x2 compressors. One slice may fit up to four

dual or ternary adders. In contrast to Altera solutions, Xilinx’s

dual adders operates on higher frequencies than ternary. The

disproportion between operating speed of dual and ternary

adder became smaller in Virtex-6 comparing to Virtex-5. In

both Virtex and Stratix families the summing results may be

stored in registers, that are placed directly after adder circuit

in the same logic cell.

LUTs may be implemented in two ways: using the em-

bedded block memories or logic cells. Block memories have

output’s bit-width up to 72 bits. It allows to directly map the

contents of LUT or its part, after performing split operation.

Memories have embedded address line registers, which does

not allow to implement combinatorial LUTs. In Stratix III, as

well as in Virtex-5 and 6 to achieve full operating frequency

the output data register is required. This requirement intro-

duces additional delay cycles. Thus using memory blocks as

large LUTs with full operating frequency introduces two clock

cycles delay.

Less intuitive is the mapping of LUT in logic cells, which

has maximum two outputs. The problem of small number of

outputs is solved by mapping the subsequent bit-planes of LUT

into seperate logic cells. Thereby cells are organized in group

and share the same inputs, but each cell implements different

logic function. For this reason it is impossible in Stratix III

architecture to use the configuration 6×2, which requires the

use of cells that have common truth table. The outputs from

the logic cells may be directly connected to the register, which

is placed in the same ALM or slice, in exception of Virtex-5

and configuration 5×2, because this architecture is built from

slices containing four logic function generators, and only four

registers. This problem does not exist in Virtex-6 where each

TABLE III
HETEROGENEOUS STRATIX III COMPONTNES DIE AREA RATIOS [23]

component die area ratio

ALM 1

M9K 28,7

M144K 267

slice contains eight registers. Also the extended mode of logic

cell in Stratix III supporting 7×1 configuration is capable to

fit only subset of 7-inputs 1-output logic functions.

The cost of mapping a DA-LUT into logic cells and

embedded memory blocks may be considered in terms of

different criteria. To achieve maximal operational frequency

the embedded memory blocks introduce two delay cycles

while logic cells introduce only one. Mapping DA-LUT into

embedded memory blocks has bigger impact on routing,

because memory blocks are located only in particular areas of

the FPGA die. The comparison of ratios between ALM and

particular embedded memory blocks die area in Stratix III

is shown in Tab. III. Similar comparison for Xilinx devices

is not available, because the vendor does not publish this

information. The area estimation, based on the analysis of

Virtex-II die picture may be found in [35], but it is useless

for presented here considerations since Virtex-5 and Virtex-

6 have significantly different logic cell structure. The use of

embedded memory blocks as LUT instead of logic cells may

become priceless, when implementation requires the use of

logic cells for other purposes.

III. PROPOSED MODEL OF DA-LUT DECOMPOSITION

Determination of technology mapping enables to develop

simple model of uniform decomposition of DA-LUT block.

The uniform decomposition means that only one type of logic

cell is used. It is also assumed that the decomposed DA-LUT

block coefficients has the same bit width q and DA-LUT

block architecture after decomposition process has structure

shown schematically in Fig. 1. The proposed model allows

to easily estimate the FPGA resources needed to fit DA-LUT

after decomposition.

When applying grouping operation the number of coeffi-

cients groups is:

L =

⌈

N

K

⌉

, (6)

where N stands for the number of input coefficients (DA-

LUT block inputs) and K is the number of group’s elements

(number of destination logic cell inputs). The number of guard

bits qg to ensure that K coefficients may be stored in K- inputs

LUT is:

qg = ⌈log
2
K⌉ . (7)

Each group of coefficients is summed in a tree com-

posed from s-operands adders (in Stratix III, Virtex-5 and 6

s ∈ {2, 3}). The number of adder tree level is:

TL = ⌈logs L⌉ , (8)

and the number of adder tree elements is

Ts =

Tl
∑

l=1

⌈

L

sl

⌉

. (9)

MODELING THE ARITHMETIC DECOMPOSITION OF DA-LUT BLOCK FOR HETEROGENEOUS FPGA STRUCTURES 339

The total number of guard-bits in adder tree is given by the

expression:

qt =

Tl
∑

l=1

(

⌈

log
2
(sl)

⌉

⌈

L

sl

⌉)

(10)

where the first term is the number of guard bits introduced on

each tree level and the second term is the number of elements

on each tree level. The total number of used logic cell in

grouping operation is given by:

LC = L

⌈

q + qg

Lout

⌉

+

⌈

Ts (q + qg) + qt

Louts

⌉

, (11)

where the first term is the number of logic cells that is used

for mapping the DA-LUT sub-block, while the second term

shows the number of logic cells used for adder tree, Lout

is the number of outputs of logic cells used to fit DA-LUT

sub-blocks and Louts stands for the number of adder outputs

mapped into single logic cell.

IV. SIMULATION RESULTS

The results presented in this section are the evaluation of the

model (11) for parameters corresponding to cell configuration

of Startix III and Virtex family FPGA devices presented in

Tab. I and Tab. II and technology mapping described in section

II-C.

Figure 2 presents the results of estimation of the resources

required to fit DA-LUT block after arithmetic decomposition

into various logic cells available in Stratix III FPGA, depend-

ing on the number of coefficients, coefficients bit width and

using ternary adder tree. It may be noticed that for small

coefficients bit widths the best choice is to fit them into 4×2

cells. This is due to the rounding toward positive infinity while

computing the value of qg (7). For LUTs with four inputs, only

two guard bits are needed, while using five inputs LUTs three

guard bits are necessary, hence the mapping into 4×2 cells

requires smaller number of FPGA resources. This is a special

case, which is not valid for cases, when coefficients bit width

becomes greater than four. For certain ranges of the number of

decomposed DA-LUT block inputs, due to the smaller number

of adders in the adder tree, the mapping using 7×1 cells

gives minor saving comparing to 5×2. The obtained results

from presented model show that in general the best results of

decomposition process in Stratix III architecture is obtained

while mapping LUTs into 5×2 logic cells.

Figure 3 shows the estimation of utilized resources in

Stratix III device after decomposition of DA-LUT block using

5×2 logic cells and embedded memory blocks. The ratio of die

area of M9K and M144K to the area of ALM was computed

according to values presented in Tab. III. It can be clearly

seen, that decomposition of DA-LUT block using M144K

memory gives poor results comparing to M9K and logic cells.

The only memory configuration, which usage may give better

decomposition results than logic cells is 8×36 M9K. It allows

to save up to 15% of device resources comparing to logic

cells while mapping the coefficients which bit-width is smaller

than the memory depth. Figure 3c presents the case where

the coefficients bit width is greater than 8×36 M9K memory

depth. The presented model does not consider the application

of splitting operation in decomposition process, while the use

TABLE IV
THE ORDER OF STRATIX III EMBEDDED MEMORY CONFIGURATIONS

CONSIDERING THE QUALITY OF MAPPING DA-LUT BLOCK IN

ARITHMETIC DECOMPOSITION PROCESS

type configuration

1 M9K 8 × 36

2 M9K 8 × 32

3 M9K 9 × 18

4 M9K 9 × 16

5 M9K 10 × 9

6 M9K 10 × 8

7 M144K 11 × 72

8 M144K 11 × 64

9 M9K 11 × 4

10 M144K 12 × 36

11 M144K 12 × 32

12 M9K 12 × 2

13 M144K 13 × 18

14 M144K 13 × 16

15 M9K 13 × 1

16 M144K 14 × 9

17 M144K 14 × 8

of this operation would allow for more efficient utilization

of memory blocks. Wider configurations of memory do not

allow more efficient mapping of the sub-blocks of DA-LUT

because the size of the sub-block exponentially grows with

the number of inputs. The model analysis allows to rank

the memory configurations in terms of area utilized by the

DA-LUT block after the decomposition process. The order of

memory configuration is presented in Tab. IV

Figure 4 presents the analysis results of the arithmetic de-

composition of DA-LUT block using dual adder tree and logic

cells in Viretx-5 or Virtex-6 FPGA. Under the assumption that

the length of the critical path is limited to a single level of

combinatorial logic, the natural choice for mapping the DA-

LUT block in Virtex-5 is 6×1 configuration of logic cell,

because the Virtex-5 slice architecture has only one register

available per function generator output. In Virtex-6 devices,

where slice includes additional four flip-flops and every func-

tion generator output may be registered, the choice that allows

to decompose the DA-LUT to the smallest number of resources

is using 5×2 LUT configuration. Additionally using 5×2 gives

better results, when using ternary adder tree. Straightforward

analysis of DA-LUT decomposition results utilizing embedded

memory in Xilinx devices is impossible, because there is no

information about the area ratio of building blocks for these

FPGAs, like it was presented for Altera devices. The analogy

to results of decomposition process obtained for Stratix III

device suggests, that using embedded memory blocks in Virtex

family devices may be similarly inefficient. Additionally the

smallest embedded memory blocks in Virtex devices are twice

as large as Stratix III M9K, which also suggests, that this

type of mapping may give worse results than using only logic

cells. Table V shows the arrangement of embedded memory

blocks in Virtex FPGA family due to expected quality of

decomposition results of DA-LUT block.

Figures 5a and 5b present the qualitative comparison of DA-

LUT block decomposition results depending on the number

of filter coefficients and the coefficients bit width in Altera

Stratix III and Virtex family FPGA. Both for Stratix and

Virtex architecture 5×2 logic cell configuration provides the

340 M. STAWORKO, M. RAWSKI

a)

0 20 40 60 80 100 120
0

50

100

150

200

number of coefficients

n
u
m

b
er

 o
f

A
L

M
s

ALM4x2

ALM5x2

ALM6x1

ALM7x1

b)

0 20 40 60 80 100 120
0

100

200

300

400

500

number of coefficients

n
u
m

b
er

 o
f

A
L

M
s

ALM4x2

ALM5x2

ALM6x1

ALM7x1

c)

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

number of coefficients

n
u
m

b
er

 o
f

A
L

M
s

ALM4x2

ALM5x2

ALM6x1

ALM7x1

Fig. 2. The estimation of utilized Stratix III FPGA resources after decom-
position of DA-LUT block using ternary adders, depending on number of
coefficients, and type of logic cells, for various coefficients bit width a) 4 bits
b) 16 bits c) 40 bits.

a)

0 20 40 60 80 100 120
0

100

200

300

400

500

600

number of coefficients

n
u
m

b
er

 o
f

A
L

M
s

ALM5x2

M9K11x4

M9K10x9

M9K8x36

M144K14x9

M144K12x36

b)

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

number of coefficients

n
u
m

b
er

 o
f

A
L

M
s

ALM5x2

M9K11x4

M9K10x9

M9K8x36

M144K14x9

M144K12x36

c)

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

number of coefficients

n
u
m

b
er

 o
f

A
L

M
s

ALM5x2

M9K11x4

M9K10x9

M9K8x36

M144K14x9

M144K12x36

Fig. 3. The estimation of utilized Stratix III FPGA resources after decompo-
sition of DA-LUT block using ternary adders, including embedded memory
blocks, depending on number of coefficients, and type of logic cells, for
various coefficients bit width a) 4 bits b) 16 bits c) 40 bits.

MODELING THE ARITHMETIC DECOMPOSITION OF DA-LUT BLOCK FOR HETEROGENEOUS FPGA STRUCTURES 341

a)

0 20 40 60 80 100 120

10

20

30

40

50

60

70

80

90

number of coefficients

n
u
m

b
er

 o
f

sl
ic

es

5x2

6x1

7x1

8x1

b)

0 20 40 60 80 100 120

50

100

150

200

number of coefficients

n
u
m

b
er

 o
f

sl
ic

es

5x2

6x1

7x1

8x1

c)

0 20 40 60 80 100 120

100

200

300

400

500

number of coefficients

n
u
m

b
er

 o
f

sl
ic

es

5x2

6x1

7x1

8x1

Fig. 4. The estimation of utilized Xilinx Virtex-5 and Virtex-6 FPGA
resources after decomposition of DA-LUT block using dual adders, depending
on number of coefficients, and type of logic cells, for various coefficients bit
width a) 4 bits b) 16 bits c) 40 bits .

TABLE V
THE ORDER OF VIRTEX-5 AND VIRTEX-6 EMBEDDED MEMORY

CONFIGURATIONS CONSIDERING THE QUALITY OF MAPPING DA-LUT
BLOCK IN ARITHMETIC DECOMPOSITION PROCESS

type configuration

1 18K 9 × 36

2 36K 9 × 72

3 18K 10 × 18

4 36K 10 × 36

5 36K 11 × 9

6 18K 11 × 18

7 18K 12 × 9

8 36K 12 × 4

9 18K 13 × 2

10 36K 13 × 4

11 18K 14 × 1

12 36K 14 × 2

13 36K 15 × 1

a)

number of coefficients

co
ef

fi
ci

en
ts

‘
b
it

 w
id

th

← M9K8x36

← LUT7x1

← LUT4x2

 LUT5x2

100 200 300 400 500 600
8

16

24

32

40

48

56

64

b)

number of coefficients

co
ef

fi
ci

en
ts

‘
b
it

 w
id

th

 ← LUT6x1 LUT5x2

100 200 300 400 500 600
8

16

24

32

40

48

56

64

Fig. 5. Qualitative comparison of decomposition using ternary adders,
depending on the number of coefficients and coefficients bit width a) Altera
Stratix III b) Xilinx Virtex-5 and -6.

342 M. STAWORKO, M. RAWSKI

a)

0 100 200 300 400 500 600
0.25

0.3

0.35

0.4

0.45

0.5

number of coefficients

ad
d
er

 t
re

e
to

 t
o
ta

l
D

A
−

L
U

T
 a

re
a

ra
ti

o

min

max

average

b)

0 10 20 30 40
0.25

0.3

0.35

0.4

0.45

0.5

coefficients‘ bit width

ad
d
er

 t
re

e
to

 t
o
ta

l
D

A
−

L
U

T
 a

re
a

ra
ti

o

min

max

average

Fig. 6. The ratio of FPGA resources used for adder tree to DA-LUT after
arithmetic decomposition in Startix III using 5×2 logic cells configuration
and ternary adder tree.

best results in the decomposition process. For some ranges of

coefficient number, grouping in larger clusters, which gives

smaller number of adders in adder tree, may give minor

advances. Embedded memory blocks M9K in Stratix III allow

to map efficiently coefficients with large bit widths. For Xilinx

devices, due to lack of data it was not possible to compare

the decomposition results that include embedded memory

mapping.

Figure 6 shows the ratio of FPGA resources utilized by

the adder tree to the whole DA-LUT block. The presented

results were obtained with the decomposition process into 5×2

logic cells and using ternary adder tree in Stratix III device.

Figure 7 shows similar data for Virtex-5 and decomposition

using 6×1 logic cells and dual adder tree. In Altera Stratix III

devices the adder tree is in average 40% of the DA-LUT

block. When using dual adders as presented on example of

Virtex-5 the adder tree stands for up to 74% of the DA-

LUT block resources. In Virtex family, when using ternary

adder tree and 5×2 logic cells the adder tree consumes 50%

of the DA-LUT block. The different ratios of ternary tree

to whole DA-LUT block between Altera and Virtex FPGAs

comes from the different architecture of logic cells. Stratix III

logic cell implements two ternary adders, and Virtex-5 or

Virtex-6 function generator paired with carry chain implements

a)

0 100 200 300 400 500 600
0.5

0.55

0.6

0.65

0.7

0.75

number of coefficients

ad
d
er

 t
re

e
to

 t
o
ta

l
D

A
−

L
U

T
 a

re
a

ra
ti

o

min

max

average

b)

0 10 20 30 40
0.5

0.55

0.6

0.65

0.7

0.75

coefficients‘ bit width

ad
d
er

 t
re

e
to

 t
o
ta

l
D

A
−

L
U

T
 a

re
a

ra
ti

o

min

max

average

Fig. 7. The ratio of FPGA resources used for adder tree to DA-LUT after
arithmetic decomposition in Virtex-5 using 6×1 logic cells configuration and
dual adder tree.

only one ternary adder, one slice may implement four ternary

adders, hence Stratix III implements two times more adders

per logic cell than Virtex family FPGAs.

Figures 6a and 7a present contribution of adder tree in whole

DA-LUT resources depending on the number of coefficients.

Spikes and dips of adder tree structure contribution in DA-

LUT block resources depending on the number of coefficients

are caused by including new tree levels and introducing more

than one adder to the structure. The best adder tree utilization,

thus less DA-LUT block resources part utilized by adders, is

when all inputs of all bottom layer adders are used. The lowest

adder tree to DA-LUT resources ratio is, when the number of

lowest level nodes inputs are 3n and 2n for ternary and dual

adder tree respectively, where n denotes number of inputs to

the adder tree.

The coefficients bit width does not have significant impact

on the size of contribution of adder tree to the DA-LUT

block utilization as shown in Figs. 6b and 7b. For small

bit widths the contribution of adder tree in DA-LUT block

resources is greater because for large number of tree level the

number guard bits may become larger than the representation

of coefficient.

Presented simulation results show, that the adder tree is

very important part of decomposed DA-LUT block and the

MODELING THE ARITHMETIC DECOMPOSITION OF DA-LUT BLOCK FOR HETEROGENEOUS FPGA STRUCTURES 343

adder tree generation process should be done very precisely.

Especially, when FPGA architecture allows only for imple-

mentation of dual adders the proper generation of adder tree

should be the priority.

V. SUMMARY

The article presented a simple mathematical model, that

allows to estimate the utilization of resources in arithmetic de-

composition process of DA-LUT block. Also the evaluation of

this model is discussed for configurations of FPGA resources

native to Startix III and Virtex-5 and Virtex-6 FPGA. The

basic conclusion of model evaluation for both, Stratix III and

Virtex-5 family is that there exists one particular logic cell

configuration, that in most cases guaranties utilizing minimal

number of resources considering various number of coeffi-

cients and various coefficient bit width. For Stratix III and

Virtex-6 the dominant configuration is 5×2, and for Virtex-5

is 6×1. It was explicitly shown in Stratix III that in terms

of FPGA die area the only memory configuration that may

give better decomposition performance is M9K 8×36. This is

only configuration able to outperform the 5×2 configuration.

The evaluation of proposed model for different memory types

allows to arrange the embedded memory blocks according

to their usefulness in decomposition process. It was also

shown that appropriate implementation of an adder tree plays

important role in structure of decomposed DA-LUT. When

adder tree is composed of dual adders it may utilize up to 75%

resources of DA-LUT block. Thus proper synthesis process of

adder tree is very important for efficient implementation of

DA-LUT block.

REFERENCES

[1] P. Longa, A. Miri, and M. Bolic, “A Flexible Design of Filter-
bank Architectures for Discrete Wavelet Transforms,” in Acoustics,
Speech and Signal Processing, 2007. ICASSP 2007. IEEE Inter-
national Conference on, vol. 3, Apr. 2007, pp. III–1441–III–1444,
DOI: 10.1109/ICASSP.2007.367118.

[2] ——, “Modified distributed arithmetic based architecture for discrete
wavelet transforms,” Electronics Letters, vol. 44, no. 4, pp. 270–271,
2008, DOI: 10.1049/el:20082418.

[3] U. Meyer-Baese, J. Chen, C. H. Chang, and A. Dempster, “A
Comparison of Pipelined RAG-n and DA FPGA-based Multipli-
erless Filters,” in Circuits and Systems, 2006. APCCAS 2006.
IEEE Asia Pacific Conference on, Dec. 2006, pp. 1555–1558,
DOI: 10.1109/APCCAS.2006.342540.

[4] A. Dempster and M. Macleod, “Use of minimum-adder multiplier blocks
in FIR digital filters,” Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on, vol. 42, no. 9, pp. 569–577, Sep.
1995, DOI: 10.1109/82.466647.

[5] M. Martinez-Peiro, J. Valls, T. Sansaloni, A. Pascual, and E. Boemo, “A
comparison between lattice, cascade and direct form FIR filter structures
by using a FPGA bit-serial distributed arithmetic implementation,” in
Electronics, Circuits and Systems, 1999. Proceedings of ICECS ’99.
The 6th IEEE International Conference on, vol. 1, 1999, pp. 241–244,
DOI: 10.1109/ICECS.1999.812268.

[6] H. Yoo and D. Anderson, “Hardware-efficient distributed arithmetic
architecture for high-order digital filters,” in Acoustics, Speech,
and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE In-
ternational Conference on, vol. 5, Mar. 2005, pp. v/125–v/128,
DOI: 10.1109/ICASSP.2005.1416256.

[7] P. Meher, S. Chandrasekaran, and A. Amira, “FPGA Realization of
FIR Filters by Efficient and Flexible Systolization Using Distributed
Arithmetic,” Signal Processing, IEEE Transactions on, vol. 56, no. 7,
pp. 3009–3017, Jul. 2008, DOI: 10.1109/TSP.2007.914926.

[8] T. Sasao, Y. Iguchi, and T. Suzuki, “On LUT cascade realizations of
FIR filters,” in Digital System Design, 2005. Proceedings. 8th Euromicro
Conference on, Sep. 2005, pp. 467–474, DOI: 10.1109/DSD.2005.82.

[9] T. Sasao, “Analysis and synthesis of weighted-sum functions,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 25, no. 5, pp. 789–796, May 2006,
DOI: 10.1109/TCAD.2006.870407.

[10] M. Rawski, P. Tomaszewicz, H. Selvaraj, and T. Łuba, “Efficient
Implementation of Digital Filters with Use of Advanced Synthe-
sis Methods Targeted FPGA Architectures,” in Proceedings of the
8th Euromicro Conference on Digital System Design, ser. DSD ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 460–466,
DOI: 10.1109/DSD.2005.81.

[11] M. Rawski, “Modified Distributed Arithmetic Concept for
Implementations Targeted at Heterogeneous FPGAs,” International
Journal of Electronics and Telecommunications, vol. 56, no. 4,
pp. 345–350, Nov. 2010, DOI: 10.2478/v10177-010-0045-. [Online].
Available: http://versita.metapress.com/content/048788042483024H

[12] M. Staworko and M. Rawski, “Application of Modified Distributed
Arithmetic Concept in FIR Filter Implementations Targeted at Heteroge-
neous FPGAs,” Przegląd Elektrotechniczny (Electrical Review), vol. 88,
no. 6, pp. 240–246, Jun. 2012.

[13] Altera. (2011, May) FIR Compiler User Guide. Altera Corporation.

[14] J. He and J. Rose, “Advantages of heterogeneous logic block ar-
chitecture for FPGAs,” in Custom Integrated Circuits Conference,
1993., Proceedings of the IEEE 1993, May 1993, pp. 7.4.1–7.4.5,
DOI: 10.1109/CICC.1993.590578.

[15] J. Cong and S. Xu, “Delay-optimal technology mapping for FPGAs
with heterogeneous LUTs,” in Design Automation Conference, 1998.
Proceedings, Jun. 1998, pp. 704–707.

[16] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and
Challenges,” Found. Trends Electron. Des. Autom., vol. 2, no. 2, pp.
135–253, Feb. 2008, DOI: 10.1561/1000000005.

[17] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and
ASICs,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 26, no. 2, pp. 203–215, Feb. 2007,
DOI: 10.1109/TCAD.2006.884574.

[18] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: the effect of logic block functionality on
area efficiency,” Solid-State Circuits, IEEE Journal of, vol. 25, no. 5,
pp. 1217–1225, Oct. 1990, DOI: 10.1109/4.62145.

[19] E. Ahmed and J. Rose, “The effect of LUT and cluster size on
deep-submicron FPGA performance and density,” Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 12, no. 3, pp.
288–298, Mar. 2004, DOI: 10.1109/TVLSI.2004.824300.

[20] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman,
D. Galloway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt,
C. McClintock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev,
S. Reddy, J. Schleicher, K. Stevens, R. Yuan, R. Cliff, and J. Rose, “The
Stratix II logic and routing architecture,” in Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate

arrays, ser. FPGA ’05. New York, NY, USA: ACM, 2005, pp. 14–20,
DOI: 10.1145/1046192.1046195.

[21] Altera. (2005, Aug.) Stratix II vs. Virtex-4 Density Comparison. Altera
Corporation.

[22] ——. (2005, Aug.) Stratix II vs. Virtex-4 Performance Comparison.
Altera Corporation.

[23] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. custom cmos
and the impact on processor microarchitecture,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 5–14,
DOI: 10.1145/1950413.1950419.

[24] J. Cong and S. Xu, “Technology mapping for FPGAs with em-
bedded memory blocks,” in Proceedings of the 1998 ACM/SIGDA
sixth international symposium on Field programmable gate arrays,
ser. FPGA ’98. New York, NY, USA: ACM, 1998, pp. 179–188,
DOI: 10.1145/275107.275138.

[25] S. Wilton, “Heterogeneous technology mapping for area reduction in
FPGAs with embedded memory arrays,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 19, no. 1,
pp. 56–68, Jan. 2000, DOI: 10.1109/43.822620.

[26] G. Borowik, T. Łuba, and B. J. Falkowski, “Logic synthesis
method for pattern matching circuits implementation in FPGA
with embedded memories,” in DDECS, 2009, pp. 230–233,
DOI: 10.1109/DDECS.2009.5012135.

[27] G. Borowik, “Improved State Encoding for FSM Implementation in
FPGA Structures with Embedded Memory Blocks,” Electronics and
Telecommunications Quarterly, vol. 54, pp. 9–28, Mar. 2008.

[28] M. Rawski, T. Łuba, and B. J. Falkowski, “Logic synthesis method for
FPGAs with embedded memory blocks,” in ISCAS. IEEE, May 2008,
pp. 2014–2017, DOI: 10.1109/ISCAS.2008.4541842.

344 M. STAWORKO, M. RAWSKI

[29] M. Rawski, G. Borowik, T. Łuba, P. Tomaszewicz, and B. Falkowski,
“Logic synthesis strategy for fpgas with embedded memory blocks,”
in Mixed Design of Integrated Circuits Systems, 2009. MIXDES ’09.
MIXDES-16th International Conference, Jun. 2009, pp. 296–301.

[30] Altera, “Stratix III Device Handbook,” Altera Corporation, Mar. 2011.
[31] Xilinx, “Virtex-5 FPGA User Guide,” Xilinx Inc., p. 385, Mar. 2012.
[32] ——, “Virtex-6 FPGA Configurable Logic Block User Guide,” Xilinx

Inc., p. 385, Mar. 2012.
[33] ——, “Virtex-6 FPGA Memory Resources User Guide,” Xilinx Inc., p.

385, Apr. 2011.

[34] U. Meyer-Baese, Digital Signal Processing with Field Programmable

Gate Arrays, 3rd ed. Springer Publishing Company, Incorporated, 2007.
[35] M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S. Hemmert,

“Embedded floating-point units in FPGAs,” in Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable gate

arrays, ser. FPGA ’06. New York, NY, USA: ACM, 2006, pp. 12–20,
DOI: 10.1145/1117201.1117204.

