
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 4, PP. 411–418
Manuscript received October 31, 2012; revised Decemer, 2012. DOI: 10.2478/v10177-012-0056-9

The Problems of Transition Predicates Construction
in Hierarchical Concurrent Controllers

Grzegorz Łabiak

Abstract—The paper presents a problem of a transition
predicates construction in hierarchical concurrent state oriented
notation. The notation, called statechart diagrams or state
machine, serves as a very convenient formalism for specification
of a complex behavior of the embedded systems control unit.
The controller specified in this way is discrete, deterministic and
synchronous system which operates on binary values and can
be implemented in programmable devices as a digital circuit.
Well designed controller has conflict-free transitions and its
concurrent transitions should be independent. In order to meet
this requirements transition predicates must be pairwise both
orthogonal and non-implicative. Computational complexities of
the problems is equal to classic clique problem. The paper
also suggests some statecharts syntactic structures solving these
problems.

Keywords—Binary control system, statechart diagrams, hier-
archy, concurrency, conflicting transitions, Boolean predicates,
computational complexity, compatibility classes, clique problem.

I. INTRODUCTION

MOST today’s embedded real-time systems, e.g. tele-
phone, automotive or operating systems are reactive

systems. This means that these systems permanently interact
with external prompts at pace determined by the environment.
They immediately react to the event coming from outside
world through generated events. The nature of these systems
is quite different than traditional transformational systems,
where data output are prepared after some period of time
spent on computations. Also different are design methods of
these systems; while transformational systems are designed
by both imperative and predicative languages, in general,
behavior of reactive systems are described by state-oriented
methodologies. They bear strong resemblance to traditional
controllers and like ordinary controllers they can be treated
(see Fig. 1). There can be pointed out three design paradigms
of reactive systems: sequentiality, concurrency and hierarchy.
These three paradigms are formalized in well known models
[1]: Finite State Machines (FSM), Petri nets (also called CFSM
– Concurrent FSM) and statecharts (also called Hierarchical
CFSM or in UML terminology called state machines [2]). Usu-
ally controller generates signals to the controlled object (and
controlled object responds to controller, Fig. 1) or menages the
data transformation in the data path [3]. If controller operates
on binary values it is called binary controller and such a binary
controller can easily be implemented in programmable devices
as a digital circuit.

G. Łabiak is with Computer Engineering & Electronics Department, Uni-
versity of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland (e-mail:
G.Labiak@iie.uz.zgora.pl).

Binary

controller

Controlled

object

Control

signals

Operator’s

signals

Signalling

output

Object

state

signals

Fig. 1. Binary control system.

II. SYNTAX AND SEMANTICS OF HCFSM

Hierarchical concurrent controllers is a controller whose
behavior, in principle, can be described in terms of states,
concurrency and hierarchy (for example, see Fig. 2). The
inventor of this notations, David Harel, called them „State-
chart: A Visual Formalism for Complex System” and described
them as follows: state + concurrency + hierarchy + broadcast
mechanism [4]. The states represent local activities of the
system, concurrency means that many states can be active
at the same time, and the hierarchy feature allows to assign
one superstate many substates. The hierarchy yields hierarchy
tree where abstract behaviors are described in terms of more
detailed and specialized subbehaviors (see Fig. 3). Broadcast
mechanism is a kind of feedback, it means that event generated
in one part of the system can affect behavior of the other part
of the system. Hierarchy tree is a slightly modified Jackson’s
diagram [3] where nodes are states (simple, compound and
regions), arcs means sequential relationship between states and
double arcs means concurrency relationship.

Figure 2 describes behavior of the controller which con-
trols some chemical process [5]. The process consists of
measuring out two substrates (superstate Filling) and mixing
them together in water environment for given period of time
(superstate Process). Superstate Initiating is responsible for
preparation of the chemical plant.

III. SYTHESIS OF HCFSM

The issue of hardware synthesis of statecharts is not solved
ultimately. There are many implementation schemes depended
on target technology. First, published in [6], consists transfor-
mation of the statechart into the set of hierarchically linked
FSMs traditionally implemented. In [7], a special encoding of
the statechart configurations targeted at PLA structures is pre-
sented. The drawback of this method is that diagram expresses
transitions between simple states only. In [8], Drusinsky en-
hanced the coding scheme by introducing a prefix-encoding.

412 G. ŁABIAK

MCFill8
do / V1, P

Excess

of Foam9

StopM10

t7: Nlim

t9: !Nlim

SC1Fill11

do / V2

Stop112

H H

SC2Fill13

do / V4

Stop214

H

Filling3

t5: AU

t15: REP*!AU

Pouring17

do / C1, C2, V1, V2

t19: FT1 / {TM2}

Emptying18

do / V6

Reaction15

do / M

ProcessTermination16

do / V6

Process5

t18: FT2

MCEmpt6
do / EV

t3: Nmin

IngEmptying7

do / AC1,AC2

t4: FT1

Initiating2

Start1

t2: AUT*!AUt16: AUT*Nmin
t6: Nmax*B1*B2 /

{TM1}

t1: REP*!AU / {TM1}

t17: AU

R
e

s
ta

rt
4

t8: Nmax

t10: !Nmax

t11: B1
t12: !B1

t13: B2

t14: !B2

Fig. 2. The example of the reactor’s controller.

However, the common drawbacks of the presented methods
is the lack of support for history attributes and broadcast
mechanism. Other implementation methods using HDL and
based on ASIP are presented in [9] and [10], respectively.

To synthesis HSFSM-based logic controller it is necessary
to define precisely its behavior in terms of logic values. In
Fig. 4 a simply diagram and its waveform illustrate the main
dynamic features. Logic value 1 means activity of a state
or presence of an event, and value 0 means their absence.
When transition t1 is fired (T = 350) event t1 is broadcast and
becomes available to the system at next instant of discrete
time (T = 450). The activity moves from state START to
state ACTION, where entry action (keyword entry) and do-
activity (ongoing activity, keyword do) are performed (events
entr and d are broadcast). Now, transition t2 becomes enabled.
Its source state is active and predicate imposed on it (event t1)
is met. So, at the instant of time T = 450, the system transforms
activity to the state STOP, performs exit action (keyword exit,
event ext) and triggers event t2, which do not affect any other
transition. The step is finished.

Summarizing, dynamic characteristics of hardware imple-
mentation are as follows:
• system is synchronous,
• system reacts to the set of available events through

transition executions,
• generated events are accessible to the system during next

tick of the clock.
The main assumption of a hardware implementation of

HCFSM is that the systems specified in this way can directly
be mapped into programmable logic devices. This means that
elements from a diagram (e.g. states or events) are in direct
correspondence with resources available in a programmable
devices — mainly flip-flops and programmable combinatorial

logic. Basing on that assumption and taking into account
assumed dynamic characteristics, following foundations of
hardware implementation can be formulated [11]:
• each state is assigned one flip-flop,
• each event is also assigned one flip-flop,
• based on diagram topography and rules of transition

executions, excitation functions are created for each flip-
flop in a circuit.

Farther statechart diagrams synthesis description is mainly
revolving around specification of flip-flop excitation functions
of two type: state flip-flops and event flip-flops. Presented
therein the idea of hardware synthesis has been successfully
implemented in Author’s system called HiCoS [12].

a)

t1: i / {t1}
ACTION

entry / entr

do / d

exit / ext

START STOP
t2: t1 / {t2}

b)

Fig. 4. Simple diagram (a) and its waveform (b).

THE PROBLEMS OF TRANSITION PREDICATES CONSTRUCTION IN HIERARCHICAL CONCURRENT CONTROLLERS 413

s18s17

s15

t7
s16s9s8 s10 s11 s12 s13 s14s6 s7

r8-10 r11,12 r13,14r6,e r7,e

s3s2 s5s4s1

root

t8

t9 t10 t11 t12 t13 t14 t18

t19

t3 t4

t1 t2

t5

t6 t15

t16

t17

Fig. 3. Hierarchy tree of the reactor.

IV. WELL DESIGNED HCFSM
In HCFSM behavior is described mainly by states and

transitions. Transition means changing activity in the controller
and is executed when the start state is active and logic pred-
icate imposed on it is fulfilled. Logic predicate is a Boolean
expression composed of variables which correspond to events.
Apart from dynamic properties like liveness and safeness,
well designed HCFSM controller should have conflict-free
transitions and concurrent transitions should be really inde-
pendent [13]. The former feature is assured through predicate
orthogonality between potentially conflicting transitions and
the latter through non-implicativity relation between concur-
rent transitions.

A. Transition Orthogonality

Two transitions are in conflict if there is some common state
that would be exited if any one of them were to be fired [14].
In distinction from FSM and Petri nets statecharts conflicting
transitions can be grouped into three categories:

a) horizontal,
b) vertical,
c) mixed.
The first case (a) takes place when the transitions in conflict

are on the same level of hierarchy tree. In Fig. 5 horizontally
conflicting transitions are t2 and t3 and the common state is
s3. The second case (b) holds when conflicting transitions are
located on different levels of hierarchy tree. In Fig. 5 vertically
conflicting transitions are transitions t1 and t2 and also t1
and t3, whereas the common state is again s3. The case of
transition t1, t2 and t3 from Fig. 5 at the same time combines
features horizontally and vertically conflicting transitions, so
the conflict of those three is of mixed type at once.

In HCFSM controllers transitions potentially being in con-
flict form a set of structurally inconsistent transitions.

Definition 1: Two transitions t1 and t2 are structurally
inconsistent if out(t1) ∈ hrc∗(out(t2)) or out(t2) ∈
hrc∗(out(t1)). The set of transitions T is structurally incon-
sistent if every pair of transitions t1, t2 ∈ T is structurally
inconsistent. A set of transitions T is maximally inconsistent
(TImax

) if for every transition t ∈ Tz \ T (Tz is a set of all

s2

s5

s3

s4

s1

t2

t3

t1
s3 s4 s5

s1 s2

b)a)

root

t2

t1

t3

Fig. 5. Potentially conflicting transitions: a) diagram b) hierarchy tree.

transitions in the HCFSM), the set T ∪ {t} is consistent (not
inconsistent).

The function out(t) gives beginning states of a transition t,
e.g. out(t2) = s3. The function hrc∗(s) gives a set of states
which are hierarchically subordinate to s including s, e.g.
hrc∗(s1) = {s1, s3, s4, s5}. For HCFSM controllers to work
correctly the maximal inconsistent sets of transitions must have
predicates pairwise orthogonal (in the context of global state
[15]), i.e. the transitions predicates form maximal compatibility
classes, where compatibility means orthogonality relation (e.g.
TImax3

= {t1, t2, t3}). (The index of the set TImax3
is 3

because potentially conflicting transitions stem from the states
which on hierarchy tree (Fig. 5b) belong to the path leading
from the root to the leaf state s3.) For example for the diagram
from Fig. 5 predicates imposed on transitions could be as
follows:

t1 = a ∗ b ∗ c (1)
t2 = b ∗ a ∗ c (2)
t3 = c ∗ a ∗ b (3)

Then the set TImax3
is maximally inconsistent and the predi-

cates of the transitions of TImax3
are pairwise orthogonal:

t1 ∗ t2 = (a ∗ b ∗ c) ∗ (b ∗ a ∗ c) = 0 (4)
t1 ∗ t3 = (a ∗ b ∗ c) ∗ (c ∗ a ∗ b) = 0 (5)
t2 ∗ t3 = (b ∗ a ∗ c) ∗ (c ∗ a ∗ b) = 0 (6)

and hence the diagram is conflict-free.
Formally, the condition for pairwise transition orthogonality

of the HCFSM is defined as follows:

414 G. ŁABIAK

Definition 2: The HCFSM is transition-conflict-free when
following condition is satisfied:∧

TImax⊆Tz︸ ︷︷ ︸
a

∧
tj ,tk∈TImax︸ ︷︷ ︸

b

χz ∗ tk ∗ tj = 0︸ ︷︷ ︸
c

(7)

where tj and tk represent predicates of respective transitions,
j 6= k and χz is a characteristic function of the set of global
states.

When broadcasting mechanism is not applied (and some
other syntactics features) the context of global states (χz) can
be left out, as it is shown in the example.

B. Transition Non-Implicativity

In case of HCFSM implemented as a digital synchronous
automaton two concurrent transitions can potentially fire at the
same time and on the other hand they should be independent of
each other. The dependencies between two transitions can lead
to unintended changes in the controller and to the semantic
inconsistencies between controller and controlled object in
control system [13] (the state of the controller does not mirror
the state of the object, see Fig. 1).

For example transitions in Fig. 6 could have following
orthogonal transitions (TImax3

= {t1, t2}, TImax5
= {t1, t3},

TImax6
= {t1, t4}):

t1 = a, (8)
t2 = b ∗ a (9)
t3 = c ∗ a (10)
t4 = a (11)

In this diagram firing transition t2 always entails firing tran-
sition t4 (provided that its start state s6 is active). This
implicativity relation between the two transitions stem from
the fact that predicates imposed on those two transitions are
in implication relation, i.e. satisfying predicate imposed on
transition t2 always makes that predicate imposed on transition
t4 is also satisfied (t2 → t4).

s3

s6s4

s5

s1

t1

s2
b)a)

s2

t2 t3

s3 s4 s5 s6

r3,4 r5,6

t2

t1

t3

s1

root

t4

t4

Fig. 6. Dependent concurrent transitions: a) diagram b) hierarchy tree.

In HCFSM concurrent transitions, which can potentially be
in implicativity relation, form a set of structurally consistent
transitions.

Definition 3: [16] Two transitions t1 and t2 are structurally
consistent if type(lca({out(t1), out(t2)})) = AND. The set

of transitions T is structurally consistent if every pair of
transitions t1, t2 ∈ T is structurally consistent. A set of
transitions T is maximally consistent (TCmax

) if for every
transition t ∈ Tz \ T , the set T ∪ {t} is not consistent
(inconsistent).

The function lca(S), called lowest common ancestor, gives
a state s which for the set of state S hierarchically covers states
belonging to S and there is no other state which covers states
from S and is lower in hierarchy then s, e.g. lca(s3, s5) = s1.
The function type(s) gives type of the compound state s, i.e. if
directly subordinate states are in concurrent relationship then
the type is AND, otherwise is OR, e.g. type(s1) = AND.
For the diagram from Fig. 6 there are two maximal consistent
sets of transitions: TCmax1

= {t2, t3}, TCmax2
= {t2, t4}.

To eliminate potential semantics inconsistencies transitions
predicates belonging to different maximal consistent sets must
be pairwise non-implicative, i.e. they form maximal compat-
ibility classes, where compatibility means non-implicativity
relationship.

General condition for non-implicative maximal consistent
set of transitions is as follows:

Definition 4: The HCFSM has non-implicative transitions
when the following condition is satisfied:∧

TCmax⊆Tz︸ ︷︷ ︸
a

∧
tj ,tk∈TCmax︸ ︷︷ ︸

b

χz 6|= tj → tk and χz 6|= tk → tj︸ ︷︷ ︸
c

(12)
where tj and tk represent predicates of respective transitions,
j 6= k and χz is a characteristic function of the set of global
states.

When broadcasting mechanism is not applied (and some
other syntactics features) the context of global states (χz) can
be left out and calculations can be executed according to the
simplified formula:∧

TCmax⊆Tz

∧
tj ,tk∈TCmax

tj → tk 6= 1 and tk → tj 6= 1 (13)

For the given predicates (see equations 9, 10 and 11) their
non-implication relationship can be expressed as follows:
TCmax1

= {t2, t3} = {t2 : b ∗ a, t3 : c ∗ a}

t2 → t3 = b ∗ a→ c ∗ a = b+ a+ c ∗ a 6= 1 (14)
t3 → t2 = c ∗ a→ b ∗ a = c+ a+ b ∗ a 6= 1 (15)

and TCmax2
= {t2, t4} = {t4 : a, t2 : b ∗ a}

t2 → t4 = b ∗ a→ a = b+ a+ a = 1 (16)
t4 → t2 = a→ b ∗ a = a+ b ∗ a 6= 1 (17)

Because transition t2 implies transition t4 (t2 → t4, see eq. 16)
the control system with the controller from Fig. 6 can be
semantically inconsistent. Changing predicate t4 for a∗b would
remedy this flaw.

Although implicativity formally is correct it breaks modular
paradigm.

THE PROBLEMS OF TRANSITION PREDICATES CONSTRUCTION IN HIERARCHICAL CONCURRENT CONTROLLERS 415

t5 t6

t8

t13

t12

t14

t10

t9

t11

t7

t16

t18

t17

t2

t4

t3

t19

t1

t15

Fig. 7. Orthogonality graph of potentially conflicting transitions.

t5

t6

t14t13

t12

t8 t10t7

t11

t9

t16 t18t17

t2

t4

t3

t19

t1

t15

Fig. 8. Non-implicativity graph of concurrent transitions.

V. PREDICATES CONSTRUCTION COMPLEXITIES

The main role of formal Hardware Description Languages
(HDL) is to provide possibilities to exchange information
between designer and Computer Aided Design systems (CAD).
Statechart diagrams also serve as a language for controllers
behavior description and at same time as a entry format for
CAD systems [12], [17]. The problem of transition predicates
construction, as a part of statecharts notation, lies on both
computer side and human nature side. From computer point
of view the problem comes down to regular computational
complexity of the two conditions (definitions 2 and 4). From
designer angle the difficulties lie in the fact that propositions
of the predicates must be prepared manually. CAD system
can only answer the question whether the two conditions
are satisfied. Of course, the designer’s difficulties are due to
computational complexity nature of the problem.

For well designed HCFSM controller definitions 2 and 4
formulate conditions which must be satisfied. Part c of these
conditions is a decision problem and presents exponential
complexity in terms of number of variables in transition
predicates (2n where n is a number of variables). Checking
this part (c) is iteratively executed for transition predicates
of different pairs and number of iterations depends on two
factors:

a) number of maximal inconsistent set of transitions (TImax
,

definition 2 part a) or number of maximal consistent set
of transitions (TCmax

, definition 4 part a),

b) number of transition pairs in maximal inconsistent set of
transitions (definition 2 part b) or in maximal consistent
set of transitions (definition 4 part b).

The maximal sets of inconsistent and consistent transitions
form maximal compatible classes, where compatibility relation
is, respectively, orthogonality and non-implicativity. It is well
known fact, that compatibility relation can be represented by
means of graph called compatibility graph (see Appendix),
where vertices correspond to transitions and edges correspond
to relations between transitions (i.e. orthogonality and non-
implicativity relations, for example see Figs. 7 and 8). Then
maximal consistent and inconsistent sets form maximal cliques
and the problem of number of maximal consistent/inconsistent
sets comes down to the clique problem – the maximal number
of cliques possible in a graph with m nodes. In [18] has been
proved that any m-vertex graph has at most 3m/3 cliques, so
the number of cliques can grow exponentially and hence the
number of proper maximal sets.

The number of transition pairs in respective maximal sets
(part b of the definitions) can be calculated according to simple
formula m∗(m−1)

2 , where m is the number of transitions in the
set.

Upper bound of computational complexity of checking the
two conditions can be calculated as a product of separate worst
case complexities of the tree parts:

3m/3︸︷︷︸
a

∗ m ∗ (m− 1)

2︸ ︷︷ ︸
b

∗ 2n︸︷︷︸
c

= O(am+n) (18)

Part a is a maximal number of maximal cliques possible
(maximal consisten/inconsisten set of transitions, m is a num-
ber of transitions) in respective compatibility graphs. Part
b is a number of edges in a maximum clique. Part c is
a complexity of satisfiability problem of n-variable Boolean
expression. Both sets of transitions (maximally consistent and
maximally inconsistent) can easily be constructed through
simple search of hierarchy tree (e.g. TImax8

= {t5, t6, t7, t8}
and TImax17

= {t16, t17, t18, t19} in Fig. 3). Figure 9 and Tab. I
enumerate these sets.

TABLE I
FAMILY OF ALL MAXIMAL CONSISTENT TRANSITION SETS

TCmax1
= {t3, t4}

TCmax2
= {t11, t13, t7}

TCmax3
= {t11, t13, t8}

TCmax4
= {t11, t13, t9}

TCmax5
= {t11, t13, t10}

TCmax6
= {t11, t7, t14}

TCmax7
= {t11, t8, t14}

TCmax8
= {t11, t9, t14}

TCmax9
= {t11, t10, t14}

TCmax10
= {t13, t7, t12}

TCmax11
= {t13, t8, t12}

TCmax12
= {t13, t9, t12}

TCmax13
= {t13, t10, t12}

TCmax14
= {t7, t12, t14}

TCmax15
= {t8, t12, t14}

TCmax16
= {t9, t12, t14}

TCmax17
= {t10, t12, t14}

Computational complexity of the problem is exponential and
depends on both the number of transitions (m) and the number

416 G. ŁABIAK

t13 t14t7 t6 t12t8t10t9 t11 t5

t16 t18t17t4t3t2 t19t1 t15

T8={t5,t6,t7,t8}

T17={t16,t17,t18,t19}

T12={t5,t6,t12}
T13={t5,t6,t13}

T14={t5,t6,t14}T9={t5,t6,t9}
T10={t5,t6,t10}

T11={t5,t6,t11}

T6={t2,t3} T7={t2,t4}

Fig. 9. Hasse diagram of orthogonality graph of potentially conflicting transitions.

of variables in Boolean predicates (n). However, for the
designer the problem is hard but feasible, the number of transi-
tions and the cardinality of maximal consitent/inconsistent sets
of transitions for typical controller (no bigger than presented
in the paper, Fig. 2) makes that it is within human perception.

Good graphical illustrations of the proper sets (maximal
consistent/incosistent transition sets) and the scale of the prob-
lem is Hasse diagram. Hasse diagram (see Appendix) presents
sets and inclusion relation between sets. If we assume that
clique is a set of edges representing relation in compatibility
graph, then we can say that Hasse diagram presents maximal
sets of transitions. Figures 9 and 10 present respective Hasse
diagrams for the controller from Fig. 2. Summit vertices mean
maximal sets (the sets TImax and TCmax). The number of
maximal inconsistent sets of transition (TImax

, Fig. 9) is 10
and the number of transitions in maximum set is 4 (Fig. 9).
The number of maximal consistent sets of transition (TCmax

,
Fig. 10) is 17 and the number of transitions in maximal set is
3 (Fig. 10). Number of transitions for the controller is m = 19
and number of Boolean variables in predicates is n = 10. All
maximal consistent transition sets are showed in Tab. I.

t8 t9 t10t7t11 t14t13 t12t3 t4

t16 t17 t18t15t5 t6 t19t1 t2

Fig. 10. Hasse diagram of non-implicativity graph of concurrent transitions.

VI. SPECIFICATION OF WELL DESIGNED HCFSM
Well designed HCFSM is not only live and safe but also must
be conflict-free (transition orthogonality) and concurrent tran-

sitions should be independent (transition non-implicativity).
Generally, these two conditions can be satisfied through proper
construction of transition predicates. However, in case of
complex behavior this task can be difficult for the designer. For
example, for the diagram from Fig. 2 designer must prepare 18
transition predicates. Next, to make this diagram conflict-free,
designer must solve system of 32 Boolean equations made
up of this predicates. This number results from definition 2.
In order to make that in this diagram transitions are non-
implicative designer must solve another system of 49 Boolean
equations (see definition 4).

Figure 2 presents statchart diagram of the chemical reactor
controller. Transition predicates in this diagram are simplified
so as to improve clarity of the drawing; predicates are only
equipped with these events which are essential for understand-
ing general idea of the controller operations. Therefore the
transitions in diagram are conflicting. One of the possible
transitions set of well designed controller is presented in
Tab. II. This one particular set of predicates has been achieved
after a few tests by „guess and check” method aided with
author’s CAD system called HiCoS [12], [11].

In general, finding set of correct predicates can be laborious.
Using local variable as a synchronizing variable makes that
finding correct predicates is much more easier. Improved
diagram from Fig. 11 shows that variable of local scope x,
y and z (and an end states in compound state Initiating) make
that, in comparison with predicates from Tab. II, respective
transitions are not only simpler (e.g. t8, t16) but process of
predicates creation is more algorithmic. Moreover, controller
from Fig. 11 has only 41 global states, whereas controller from
Fig. 2 (and with transitions from Tab. II) has 161 global states,
and both controllers for external observer behave in the same
way. Other strategy then presented in this paper is taken by
OMG consortium in UML technology [2], where transitions
on lower level of hierarchy tree have priority over higher level
hierarchy transitions, so vertical conflicts are eliminated and
hence extent of computational tasks are decreased.

THE PROBLEMS OF TRANSITION PREDICATES CONSTRUCTION IN HIERARCHICAL CONCURRENT CONTROLLERS 417

MCFill

do / V1, P

Excess

of Foam

StopM

do / x

SC1Fill

do / V2

Stop1

do / yH H

SC2Fill

do / V4

Stop2

do / z H

Filling

Pouring

do / C1, C2, V1, V2

t19: FT1 / {TM2}

Emptying

do / V6

Reaction

do / M

ProcessTermination.

do / V6

Process

t18: FT2

MCEmpt

do / EV

t3: Nmin

IngEmptying

do / AC1,AC2

t4: FT1

Initiating

Start

t2: AUT*!AUt16: AUT*Nmin t6: x*y*z*!AU / {TM1}

t1: REP*!AU / {TM1}

t17: AU

R
e

s
ta

rt

t10: !Nlim*

*!(y*z)*!AU

t8: Nmax*

!Nlim!AU

t7: Nlim*

!Nmax!AU

t9: !Nlim*

!Nmax!AU
t11:

B1*!AU

t12: !B1*

*!(x*z)*!AU

t13:

B2*!AU

t14: !B2*

*!(x*y)*!AU

t15:

REP*!AU

t15: AU

Fig. 11. Diagram improved with local variables synchronization.

TABLE II
THE SET OF WELL DESIGNED TRANSITIONS

t1 : REP ∗AU

t2 : AUT ∗AU
t3 : Nmin
t4 : FT1
t5 : AU

t6 : Nmax ∗Nlim ∗B1 ∗B2 ∗AU

t7 : Nlim ∗Nmax ∗AU

t8 : Nmax ∗Nlim ∗B1 ∗B2 ∗AU

t9 : Nlim ∗Nmax ∗AU

t10 : Nmax ∗AU

t11 : B1 ∗Nmax ∗AU

t12 : B1 ∗AU ∗Nmax

t13 : B2 ∗Nmax ∗AU

t14 : B2 ∗AU ∗Nmax

t15 : REP ∗AU

t16 : AUT ∗Nmin ∗ FT1 ∗ FT2 ∗AU
t17 : AU

t18 : FT2 ∗ FT1 ∗AU

t19 : FT1 ∗AU

VII. CONCLUSIONS

Control unit is a vital part of most today’s embedded real-
time systems. Controllers of complex behavior can efficiently
be specified by means of hierarchical and concurrent state
oriented notation called statecharts (or state machine) and
implemented as a HCFSM. Hierarchy paradigm introduces
problems with conflicting transitions, whereas concurrency
causes problems with implicative dependencies between tran-
sitions what results in inconsistencies in control system. Well
designed controller must be both conflict-free and concur-
rent transitions should be independent. These two properties
can be assured through appropriate construction of transition
predicates. However, the problem is a clique problem and its
size is exponential what makes for a designer that creation of
proper predicates can be very hard. Therefore, some syntactic

features, like local synchronization variables or end states
which make the task easier, can be applied.

APPENDIX A
COMPATIBILITY CLASSES

A given binary relation ∼, defined among elements of a set
A = {a1, a2, . . . , an}, is said to be an compatibility relation
[19] iff it is both reflexive and symmetric, i.e.:

1) ∧
1≤i≤n

ai ∼ ai (reflexivity),

2) ∧
1≤i≤n

∧
1≤j≤n

ai ∼ aj ⇒ aj ∼ ai (symmetry).

Elements ai and aj are said to be compatible whenever ai ∼
aj holds. A compatibility class C is a subset of A such that
all the members of C are pairwise compatible, i.e.: ai, aj ∈
C ⇒ ai ∼ aj . A compatibility class is maximal if it is not
a proper subset of any compatibility class.

APPENDIX B
COMPATIBILITY GRAPHS

A compatibility relation on a set A = {a1, a2, . . . , an} can
be represented by means of a graph G, called compatibility
graph [19], where vertices v1, v2, . . . , vn correspond to ele-
ments of A and edges (vi, vj) corresponds to compatibility
relation whenever ai ∼ aj . A complete subgraph of G, called
clique, corresponds to compatibility class and maximal clique
corresponds to maximal compatibility class.

418 G. ŁABIAK

APPENDIX C
HASE DIAGRAMS

A Hasse diagram [20] is a graphical rendering of a partially
ordered set (S,≤) displayed via the cover relation of the
partially ordered set with an implied upward orientation. A
point is drawn for each element of the poset, and line segments
are drawn between these points according to the following two
rules:

1) If x < y in the poset, then the point corresponding to x
appears lower in the drawing than the point correspond-
ing to y.

2) The line segment between the points corresponding to
any two elements x and y of the poset is included in
the drawing iff y covers x and there is no z such that
x < z < y.

REFERENCES

[1] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System
Design. Modeling, Synthesis and Verification. Springer, 2009.

[2] OMG Unified Modeling LanguageTM (OMG UML), Superstructure.
Version 2.3, Object Management Group, OMG, 250 First Avenue,
Needham, MA 02494, U.S.A., May 2010. [Online]. Available:
http://www.omg.org/spec/UML/2.3/

[3] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and
Design of Embedded Systems. Englewood Cliffs, New Jersey: Prentice
Hall, 1994.

[4] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 1987.

[5] M. Adamski, “Parallel Controller Implementation using Standard PLD
Software.” in FPGAs, W. Moore and W. Luk, Eds. Abingdon EE&CS
Books, Oct. 1991, pp. 296–304.

[6] D. Drusinsky and D. Harel, “Using Statecharts for Hardware Description
and Synthesis.” IEEE Transaction on Coputer-Aided Design, vol. 8,
no. 7, pp. 798–807, Jul. 1989.

[7] D. Drusinsky-Yoresh, “A State Assignment Procedure for Single-Block
Implementation of State Chart.” IEEE Transaction on Coputer-Aided
Design, vol. 10, no. 12, pp. 1569–1576, Dec. 1991.

[8] S. Ramesh, “Efficient Translation of Statecharts to Hardware Circuits.”
in Proceedings of Twelfth International Conference On VLSI Design,
Jan. 1999, pp. 384–389.

[9] STATEMATE Magnum Code Generation Guide., I-Logix Inc., 3 River-
side Drive, Andover, MA 01810 U.S.A., 2001.

[10] K. Buchenrieder, A. Pyttel, and C. Veith, “Mapping statechart models
onto an FPGA-based ASIP architecture.” in Proc. EURO-DAC ’96, Sep.
1996, pp. 184–189.

[11] G. Łabiak, “From UML statecharts to FPGA - the HiCoS approach,” in
Proceedings of Forum on specification & Design Languages – FDL’03,
Frankfurt am Main, Sep. 2003, pp. 354–363.

[12] HiCos, “HiCoS Homepage,” http://www.uz.zgora.pl/˜glabiak, 2004.
[Online]. Available: http://www.uz.zgora.pl/˜glabiak

[13] G. Łabiak, “Transition orthogonality in statechart diagrams and incon-
sistencies in binary control system,” Przegląd Elektrotechniczny, no. 9,
pp. 130–133, 2010.

[14] D. Harel and A. Naamad, “The STATEMATE Semantics of Statecharts,”
ACM Trans. Soft. Eng. Method., vol. 5, no. 4, Oct. 1996.

[15] G. Łabiak, “Symbolic States Exploration of UML Statecharts for
Hardware Description,” in Design of Embedded Control Systems,
M. A. Adamski, A. Karatkevich, and M. Węgrzyn, Eds. Springer, 2005,
pp. 73–83.

[16] A. Maggiolo-Schettini and M. Merro, Priorities in Statecharts., ser.
LNCS. Springer–Verlag, 1997, vol. 1192, pp. 404–429.

[17] G. Bazydło, “Behavioural synthesis of reconfigurable controllers based
on UML state machine model,” Pomiary, Automatyka, Kontrola, no. 7,
pp. 508–510, 2009, in Polish.

[18] J. W. Moon and L. Moser, “On cliques in graphs,” Israel Journal of
Mathematics, vol. 3, no. 1, pp. 23–28, March 1965.

[19] A. Grasselli, “A note on the derivation of maximal compatibility classes,”
Calcolo, vol. 2, no. 2, pp. 165–176, June 1966.

[20] W. MathWorld, “Wolfram MathWorld,”
http://mathworld.wolfram.com, 2010. [Online]. Available:
http://mathworld.wolfram.com/HasseDiagram.html

