POLISH ACADEMY OF SCIENCE
COMMITTEE FOR ELECTRONICS AND TELECOMMUNICATIONS

ELECTRONICS AND
TELECOMMUNICATIONS
QUARTERLY

KWARTALNIK ELEKTRONIKI I TELEKOMUNIKACJI

VOLUME 55 -No 1

WARSAW 2009

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY
Quarterly of Polish Academy of Sciences

INTERNATIONAL PROGRAMME COMMITTEE EDITOR-IN-CHIEF

Marek AMANOWICZ
Military University of Technology, Poland

Daniel J. BEM

Wroclaw University of Technology, Poland
Franco DAVOLI

University of Genowa, Italy

Gilbert DE MEY

Ghent University, Belgium

Stefan HAHN

Warsaw University of Technology, Poland
Wtodzimierz JANKE

Koszalin University of Technology, Poland
Viktor KROZER

Technical University of Denmark, Denmark
Andrzej MATERKA

Technical University of LédZ, Poland
Jozet MODELSKI

Warsaw University of Technology, Poland

Adam MORAWIEC

European Electronic Chips & Systems Design Initiative, Gieres, France

Antoni ROGALSKI
Military University of Technology, Poland

Herman ROHLING

Technical University of Hamburg, Germany
Ryszard ROMANIUK

Warsaw University of Technology, Poland
Henry SELVARAJ

University of Nevada, Las Vegas NV, USA
Radomir 8. STANKOVIC

University of Ni§, Serbia

Wojciech SZPANKOWSKI

Purdue University, USA

Marek TEACZALA

Wroclaw University of Technology, Poland
Marek TUROWSKI1

CFD Research Corporation, USA

Wieslaw WOLINSKI

Warsaw University of Technology, Poland
Svetlana YANUSHKEVICH

University of Calgary, Canada

Jacek M. ZURADA
University of Louisville, Louisville KY, USA

Tadeusz LUBA

Warsaw University of Technology, Poland
luba@tele.pw.edu.pl |

tel. +48 22 825 1580; +48 22 234 7330

TOPICAL EDITORS

Marek DOMANSKI

Poznan University of Technology, Poland
domanski@et.put.poznan.pl

Michat MROZOWSKI

Gdansk University of Technology, Poland
mim@pg.gda.pl

Andrzej NAPIERALSKI

Technical University of £.6dz, Poland
napier@dmcs.p.lodz.pl

Jan SZMIDT

Warsaw University of Technology, Poland
J.Szmidt@elka.pw.edu.pl

Tadeusz WIECKOWSKI

Wroctaw University of Technology, Poland
Tadeusz. Wieckowski@pwr.wroc.pl
Tomasz WOLINSKI

Warsaw University of Technology, Poland
wolinski@if.pw.edu.pl

Jozef WOZNIAK

Gdafisk University of Technology, Poland
jowoz{@eti.pg.gda.pl

TECHNICAL EDITOR

Grzegorz BOROWIK

Warsaw University of Technology, Poland
G.Borowik@tele.pw.edu.pl

tel. +48 22 234 7349; +48 22 234 7330

LANGUAGE VERIFICATION
Janusz KOWALSKI

RESPONSIBLE SECRETARY

Elzbieta SZCZEPANIAK

Warsaw University of Technology, Poland
tel. +48 22 234 7799

mobile: +48 500 044 131

Address of Editorial Office

Nowowiejska Street 15/19, 00-665 Warsaw, Poland
Institute of Telecommunications, room 484

Email: etq@tele.pw.edu.pl

Editor-on-duty

Mondays and Wednesdays from 2pm to 4pm, tel. +48 22 234 77 37

Ark. Wyd. 9,25 Ark. druk. 7,5

Podpisano do druku w lutym 2009 r.

Papier offset, kl. I 80 g. B-1

Druk ukoficzono w lutym 2009 r.

Publishing
Warszawska Drukarnia Naukowa PAN
00-656 Warszawa, ul. Sniadeckich 8
Tel./fax 628-87-77

Dus
he
fror
and
196

zer
Elec
vice
he s

scier
orgaj
he w
of S¢
he ¢l

:
the /
estab

— trat
I
proje
I
Deve]
1995

nd

d

nd

Dear Professor Wolinski,

Please accept our sincerest congratulations and best wishes. We wish you good
health vitality and we expect more distant — round — jubilees.

Jézef Modelski Editorial Board of Electronics
Chairman of the Committee and Telecommunications Quarterly
of Electronics and Communications

Professor Wiestaw L. Wolifiski was born in Dabrowa Gérnicza in January 1929.
During the Second World War he finished his primary school and as 14-years old boy
he was forced to word hard in German wire factory in his hometown. He graduated
from the Warsaw University of Technology (WUT) in 1955. He defended his doctoral
and habilitation dissertations at the Faculty of Electronics of WUT in 1964 and in
1968, respectively.

He was appointed Professor in 1975 and Full Professor in 1989. He was a co-organi-
zer of Institute of Microelectronics and Optoelectronics (IM&QO) of the Faculty of
Electronics and Information Technology of WUT in 1970. Until 1978 he served as a
vice-director and from 1978 to 1981 as a director of that Institute. Until his retirement,
he served also as a head of the Optoelectronics Division of IM&O (1970-1999).

Professor W. Woliriski greatly contributed to the organization and development of
scientific school on Optoelectronics and Laser Technology. Professor’s scientific and
organization achievements were recognized by the community of scientists, and in 1991
he was elected Corresponding Member and in 2007 Full Member of Polish Academy
of Sciences (PAN). From 1993 to 1999 he was vice-chairman and from 1999 to 2007
he chaired the Committee on Electronics and Telecommunication of PAN.

Since 1991 he has been a chairman of the Polish Optoelectronics Committee of
the Association of Polish Electrical Engineers (SEP). In 1987 he was co-initiator of
establishing the Polish Chapter of International Society for Optical Engineers (SPIE)
- transformed into Photonics Society of Poland in 2008.

Professor W. Woliiski has been head or principal investigator of several scientific
projects involving academic — industry partnership and technology transfer,

In 1986-1991 he was the coordinator of the National Program for Research and
Development (CPBR 8.12) *Fundamentals of Laser Technology’ and in the period of
1995 -2001 he was a head of the WUT Priority Program Photonics Engineering’.

His principal research interests include optoelectronic devices, gas and solid state
laser physics, technology and applications.

During the fifties, his scientific activities resulted in the development and construc-
tion of variety of optoelectronic devices such as infrared image converters, spectral
sources of light for interferometers, etc. Since sixties his research interests have been
directed toward the laser physics and laser technology. They have encompassed both
fundamental and applied investigations concerning the physical processes responsible
for the conditions of the laser radiation generation in the active volumes of the gases
and in the doped solid-state media, and also the design, construction and development
of laser systems for industrial and medical applications.

As the result of Professor’s activities, numerous unique laser devices were deve-
loped and introduced into the national industry and medicine.

The most important scientific results achieved by Professor himself or under his
supervision involve:

— determining the dependence between optical and photoelectrical properties of
semitransparent Ag-O-Cs photocathodes,

— explanation and description of the delay effect between the excitation and laser
pulse in a He-Ne pulse laser,

~ development of a new method that was patented in 1967, for excitation of
molecular lasers (CO2 -N2 -He) by applying the transverse electric discharge — the
patent is probably the earliest patent on this subject,

- explanation and description of the gas pressure changes in the anode and cathode
regions in working argon-ion lasers; development of method for increasing the laser
output power by applying segmented permanent magnets (patented),

— defining the influence of multi-ion and multi-photon processes on the optical
transitions and specifying conditions for up-conversion processes and lasing on specific
wavelengths in various types of monocrystals and laser glass doped with lanthanide
ions,

- theoretical description of a planar distributed feedback laser.

He has authored or co-authored over 200 scientific papers published in prestigious
Polish and foreign scientific journals as well as numerous conference contributions —
both national and international. He is also an author or co-author of 15 patents. He
is co-editor of 13 volumes of SPIE Proceedings of the most important conference on
Laser Technology in Poland. From 1982 to 2004 he was the chairman of Program Board
of a journal Elektronika (SEP). In 1986-2008 he was Editor-in-Chief of the journal
Electronics and Telecommunications Quarterly. Since 2005 he has served as the Branch
Editor of journal Oproelectronics and Photonics — Bulletin of the Polish Academy of
Sciences, Technical Sciences. Up to 2006 he was a Chair of The International Editorial
Advisory Board of the journal Oprelectronics Review.

Professor W. Woliriski was actively involved in didactic activities for over 50 years.
The first laser laboratories for students, seminars and lectures in optoelectronics and
laser technology were organized by Professor in 1965. From the beginning of Profes-

sor
ing]
niq
at \
of |
leac

and

state

truc-
ctral
been
both
sible
7ases
ment

leve-
r his
s of
laser

n of
- the

hode
laser

tical
cific
nide

jous
ns —
. He
e on
oard
irnal
anch
1y of
orial

ears.
and
fes-

sor’s career, he was engaged actively in teaching undergraduate and graduate courses
including Laser Physics, Integrated Optics, Fundamentals of Photonics and Laser Tech-
niques and others. For over ten years, he was head of Postgraduate Studies Department
at WUT. He has supervised numerous master’s theses and doctoral dissertations. Some
of his students have become full or associate professors. Some of them have became
leaders in both industry and science.

Prof. W. Wolifiski has been rewarded with many high rank national distinctions
and awards for scientific achievements and service to the technical community.

IMPORTANT MESSAGE FOR THE AUTHORS

The Editorial Board during their meeting on the 18™ of January 2006 authorized the
Editorial Office to introduce the following changes:

1. PUBLISHING THE ARTICLES IN ENGLISH LANGUAGE ONLY

Starting from No 1°2007 of E&T Quarterly, all the articles will be published in
English only.

Each article prepared in English must be supplemented with a thorough summary in Polish
(e.g. 2 pages), including the essential formulas, tables, diagrams etc. The Polish summary
must be written on a separate page. The articles will be reviewed and their English
correctness will be verified.

2. COVERING THE PUBLISHING EXPENSES BY AUTHORS

Starting from No’2007 of E&T Quarterly, a principle of publishing articles against payment
is introduced, assuming non-profit making editorial office. According to the principle the
authors or institutions employing them, will have to cover the expenses in amount of 760
PLN for each publishing sheet. The above amount will be used to supplement the limited
financial means received from PAS for publishing; particularly to increase the capacity of
next E&T Quaterly volumes and verify the English correctness of articles. It is neccessary
to increase the capacity of E&T Quarterly volumes due to growing number of received
articles, which delays their publishing.

In case of authors written request to accelerate the publishing of an article, the fee will
amount to 1500 PLN for each publishing sheet.

In justifiable cases presented in writing, the editorial staff may decide to relieve authors
from basic payment, either partially or fully. The payment must be made by bank transfer
into account of Warsaw Science Publishers The account number: Bank Zachodni WBK
S.A. Warszawa Nr 94 1090 1883 0000 0001 0588 2816 with additional note: “For
Electronics and Telecommunications Quarterly”.

Editors

Dear Authors,

Electronics and Telecommunications Quarterly continues tradition of the “Rozprawy
Elektrotechniczne” quarterly established 55 years ago.

The E&T Quarterly is a periodical of Electronics and Telecommunications Com-
mittee of Polish Academy of Science. It is published by Warsaw Science Publishers
of PAS. The Quarterly is a scientific periodical where articles presenting the results of
original, theoretical, experimental and reviewed works are published. They consider wi-
dely recognised aspects of modern electronics, telecommunications, microelectronics,
optoelectronics, radioelectronics and medical electronics.

The authors are outstanding scientists, well-known experienced specialists as well
as young researchers -— mainly candidates for a doctor’s degree.

The articles present original approaches to problems, interesting research results,
critical estimation of theories and methods, discuss current state or progress in a given
branch of technology and describe development prospects. The manner of writing ma-
thematical parts of articles complies with IEC (International Electronics Commision)
and ISO (International Organization of Standardization) standards.

All the articles published in E&T Quarterly are reviewed by known, domestic spe-
cialists which ensures that the publications are recognized as author’s scientific output.
The publishing of research work results completed within the framework of Ministry of
Science and Higher Education GRANTS meets one of the requirements for those works.

The periodical is distributed among all those who deal with electronics and tele-
communications in national scientific centres, as well as in numeral foreign institutions.
Moreover it is subscribed by many specialists and libraries.

Each author is entitled to free of charge 20 copies of article, which allows for easier
distribution to persons and institutions domestic and abroad, individually chosen by
the author. The fact that the articles are published in English makes the quarterly even
more accessible.

The articles received are published within half a year if the cooperation between
author and the editorial staff is efficient. Instructions for authors concerning the form of
publications are included in every volume of the quarterly; they may also be obtained
in editorial office.

The articles may be submitted to the editorial office personally or by post; the
editorial office address is shown on editorial page in each volume.

Editors

Ll s e e M4 N T

ELECTRONICS AND TELECOMUNICATIONS QUARTERLY, 2009, 35, no |

CONTENTS

M. Yang, H. Selvaraj, E. Lu, J. Wang, S. Q. Zheng, Y. Jiang: Scheduling architectures for Diff-

Serv networks with input queuing SWItChes.ouvie it e
J. Sosnowski, P. Gawkowski: Software versus hardware testing of microprocessors
A. Paszkiewicz, A. Rotkiewicz: On the distribution of numbers n satisfying the congruence 2" %=

=@modn)for k=2 and k=4l
A. Paszkiewicz: On least prime primitive roots mod 2p for odd primes p'.......................
S. Deniziak, R. Czarnecki: SystemC-based codesing of distributed embedded systems
A. Opara, D. Kania: A Novel non-disjunctive method for decomposition of CPLDs
Information for the AUhOISt i e e et

31

Ml

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no i, pp. 9-30

Scheduling Architectures for DiffServ Networks with Input
Queuing Switches

MEI YANG', HENRY SELVARAJ', ENYUE LU, JIANPING WANG*, S. Q. ZHENG®, YINGTAO JIANG'

Y Department of Electrical and Computer Engineering
University of Nevada, Las Vegas, Las Vegas, NV 89154
t Dept. of Mathematics and Computer Science
Salisbury University, Salisbury, MD 21801
* Department of Computer Science
City University of Hong Kong, Hong Kong
* Department of Computer Science
The University of Texas at Dallas, Richardson, TX 75080
meiyang@egr.unlyv.edu, selvaraj@unlv.nevada.edu, yingtao@egr.unlv.edu,
Yealu@salisbury.edu, * jianwang@cityu.edu.hk, *sizheng@utdallas.edu

+

Received 2009.01.20
Authorized 2009.63.21

Due to its simplicity and scalability, the differentiated services (DiffServ) model is
expected to be widely deployed across wired and wireless networks. Though DiffServ sup-
porting scheduling algorithms for output-queuing (OQ) switches have been widely studied,
there are few DiffServ scheduling algorithms for input-queuning (IQ) switches in the litera-
ture. In this paper, we propose two DiffServ scheduling algorithms for DiffServ networks
with IQ switches: the dynamic DiffServ scheduling (DDS) algorithm: and the hierarchical
DiffServ scheduling (HDS) algorithm. The basic idea of DDS and HDS is to schedule EF
and AF traffic according to their minimum service rates with the reserved bandwidth and
schedule AF and BE traffic fairly with the excess bandwidth. Both DDS and HDS find
a maximal weight matching but in different ways. DDS employs a centralized scheduling
scheme. HDS features a hierarchical scheduling scheme that consists of two levels of sche-
dulers: the central scheduler and port schedulers. Using such a hierarchical scheme, the
implementation complexity and the amount of information needs to be transmitted between
input ports and the central scheduler for HDS are dramatically reduced compared with
DDS. Through simulations, we show that both DDS and HDS provide minimum bandwidth
guarantees for EF and AF traffic as well as fair bandwidth allocation for BE traffic. The delay
and jitter performance of DDS is close to that of PQWRR, an existing DiffServ supporting
scheduling algorithm for OQ switches. The tradeoff of the simpler implementation scheme
of HDS is its slightly worse delay performance compared with DDS.

Keywords: Quality of service, DiffServ, scheduling, input-queuing switches

10 MEI YANG, HENRY SELVARAJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG,. .. ETQ.

1. INTRODUCTION

The rapid growth of the Internet and wireless communications has driven the
demand for wired/wireless broadband Internet access with quality of service (QoS)
support. The two main approaches to provide QoS are: Integrated Services (IntServ)
[4] and Differentiated Services (DiffServ) [3]. Fine-grained QoS guarantees can be
achieved by IntServ. However, the scalability of the IntServ model is limited due to
the per-flow reservation and heavy signaling overhead [12]. The DiffServ model is
proposed to meet different QoS requirements for various types of clients and network
applications. It addresses scalability by a coarse-grain differentiation model.

The DiffServ model [3] is orientated toward edge-to-edge service across a single
domain. Traffic is classified into a limited number of service classes according to
the service level agreement (SLA) with the network provider. The flow-based traffic
classification and conditioning is pushed to edge routers of the domain. Core routers of
the domain do not need to maintain per-flow state information, but only need to forward
packets according to the per hop behavior (PHB) associated with each service class,
which is identified by the DiftServ code point (DSCP) field in the header of each packet.
The DiffServ model matches the heterogeneous feature of the Internet and it is capable
of providing end-to-end QoS guarantees by bilateral agreements between neighboring
domain owners [5]. Due to its simplicity and scalability, DiffServ is expected to be
widely deployed across wired and wireless networks [2, 12].

Currently, the IETF defines a set of PHBs which include Expedited Forwarding
(EF) PHB, Assured Forwarding (AF) PHB group, and Best Effort (BE) PHB. The
EF PHB provides low loss, low delay, low jitter, assured bandwidth, and end-to-end
service through the DiffServ domain. The EF PHB is ideally suitable for voice over
IP (VolIP), audio-, video- streaming, and other real-time applications. The AF PHB
group provides services with minimum rate guarantee and low loss rate [9]. Four AF
classes (AF1, AF2, AF3, and AF4) are defined and each class has three levels of drop
precedence [1, 9, 22]. The level of forwarding assurance of an IP packet belonging to
an AF class depends on the amount of resources allocated to the AF class, the current
load of the AF class, and the drop precedence of the packet. AF PHBs are suitable for
network management protocols, such as Telnet, SMTP, FTP, HTTP. All data packets
belonging to the BE class are not policed and are forwarded with the best effort.

The implementation of PHBs relies much on the scheduling and queuing schemes
used in DiffServ compliant switches and routers. In order to provide premium service
to EF traffic, packets belonging to EF class should be served prior to packets belonging
to other classes. Meanwhile, to prevent the influence of damaging EF traffic to other
traffic, the service rate (bandwidth) for EF traffic should be limited to its peak infor-
mation rate (PIR). For each AF class, a minimum service rate, referred as committed
information rate (CIR), should be guaranteed. On the other hand, to avoid starvation
of BE traffic, backlogged BE queues should be served if excess bandwidth is available.
In practice, we desire those scheduling and queuing schemes which are efficient in

Vol

prc
sin

ch
an
tra
scl

all

N e (D

~ w O O

«Q L Qe

AR I A . L4 W e W

Te MR

Vol. 55 -~ 2009 SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH. . . 11

providing differentiated services for different traffic classes, with high throughput, and
simple in implementation.

Existing DiffServ supporting scheduling schemes for output-queuing (OQ) swit-
ches include priority queuing (PQ), weighted round-robin (WRR), PQWRR {19, 25],
and class-based queuing (CBQ) [11, 18]. CBQ ensures explicit rate control for each
traffic class by the rate control mechanisms functioned at two schedulers: the general
scheduler and the link-sharing scheduler [8]. Compared with PQ and WRR, PQWRR
delivers the minimum delay and jitter for EF traffic and provides better bandwidth
allocation for AF traffic and BE traffic by priority scheduling of EF traffic and non-EF
traffic, and weighted round-robin scheduling of AF traffic and BE traffic. In terms of
implementation, PQWRR is simple and more practical than CBQ. Nevertheless, these
schemes all assume OQ switch architectures which are not scalable for high line rates
and/or large numbers of ports due to the speed limitation of the switching fabric and
memories.

Compared with OQ switches, input queuing (IQ) switches are more scalable and
practical since they only need the switching fabric and memories to run at the line
rate. We hence focus our study on DiffServ supporting scheduling algorithms for 1Q
switches. Many QoS supporting scheduling algorithms have been proposed for 1Q
switches. Most of them are maximal weight matching (MWM) based algorithms with
different definitions of the weight, such as algorithms with the weight defined as a
function of queue length (e.g. the successive incremental matching over multiple ports
(SIMP) algorithm [23], the longest normalized queue first (LNQF) algorithm [16], the
worst-case longest port first (LPF), and prioritized LPF algorithms [24]), algorithms
with the weight defined as credits of bandwidth [13], and algorithms with the weight
defined as time difference [6]. Another noticeable QoS scheduling algorithm is the
hierarchical scheduling algorithm [15], which combines a dynamic algorithm which is
used to determine input-output matchings and a static algorithm which is used to select
a request in the granted input port. However, due to the lack of bandwidth reservation
schemes, all these algorithms do not provide bandwidth or delay guarantee for each
traffic class. Although the distributed mutlilayered scheduler (DMS) [7] for multistage
switches can provide delay bounds for EF flows and guaranteed bandwidth for AF
flows, the complex structure of DMS and maintenance of per-flow queues prevent its
practical use. In [10], the Adaptive Weighted Fair Queueing with Priority (AWFQP)
scheduler attempts to provide QoS guarantees to EF, AF, and BE classes with two
levels of schedulers: the Priority Queueing Scheduler and the Fair Queueing Scheduler
in the first level, and the Adaptive Queueing Scheduler in the second level.

In this paper, we propose two DiffServ scheduling algorithms for IQ switches: the
dynamic DiffServ scheduling (DDS) algorithm and the hierarchical DiffServ schedu-
ling (HDS) algorithm, to provide dynamic bandwidth allocation for DiffServ classes.
The basic idea of DDS and HDS is to schedule EF and AF traffic according to their
minimum service rates with the reserved bandwidth and schedule AF and BE traffic
fairly with the excess bandwidth. Both DDS and HDS find a maximal weight matching

12 MEI YANG, HENRY SELVARAIJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG,. .. ET.Q.

but in different ways. DDS employs a centralized scheduling scheme. HDS features a
hierarchical scheduling scheme that consists of two levels of schedulers: the central
scheduler and port schedulers. Using such a hierarchical scheme, the implementation
complexity and the amount of information needs to be transmitted between input ports
and the central scheduler for HDS are dramatically reduced compared with DDS. Thro-
ugh simulations, we evaluate the performance of DDS and HDS under bursty arrivals
and compare them with PQWRR. We show that both DDS and HDS provide minimum
bandwidth guarantees for EF and AF traffic as well as fair bandwidth allocation for
BE traffic. DDS also achieves the delay and jitter performance for EF traffic close to
that of PQWRR and the delay performance for AF traffic better than that of PQWRR
at high loads.

The rest of the paper is organized as follows. Section 2 introduces the IQ switch
architecture. Section 3 describes the preliminaries for both algorithms. Section 4 pre-
sents the DDS algorithm. Section 5 presents the HDS algorithm. Section 6 discusses
the simulation results and comparison with PQWRR. Section 7 concludes the paper.

2. 1Q SWITCH ARCHITECTURE

Figure 1 shows an N x N IQ switch architecture. We assume that all data packets
arriving at the switch are segmented into fixed-size cells, transmitted through the
switching fabric, and reassembled back into original data packets before they leave
the switch. We also assume that time is slotted such that one cell slot is equal to the
transmission time of one cell on the input/output line. To remove head-of-line (HOL)
blocking, each input port maintains N groups of virtual output queues (VOQs), and
each group of VOQs is used to buffer cells destined for an output port.

A VOQ group is composed of K VOQs, each dedicated to buffering cells of a
DiffServ class. Figure 2 shows the queuing scheme used at input port /;, 1 <7 <N,
in which a separate FIFO queue Q; jx is used to buffer cells belonging to traffic class
k, 1 < k < K, and destined for output port O;, 1 < j < N. For the DiffServ model,
we have K = 6 with k = 1 to 6 representing the classes of EF, AF1, AF2, AF3, AF4,
and BE respectively. When a cell arrives at an input (port), it is classified based on
its DSCP field and output port address, and buffered in the VOQ corresponding to its
traffic class and output (port).

In each cell slot, a scheduling algorithm is needed to determine which N cells
in the N?K VOQs to be transmitted through the switching fabric. In the following,
we assume that scheduling in the current cell slot is based on the VOQ status of the
previous cell slot, and switching in the current cell slot is based on the scheduling
decision made by the previous cell slot.

(ch
re-
ses
T.

els
the
ve
the
L)
ind

fa

ass
lel,
4,

its

s
ng,
the
ing

Vol. 55 — 2009 SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH. ..

13

nput ports Output ports
___LED Qs
Ly IIT10 N N
. < —% 1
- QU\ <
.___.j:ED QZ,I
2 ,__,___) QZZ B L%
: 3 |
T NxN
Qn [.
N Switching fabric
—TTTl o
] Qu N »
N ——3p - ; fe—Pp N
QN‘N
L (€
g Scheduler !

Fig. 1. The IQ switch architecture

VOQ group

AF, Qe Q.

VOQ group

AF, Qv Quy

Fig. 2. Queuing scheme at input port [;

14 MEI YANG, HENRY SELVARAIJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG,. .. ETQ.

3. PRELIMINARIES

Three factors need to be considered when designing a DiffServ supporting sche-
duling algorithm for IQ switches. First, to provide minimum bandwidth guarantees for
EF and AF classes, the scheduling algorithm needs to consider the PIR for EF class
and CIRs for four AF classes. Meanwhile, to avoid starvation of BE class, backlogged
queues should be served if the excess bandwidth is available. Hence, class differen-
tiation and bandwidth reservation and measurement schemes need to be introduced in
the scheduling algorithm. Second, the switch throughput should be kept as much as
possible. Third, the scheduling algorithm should be simple in implementation.

In the next two sections, we present the dynamic DiffServ scheduling algorithm
and the hierarchical DiffServ scheduling algorithm. The service discipline of DDS and
HDS is the same: If the reserved bandwidth is available, it serves EF or AF traffic first
so that the PIR for EF class and the CIR for each AF class are guaranteed; otherwise,
it serves non-EF traffic fairly so that BE traffic is not starved. The difference between
DDS and HDS is the scheduling scheme used to find a maximal weight matching. DDS
employs a centralized scheme, while HDS features a hierarchical scheme. Before we
present each algorithm, we first introduce the bandwidth reservation and measurement
schemes at each output port.

We use L to denote the bandwidth of each output link, which is divided into two
categories, reserved bandwidth and excess bandwidth (e.g., 90% as the reserved ban-
dwidth and 10% as the excess bandwidth). The reserved bandwidth is further divided
into five parts, each corresponding to the guaranteed bandwidth for a non-BE DiffServ
class. To provide bandwidth guarantees for AF classes in a finer granularity and enforce
smooth AF traffic, we introduce the time unit of frame, which is composed of T time
slots. Each output port O;, 1 < j < N, maintains the following variables.

e R; denotes the reserved (guaranteed) bandwidth for class k, where 1 <k < K - 1.
R;; = PIR for EF class, Rj; = CIR for AF(k—1) class, 2 < k < K -1, and

K-1
Z Rj,k <1.
k=1

o Cj denotes the cell counter for class k. C;; counts the number of EF cells up to
the current slot, and Cji, 2 < k < K - 1, counts the number of AF(k — 1) cells
transmitted in the current frame. We set C;; = 0 at cell slot # = 0, and Cj; = 0 at
cell slot tmod T =0for2<k<K-1.

e S denotes the bandwidth utilization status for class k. S = 1 if Cj1/t < R;; for
EF class or Cjx/T < Rjy for AF(k — 1) class, 2 < k < K - 1; §;x = 0 otherwise.

At the beginning of each cell slot, each output port O;, 1 < j < N, sends §; to
the central scheduler. Each input port I;, 1 < i < N, collects the waiting time of the
HOL cell of each non-empty VOQ Q; jx as wi jx =t —1; ;,,, where 1; ;, is the entering
time slot of the HOL cell. We use a mapping function to map the weight value into
the range of 0 to 2% — 1, where by is the number of bits used to represent the weight

Vol.

ran,
foll

stat
the
as

Wir

Ste,

Ste,

thm
and
first
ise,
‘een
DS

we
1ent

two
Yan-
ded

D to
ells
0 at

for

\¥

j to

the
ring
into
ight

Vol. 55 — 2009 SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH. .. 15

range of traffic class k. In this paper, we use a saturation function which is defined as
follows.
(1

. b
Fowi) = Wi ik if 0 < Wik < 2%,
b 25 1 otherwise.

4. THE DDS ALGORITHM

The DDS algorithm finds a maximal weight matching in a centralized way. At the
start of each cell slot, each input port I; sends a weighted vector with NK values to
the scheduler. For each VOQ group Q; ;, a weighted request vector V; ; is constructed

as (f(wij1)s fWij2), -y fWijk)).
4.1. THE DDS ALGORITHM

The DDS algorithm works iteratively, with each iteration consisting of the follo-
wing three steps.

Step 1: Request. Each unmatched input /; sends request vectors V; ;’s to their cor-
responding outputs.

Step 2: Grant. For each unmatched output O;, once it receives at least one non-zero
request vector, it grants one input as follows.

e IfS;;=1orS;=1for2<k<K-1,it grants the input with max{f(w; ;)|
Swi) > 0,1 <i < Nj starting from k = 1 to K — 1; otherwise, it grants the
input with max{f(w; ;x) | f(w; %) > 0,1 <i<N,2<k <K}

o If f(wy jx) > 0 is selected for some traffic class k" of input Iy, it sends 1, a
grant vector with the k’-th entry equal to f(wy ;i) and other entries equal to
‘0’, and other inputs zero grant vectors (all entries of the vector are set as ‘0’).

Step 3: Accept. For each input /; that receives at least one non-zero grant vector, it

selects the output with max{f(w; ;x) | f(w; k) > 0,1 < j < N} starting from k = 1

to K. The accepted output is notified of the acceptance.

As described in the grant step, if the reserved bandwidth is available, the DDS
algorithm allocates the reserved bandwidth to EF and AF traffic by serving the request
with the highest weight value of the highest priority class; otherwise, it allocates the
excess bandwidth to AF and BE traffic fairly by serving the request with the highest
weight value among AF classes and BE class. Additionally, the DDS algorithm is
starvation-free since the weight is generated based on the waiting time of the HOL
cell and the excess bandwidth is shared by AF and BE traffic fairly.

Note that in grant and accept steps, there might be ties, i.e. requests with equal we-
ights. Ties may exist among different traffic classes, or among different inputs/outputs.
To ensure fairness, we break ties by making selections desynchornizedly. We set the
selection starting position of each output or input in the static round-robin way. For
example, at cell slot ¢, O, starts its selection of inputs from (j +) mod N and its

16 MEI YANG, HENRY SELVARAJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG,... ETQ. Vol

selection of classes from (¢ mod (K — 1))+ 1, and I; starts its selection of outputs from arl
(i +¢) mod N. Compared with breaking ties randomly [20], static round-robin is much *‘ or
easier to implement. ; k -
Ea
co
01 02 03 04
$ | aLLLy LLLLD 401,01 ©,0,0,0,1)
7| @30120 | 020123 | @0GH20 | 203101
1| 000000 | 000000 | ©0Z900 | ©00000
I 2,1,0,0,4) 11,006 | 021,305 | 020104
2 | ®o.0000 0,0,0,0,0) | (0,6,0,0,0,00 | (0,0,0,0,0,0)
| aore2y [enesze [@LL204 | 312002
3| @o0000 | @eensy | @060 | 006000 | () g
0,1,0,2,3,2 1,0,3,2,0,4 0,3,0,1,3,7 1,3,0,1,0.
L | Gotd 000500 eaeeed | Gooe 0@ /\ Accepten grant

Fig. 3. An example of the DDS algorithm

Figure 3 shows an example of the DDS algorithm for a 4 x4 switch. In the current
cell slot, the bandwidth utilization vector §; for each output O; is given in the second
row. In the request step, each input /; sends a request vector to each output O; as shown
in the first vector of each cell. In the grant step, O, grants the EF request from I, since
the reserved bandwidth for EF class is still available and /, has the largest EF request
among all inputs. For the same reason, O, grants the EF request from ;. Oz grants the
EF request from /; since there is no EF request to O3, the reserved bandwidth for AF1
class is used up, and /; has the largest AF2 request among all inputs. O4 grants the
BE request from I, since the reserved bandwidths for all non-BE classes are used up
and the BE request from I is the largest among all non-EF requests from all inputs.
The grant received at each input is shown as the second vector in each cell. In the
accept step, I accepts the grant from O;. Having two grants with the same value,
I, accepts one according to tie-breaking scheme, for instance, the grant from O,. I4
accepts the grant from O4. In the first iteration, three pairs of inputs and outputs are
matched. More iterations can be conducted to enlarge the number of matched inputs
and outputs.

The core of the DDS algorithm is a maximal weight matching algorithm. The
number of iterations needed to converge is at most N. Through simulations, we find
that on average log N iterations are adequate to achieve satisfying performance.

4.2. HARDWARE IMPLEMENTATION SCHEME OF DDS is

‘ ex

To implement the DDS algorithm, one can use the scheduler architecture shown in SC
Figure 4 (a), in which each input/output is associated with an arbitration component.. te

As shown in Figure 4 (b) and (c), each arbitration component can be constructed by
K copies N-input comparator-trees [20], each being used to find the maximum weight
value for a class k, 1 < k < K. One more comparator-tree is needed for each grant

TOom
wch

rrent
cond
own
ince
juest
s the
AF1
s the
d up
puts.
1 the
alue,
. Iy
S are
1puts

The
find

vn in

nent. .

d by
eight
grant

Vol. 55 - 2009 SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH. .. 17

arbitration component to choose the maximum weight value of all classes. Each grant
or accept arbitration component has O(log N log b)-gate delay, where b = max{b; | 1 <
k < K}. Such an implementation of the DDS algorithm has O(log? N log b)-gate delay.
Each arbitration component consumes O(NKb) gates since each comparator tree is
composed of O(Kb) gates. The whole DDS scheduler consumes O(N?Kb) gates.

Grant arbitration Accept arbitration
components cotmponents
1 1
2
2
2
3
B 2 2 % p
o S 8
2 'k e
g [si3
g
4 4
@ 2
85 Kl
g2 &
[J - p—
20
g&
& N N
® L]
(2)
f(wl‘j\l) B H e
R,) et

f(wu,z) -—a—*—;—— ! ~4———> —"!\
o o 1. 2> e e 3
fiwy,) 7‘__,:__ HI AFI%"“’ —]) :

. > Comparator-
" H tree
w5 0) —+] ; o]

; > : BE {1 |” §
f(wN.j‘K) bt : j—*-'"" ; ‘ Multiplexer

(b) (c)
Fig. 4. (a) Block diagram of a DDS scheduler. (b) The grant arbitration component for output O .
(c) The accept arbitration component for input /;

5. THE HDS ALGORITHM

As we can see from the previous section, the construction of the DDS scheduler
is complex. In order to reduce the implementation complexity of the scheduler, we
extend the idea of hierarchical scheduling [15] and propose the hierarchical DiffServ
scheduling algorithm. The HDS algorithm separates the tasks of providing differentia-
ted services and maximizing switch throughput by employing two levels of schedulers.
One level is the central scheduler which is designed to maximize the switch through-
put by computing a maximal size matching (MSM) between input ports and output
ports. The other level is formed by input port schedulers which provide differentiated

18 MEI YANG, HENRY SELVARAIJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG.. .. ETQ.

services by serving cells belonging to different classes dynamically. In light of the idea
of exhaustive matching [17], the central scheduler employs a three-phase exhaustive
MSM algorithm. At the granted input port, the service policy changes according to
the bandwidth utilization at the destined output port such that minimum bandwidth
guarantees for EF and AF classes and fair bandwidth allocation for BE class are
provided.

In the HDS algorithm, at the start of each cell slot, each input port I; only needs
to send a 2N-bit vector P; to the central scheduler, where P;; = 2 if I; has more than
one EF cells in VOQ group Q; ;, P;; = 1 if I; has at least one cell in VOQ group O,
and P; ; = 0 otherwise.

5.1. THE HDS ALGORITHM

The HDS algorithm works in two stages.

Stage I: The central scheduler finds a maximal size matching in a three-phase
exhaustive scheme iteratively. We assume that each input port /; has an accept pointer
a; indicating the accept starting position, and each output port O; has a grant pointer g;
indicating the grant starting position. Each iteration of stage I consists of the following
three steps.

Step 1: Request. Each I; sends a request to every O; for which it has a queued cell.

Step 2: Grant. If an unmatched O; receives any request, it selects one request to
grant starting from the input port that g; points to in a round-robin manner. For the
first iteration, if P; ; = 2 for some I;, g; is updated to i, otherwise, g; is updated to
one beyond the granted input port.

Step 3: Accept. If an unmatched /; receives any grant, it selects one grant to accept
starting from the output port that a; points to in a round-robin manner. g; is updated
to the accepted output port.

After Stage I finishes, the central scheduler will send to each input port /; an N-bit
grant vector G;, and S, if there exists G;; = 1 for some j.

Stage II: For each input /; that receives a non-zero grant vector (assuming that
G‘,',j = 1), lf
K-1
Z Sixfwix) # 0, then it will select Q; ;¢ such that S;; = 1 starting from & = 1 to
k=1
K — 1; otherwise, it will select Q; jx with max{f(w;x) | f(wi k) > 0,2 < k < K}.

Figure 5 illustrates an example of the exhaustive scheduling algorithm used at
stage I for a 4 x 4 switch, At the beginning of the cell slot, grant pointers are set as
g1 =1,8 =3, g =3, and g4 = 2, and accept pointers are set as a; = 2, ax = 4,
as = 3, and a4 = 1. Given the request matrix P, in the request step, each input port
I; sends a request to each output O; with P;; > 0 for 1 < i,j < 4 as shown in Fig. 5
(a). As shown in Fig. 5 (b), in the grant step, each output grants one request starting
from its grant pointer and updates its grant pointer accordingly. Notice that O3 grants

il

Vol.

the
por
to t
sho
froa
hig]

ETQ.

idea
stive
12 to
vidth
3 are

eeds
than

Qi

hase
inter

er g
wing

cell.
st to
r the

d to

cept
ated

V-bit

that

Vol. 55 - 2009 SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH. ., 19

the request from I3 and let g3 stay at /3 since P33 = 2. In the accept step, each input
port accepts one grant starting from its accept pointer and updates its accept pointer
to the accepted output port as shown in Fig. 5 (c). The generated grant matrix G is
shown in the figure. Using such a pointer updating scheme, in the next cell slot, request
from VOQ group Q33 will continue to be favored, thereby serving EF traffic with the
highest priority.

i
0
1
)

No— =
—_— e — o
S oo o

0
0
1
0

o O -
oo - o

llnputs ()utp:xlsgl Ilniu:;—i)jﬁu:s I]nputs Ou;ptlus

53 g

D, o e

® 92D @S
a, a, 4

z B E . B

8,
(a) Request (b) Grant * (c) Accept &

R

R

Sg

AN Ny
o)
£ %P
Q &
J; =W

Fig. 5. An example of the exhaustive scheduling algorithm used at the central scheduler

Similar to the DDS algorithm, the HDS algorithm also finds a maximal weight
matching. However, different from the DDS algorithm, the HDS algorithm distributes
the selection of the highest weight request to each input port, hence simplifies the
operation at the central scheduler. In each cell slot, the central scheduler only needs
to find a maximal size matching. As one can understand, the tradeoff of the two-level
scheduling is that the maximal weight matching found by the HDS algorithm may not
be as good as the one found by the DDS algorithm in terms of the total weight.

5.2. HARDWARE IMPLEMENTATION SCHEME OF HDS

To implement the central scheduler, one can use the scheduler architecture shown
in Figure 6 (a), in which each input/output is associated with an arbiter, which is
responsible for selecting one out of N requests. Each arbiter can be implemented by
the parallel round-robin arbiter (PRRA) proposed in [26], which has O(log N)-gate
delay and consumes O(N) gates. We find through simulations that on average log N
iterations are adequate to achieve satisfying performance. Hence, the first stage of the
HDS algorithm can be implemented in O(log? N)-gate delay and O(N?) gates.

As shown in Figure 6 (b), each port scheduler majorly consists of K N-input
multiplexers, one K-input multiplexer, and one K-input comparator-tree, which is re-
sponsible for selecting the maximum weight value among all traffic classes of the
same VOQ group. Each port scheduler has O(log N + log K log b)-gate delay, where
b =max{b; | 1 < k < K}, and consumes O(NK + Kb) gates.

20 MEI YANG, HENRY SELVARAJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG,. .. ETQ. Vol

Grant Accept
arbiters arbiters
n : i : R i
¥
2
&
&
E 2 2
& R N aane
g 2%
o
=
7 2
S w s
&= N N
(a) kf fai
...................................... : ‘ eff
: —=q, ‘ .
w0 : q
Co o del
ftwy, 00— : Wi
f(wi,z,l) : D[

f(wi,'l,K) E

: : D e
) |

—:—J‘» E > Lomparator- trce
f(wi’NYK) : : k p

Fig. 6. (a) Block diagram of the central scheduler. (b) Block diagram of a port scheduler

The total delay of such an implementation of the HDS algorithm is O(log* N +
log K log b)-gate delay, which is faster than the implementation of the DDS algorithm,
O(log? N log b)-gate delay. The total number of gates needed for the HDS scheduler is
O(N?K + NKb), which is also smaller than that of the DDS scheduler, O(N 2Kb) gates.

In addition, the amount of information to be transmitted between each input port
and the central scheduler in the HDS algorithm is much less than in the DDS algorithm.
In each cell slot, in the HDS algorithm, each input port only needs to send 2N bits
to the central scheduler and the central scheduler only needs to send N + K bits back
to each input port, while in the DDS algorithm, each input port needs to send NKb
bits to the scheduler and the scheduler needs to send back NK bits to each input port.
Table 1 summarizes the difference of implementation complexity between HDS and
DDS.

ET.Q.

;2 N +
rithm,
iler is
gates.
t port
rithm.
V bits
s back
NKb
t port.
S and

Vol. 55 - 2009 SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH. .. 21

Table |

Comparison of the implementation complexity of HDS and DDS

Algorithm Time Area Bits sent from | Bits sent back
(gate delay) ' (number of gates)| each input | to each input
HDS | O(og® N +logK logh)| O(N?K + NKb) 2N N+K
DDS O(log® N log b) O(N*Kb) NKb NK

6. PERFORMANCE EVALUATION

We evaluate the performance of the DDS and HDS algorithms in two aspects:
fairness and efficiency, where fairness is measured by the received bandwidth and
efficiency is measured by the average cell delay and delay jitter. The cell delay is the
queuing delay that a cell encounters in the switch. For EF traffic, we also consider its
delay jitter performance, which is defined as the difference between the cell delays of
two consecutive cells. To validate our evaluation, we compare the performance of the
DDS and HDS algorithms with that of the PQWRR algorithm for OQ switches.

A cell-based simulator is developed and simulations have been conducted assuming
that all queue sizes are infinite. In our simulations, we consider bursty traffic arrivals
using 2-state modulated Markov-chain sources [21]. Each source alternately generates
a burst of full cells (all with the same destination) followed by an idle period of empty
cells. The number of cells in each burst or idle period is geometrically distributed. Let
E(B) and E(D) be the average burst length and the average idle length in terms of
the number of cells respectively. Then, we have E(D) = E(B)(1 — p)/p, where p is the
load of each input source. We assume that the destination of each burst is uniformly
distributed.

In all the simulations, we assume that the average cell arrival rates of EF class
and AF classes to each output link are 18%, 24%, 20%, 16%, and 12% respectively
by default. To ensure guaranteed service to EF traffic, we set its PIR a little more
than its arrival rate [11], e.g. R;; = 18% x 1.1 = 19.8%. The CIRs for AF1 through
AF4 to each output port are 24%, 20%, 16%, and 12% respectively. In the following
simulations, we assume the frame size is 1000 and by =4 forall 1 <k < K.

6.1. BANDWIDTH ALLOCATION

First, we evaluate the effectiveness of the DDS and HDS algorithms supporting
dynamic bandwidth allocation when a link is overloaded. We assume a 4 X 4 switch,
the average burst length E(B) = 32, and the number of iterations allowed for DDS and
the Stage I of HDS is 4. We assume that output link 1 is the overloaded link and we
vary the load to each VOQ group destined for output link 1 from 0.1 to 1.0.

22

MEI YANG, HENRY SELVARAJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG,. ..

ETO.

Received bandwidth

Received bandwidth

0.8 T T T T T T
£ EF
-~ AF1
Load
Fig. 7. Received bandwidth using PQWRR
0.35 T T T T T T
0.3 E
e &
0.25F -
g
0.2
\Qe'_,_‘e———»
0151 B
0.1 4
0.05 /\
«/‘9\9____*_,
0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 09 1

Load

Fig. 8. Received bandwidth using DDS

Vol.

at
cl

I
in

1.0, Vol. 55 - 2009

SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH...

23

0.35

031

0.25+

Received bandwidth

0.4

0.05

b
)
¥

°
&
T

=TEF
-~ AF1
-8 AF2
-0~ AF3
3 AF4
- BE

40

.) ' L ' L : L
0.2 0.3 0.4 05 0.6 0.7 0.8 0.8 1
Load

Fig. 9. Received bandwidth using HDS

3"

Average cell delay (cell slots)

& HDS
4 0DS A
-O- POWRRA

Load

Fig. 10. Delay performance of EF traffic

Figures 7 to 9 show the received bandwidth of each traffic class for PQWRR, DDS,
and HDS respectively. For a load below 0.25, the received bandwidth of each traffic
class is able to keep up with its arrival rate for three schemes. However, for a load
beyond 0.25, the received bandwidth of EF traffic by PQWRR still follows the arrival
rate without regarding to the limitation of its PIR. For a load beyond 0.30, due to the
influence of damaging EF traffic, the received bandwidth of AF traffic by PQWRR is
degrading dramatically, and BE traffic cannot get any service at all.

On the other hand, DDS and HDS guarantee but limit the received bandwidth of
EF traffic to its PIR, 19.8%, assure the CIR for each AF traffic, and avoid the starvation
of BE traffic when the load is greater than 0.25. For example, when the load is at 0.40,

24 MEI YANG, HENRY SELVARAJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG,. .. ETQ.

the bandwidth received by EF, AF1, AF2, AF3, AF4, and BE traffic for DDS is 19.8%,
25.70%, 21.37%, 16.60%, 12.92%, and 3.6% respectively, while for HDS is 19.8%,
25.45%, 21.76%, 17.10%, 12.89%, and 3.0% respectively. Such bandwidth distribu-
tions conform to the design goal of DDS and HDS, which is to provide minimum
bandwidth guarantees for non-BE classes and fair bandwidth allocation for BE class.

6.2. DELAY PERFORMANCE

Next, we examine the delay performance of DDS and HDS using simulations of a
16 x 16 switch under bursty arrivals assuming E(B) = 32 and the destination of each
burst uniformly distributed. The number of iterations allowed for DDS and HDS is set
as 4. Figure 10 shows the average cell delay vs. load of EF traffic for DDS, HDS, and
PQWRR. The average cell delay of EF traffic using DDS is very close to that using
PQWRR. The average cell delay of EF traffic using HDS is not as good as that using
DDS and PQWRR. Figure 11 shows the jitter distribution of EF traffic at load 0.90
for DDS, HDS, and PQWRR. For DDS and HDS, over 90% EF traffic has jitter less
than 1 cell slot, which is comparable to PQWRR.

1

-4 HDS
<A DDS
A~ PQWRR

Percentage of celis
o
o

. L L L L L L L L
2 4 8 8 10 12 14 16 18 20
Jitter (cell slots)

Fig. 11. Ef jitter distribution

Figure 12 shows the average cell delay vs. load of AF1 and AF?2 traffic for DDS,
HDS, and PQWRR. Figure 13 shows the average cell delay vs. load of AF3 and AF4
traffic for DDS, HDS, and PQWRR. The average cell delay of each AF class using
DDS is close to that using PQWRR for loads below 0.95. For loads over 0.95, DDS
performs even better than PQWRR. The reason is that DDS uses a function of the
waiting time as the weight but PQWRR uses the queue length as the weight. In Figure
13, for loads lower than 0.60, HDS performs close to PQWRR. With loads going
up, the performance of HDS is degrading. Figure 14 shows the average cell delay

of a
cach
S set

and
sing
sing
0.90

less

DS,
AF4
sing
DS
“the
oure
oing
elay

Vol. 55 - 2009 SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH. .. 25

vs. load of BE traffic for DDS, HDS, and PQWRR. For loads lower than 0.90, HDS
performs better than DDS and PQWRR. In general, DDS outperforms HDS in delay
performance. This is consistent with our intuition that using a centralized scheme DDS
tends to find a larger weight maximal weight matching than HDS.

10 T T T T T T T T

-4~ HDS-AF1
4. DDS-AF Y
-A- PQWRR-AF1
-6~ HDS-AF2
O DDS-AF2
-0~ PQWRR-AF2

Average cefl defay (celi slots)

load

Fig. 12. Delay performance of AFI and AF2 traffic

10 T T T T T T T

&~ HDS-AF3
4 DDS-AF3
-0~ PQWRR-AF3
~6- HDS-AF4
10*} |-© DDS-AF4
-0~ PGWRR-AF4

Average celt delay (cell slots)

0 L L L

L L . A
0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
Load

Fig. 13. Delay performance of AF3 and AF4 traffic

26 MEI YANG, HENRY SELVARAJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG.. .. ET.Q.

—4- HDS 3
A DDS
-&- PQWRR

Average cell delay (cell slots)

10° L L L L L L 1 I
0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1

Load

Fig. 14. Delay performance of BE traffic

In the worst case, N iterations are needed for DDS to find a maximal weight
matching. Similarly, at most N iterations are needed for the central scheduler of HDS
to find a maximal size matching. However, the number of iterations allowed in one cell
slot is limited in reality. Figures 15 and 16 show the effect of the number of iterations
allowed on the average cell delay of AF1 traffic using DDS and HDS respectively. We
can see that DDS or HDS with 2 iterations achieves significant performance impro-
vement over DDS or HDS with 1 iteration. The performance of DDS or HDS with 4
iterations is very close to the performance of DDS or HDS with 16 iterations. That is
why we set the number of iterations allowed as 4 for previous simulations on 16 X 16
switches.

The purpose of using frame is to smooth bandwidth sharing of AF traffic in a finer
way. As we can understand, the smaller the frame size, the finer bandwidth sharing.
However, smaller frame size may introduce longer cell delay. Figure 17 and Figure 18
show the influence of different frame sizes to the average cell delay of AF classes for
DDS and HDS respectively. It shows that the performance of classes AF1 and AF2
improves, while the performance of classes AF3 and AF4 degrades as the frame size
increasing from 1000 to 10000. In the previous simulations, we set the frame size at
1000.

Vol.

2 T.Q.

eight
HDS
> cell
tions
. We
\pro-
ith 4
1at is
X 16

finer
ring.
re 18
s for
AF2
 size
ze at

Vol. 55 - 2009 SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH. ..

27

10 T T T 7 T T T

~&- 1 iteration

-9~ 2 fterations
-8~ 4 jferations
—%- 16 iterations

AU RLL A

Average cell delay (cell siots)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load

Fig. 15. Delay performance of AF1 traffic with different number of iterations allowed using DDS

10 T T T T T

~£ 1 iteration

~&- 2 terations
~5- 4 iterations
—©- 16 iterations

Average celi delay (cell slots)

100 i) i 1). 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1
Load

Fig. 16. Delay performance of AF! traffic with different number of iterations allowed using HDS

28 MEI YANG, HENRY SELVARAIJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG.. .. ETQ. Vol. -

800 T T T T T
//e\\e/é\ﬂ
o the 1

80O) & AF1)

-o- AF2 alloc
- AF;

7001 o e 1 at o
600 4 and
2 BE
;%500‘ b gene
P . e quet
g com
200) port

ZOOliZ\\T\\e\e-.\e) , tradf

B :
e in th
100 T - .
T A and
10000 20‘00 30‘00 40‘00 50‘00 6(;00 70‘00 8(;00 90’00 10000 mOd‘
Frame size
Fig. 17. Delay performance of AF1 traffic vs. different frame sizes using DDS
1. I
P
P
2. £
900 T T T T Iy
\/ C
800} ey 1 3.8
T f
-0~ AF4 ;‘ 4. F
g0 ‘ e
% 5. I
g

& e g e e " 2

S 600} E
3 6. C
8 s
2 so0k 7. F
Mﬂﬂe\eﬂe_\eﬂﬂ I
8 S
400 i ,
A_A\ I}
\&_—A\ﬁ—_——«&\&__._.g_._\ N . 9 J
300 . : ; . ; . . . ; I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 - 1 0 I
Frame size . . ‘

Fig. 18. Delay performance of AF1 traffic vs. different frame sizes using HDS 11

s
3
2
I
¥

Vol. 55 - 2009 SCHEDULING ARCHITECTURES FOR DIFFSERV NETWORKS WITH. .. 29

7. CONCLUSION

In this paper, we proposed the dynamic DiffServ scheduling (DDS) algorithm and
the hierarchical DiffServ scheduling (HDS) algorithm, to support dynamic bandwidth
allocation for DiffServ classes on IQ switches. With bandwidth measurement scheme
at output ports, both DDS and HDS provide minimum bandwidth guarantees for EF
and AF traffic with the reserved bandwidth as well as fair bandwidth allocation for
BE traffic with the excess bandwidth. We show that DDS is starvation-free since it
generates the weight based on the waiting time of the head-of-line cell instead of the
queue length. Compared with DDS, the advantage of HDS is that the implementation
complexity and the amount of information needs to be transmitted between each input
port and the central scheduler are much reduced by using a hierarchical scheme. The
tradeoff of HDS is its slightly worse delay performance compared with DDS, as shown
in the simulation results. Since IQ switches are more scalable than OQ switches, HDS
and DDS are very useful to implement DiffServ model and other differentiated service
models, such as the Olympic service [9].

8. REFERENCES

I. D. Adami, S. Giordano, M. Pagano,R. Secchi: Optimization of scheduling algorithms
parameters in a DiffServ environment, Symposium on Applications and the Internet Workshops, 2005,
pp. 276-279.

2. A. Bader, G. Karagiannis, L. Westberg, et. al.: QoS signaling across heterogeneous
wired/wireless networks: resource managment in DiffServ using the NSIS protocol suite, International
Conference on Quality of Service in Heterogeneous Wired/Wireless Networks 2003, pp. 51-56.

3. S. Blake,D. Black,M. Carlson, E. Davies, Z. Wang, W. Weiss: An architecture
Jor differentiated services, IETF RFC 2475, Dec. 1998,

4. R. Braden, D. Clark, S. Shenker: Integrated services in the Internet architecture: an
overview, IETF RFC 1633, 1994.

5. B. Carpenter, K. Nichols: Differentiated services in the Internet, Proceedings of the IEEE.
2002, vol. 90, no. 9, pp. 1479~1494.

6. C. Chen, M. Komatsu: An adaptive scheduler 1o provide QoS guarantees in an input-buffered
switch, International Conference on Communications, 2002, vol. 2, pp. 1118-1122.

7. F. Chiussi, A. Francini: A distributed scheduling architecture for scalable packet switches,
IEEE Journal of Selected Areas in Communications 2000, vol. 18, no. 12, pp. 2665-2683.

8. S. Floyd, V. Jacobson: Link-sharing and resource management models for packet switches,
IEEE/ACM Transactions on Networking 1995, vol. 3, no. 4, pp. 365-386.

9.J. Heinanen, F. Baker, W. Weiss, J. Wroclawski: Assured forwarding PHB group,
IETF RFC 2597, 1999.

10. LS. Hwang,B.J. Hwang, C.S. Din g: Adaptive weighted fair queueing with priority (AWFQP)
scheduler for DiffServ networks, Journal of Informatics & Electronics 2008, vol. 2, no. 2, pp. 15-19.

11. V. Jacobson, K. Nichols, K. Poduri: An expedited Jorwarding PHB group, IETF REC
2598, 1999,

12. H. Jiang, W. Zhuang X. Shen, A, Abdrabou, P. Wan g Differentiated services for
wireless mesh backbone, IEEE Communications Magazine 2006, vol. 44, no. 7, pp. 113-119.

30

MEI YANG, HENRY SELVARAIJ, ENYUE LU, JIANPING WANG, S. Q. ZHENG,. .. ETQ.

13.

14.

15,

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. Kam, K. Sui: Linear complexity algorithms for QoS support in input-queued switches with no
speedup, IEEE Journal of Selected Areas in Communications 1999, vol. 17, no. 6, pp. 1040-1056.
N, D. Kiameso, H. Hassanein, H. T. Mouftah: Analysis of prioritized scheduling of
assured forwarding in DiffServ Architectures, IEEE International Conference on Local Computer
Networks, 2003, pp. 614.

H. Kim,K. Kim, Y. Lee: Hierachical schedulé’ng algorithm for QoS guarantee in MIQ switches,
IEEE Electronic Letters 2000, vol. 36, no. 18, pp. 1594-1595.

S. Li, N. Ansari: Provisioning QoS features for input-queued ATM switches, Electronics Letters
1998, vol. 34, no. 19, pp. 1826-1827.

.Y Li,S. Panwar, H J. Chao: The dual round-robin matching with exhaustive service, IEEE

Workshop on High Performance Switching and Routing, 2002, pp. 58~63.

G. Mamais, M. Markaki, G. Politis, L S. Venieris: Efficient buffer management
and scheduling in a combined IntServ and DiffServ architecture: a performance study, International
Conference on ATM, 1999, pp. 236-242.

J. Mao, W.M. Moh, B. Wei: POWRR scheduling algorithm in supporting of DiffServ, Interna-
tional Conference on Communications, 2001, vol. 3, pp. 679~-684.

N. Mckeow n: Scheduling algorithms for input-buffered cell switches, Ph. D. Thesis, Univerity of
California at Berkeley, 1995.

N. Mck e ow n: The iSLIP scheduling algorithm for input-queued switches, IEEE/ACM Transactions
on Networking 1999, vol. 7., no. 2, pp. 188-201.

T.Minagawa,T. Kitami: Packet size based dynamic scheduling for assured services in DiffServ
network, Electronics and Communications in Japan 2004, vol. 88, no. 1, pp. 12-20.

R. Schoenen, G. Post, G. Sander: Prioritized arbitration for input-queued switches with
100% throughput, IEEE ATM Workshop, 1999, pp. 253-258.

M. Song, M. Alam: Two scheduling algorithms for input-queued switches guaranteeing voice
QoS, IEEE GLOBECOM, 2001, pp. 92-96.

Y. Zhang, P. G. Harrison: Performance of a priority-weighted round robin mechanisms for
differentiated service networks, IEEE International Conference on Computer Communications and
Networks, 2007, pp. 1198-1203.

S.Q. Zheng, M. Yang,J. Blanton, P. Golla, D. Verchere: A simple and fast parallel
round-robin arbiter for high-speed switch control and scheduling, IEEE Midwest Symposium on
Circuits and Systems, 2002, pp. 671-674.

ac
pro
cial
of ¢
de,
the
suc
me
cor

rely

ETQ.

ith no
056.

ing of
nputer
jtches,
_etters

IEEE

ement
itional

terna-
rity of
ctions
iffServ
s with
' voice

ms for
15 and

arallel
1m on

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 1, pp. 31-46

Software versus hardware testing of microprocessors

JANUSZ SOSNOWSKI, PIOTR GAWKOWSKI1

Institute of Computer Science, Warsaw University of Technology,
ul. Nowowiejska 15/19, Warsaw Poland,
Email: jss@il.pw.edu.pl

Received 2008.12.18
Authorized 2009.01.12

The paper deals with the problem of developing built-in-self-test (BIST) in micropro-
cessors. We outline classical approaches based on hardware implementations, show their
drawbacks and present software implementations, which can increase test effectiveness.
Combining these two approaches we describe possibilities of improving test observability
using available on-chip mechanisms related to on-line testing and event monitoring. The
presented considerations are completed with an original technique based on application
driven testing.

Keywords: BIST, autotesting, test effectiveness, microprocessor testing

1. INTRODUCTION

High system dependability (reliability, availability, safety, maintainability, etc.) is
a common requirement for most contemporary digital systems used in classical data
processing, telecommunication, process control, microcontrollers, etc. One of the cru-
cial points in achieving high dependability is efficient testing to check the correctness
of system operation [1,18,29,31]. In general, we have off-line (performed in a test mo-
de, e.g. for maintenance purposes) and on-line testing (performed concurrently with
the running application). These two approaches are supported with special hardware
such as design for test (DFT), built-in-self-test (BIST) and on-line error detection
mechanisms [1,29]. All of them involve some circuit and performance overheads. In
commercial circuits (e.g. microprocessors) and systems these mechanisms do not cover
many functional blocks or are limited to specific fault classes. Hence, we still cannot
rely only on these approaches.

32 i JANUSZ SOSNOWSKI, PIOTR GAWKOWSKI ETQ.

Classical BIST and DFT techniques provide a special test mode, which does not
cover some features of the operational mode. In systems comprising processors we have
the possibility to eliminate this gap with software based self-testing (SBST). In our
Institute advanced studies on SBST have been initiated in 90s [25,26] and continued
later on [27-31]. This approach gained significant interest in recent literature (e.g.
[13,14,16,20] and references). In practice, the problem of balancing hardware and
software approaches to testing arises. We have got some experience in dealing with
this concept. In particular, we have improved test observability using various on-line
monitoring. Many microprocessor systems dedicated for unique applications (most
embedded systems) use the hardware resources in a limited way — this creates the
possibility of test simplification by application driven testing, which we have verified
in some microcontrollers.

In section 2 we give an outline of hardware mechanisms improving microprocessor
testability and discuss their capabilities. Software based approaches are discussed in
section 3, here we also consider the problem of integrating hardware and software ap-
proaches to assure better fault coverage at a lower cost. The possibilities of simplifying
tests for fixed applications are presented in section 4. Final conclusions are given in
section 5.

2. HARDWARE MECHANISMS SUPPORTING MICROPROCESSOR TESTS

Various hardware mechanisms are being developed to improve circuit testability. In
general, we can distinguish 3 classes of these mechanisms: improving test observablity
or controllability, assuring autodiagnostics and on-line testing. The first class relates
to design for test (DFT) approaches which provide a better access to functional block
inputs (controllability) and outputs (observability). The most universal technique within
DFT is the test scan path, which introduces a test mode with serial test interface. In
the test mode the circuit flip-flops are reconfigured into a shift register. So, we can
shift-in a test vector into internal flip-flops of the tested circuit, generate a single clock
pulse to store the test responses in these flip-flops and then shift them out (e.g. to
check by a signature monitor). This idea can be optimised by selecting only some
subsets of flip-flops (partial scan path), creating multiple test paths, optimising their
configuration, etc. In the literature various scan path techniques have been proposed to
assure a balance between the testability and costs (circuit overhead and performance
degradation) [1,22,33]. Some other ad hoc DFT solutions use multiplexers (for normal
and test data, to cut signal loops, etc.) and other circuit specific adaptations (e.g.
test registers embedded in hardly accessible circuit parts like address part of CPU
cache memory). Typically, the required test patterns comprise a lot of don’t cares, so
sometimes it is reasonable to provide them to the tested circuit in a compressed form.
This results in supplementary decompression circuitry embedded into DFT mechanisms
[22]. Classical scan based tests assure high coverage for non delay defects. Delay fault

Vol.

test;
soft

test
ar fi
sign
offe
Fun
by @
and
a lis
test
nisn
tran
In ¢
rang
For
have
tion
CoVe
duri
levis
intre
will

is U
dwa
(L1
ban}
tests
tests
(ext
and

oper
freq
supg
and

SOm
and

bala
non

tests

. T.0.

 not
have

our
wed
(e.g.

and
with
-Jline
nost
- the
ified

SO
d in
> ap-
ying
n in

y. In
blity
lates
lock
ithin
. In
can
lock
. to
ome
their
>d to
ance
rmal
(e.g.
CP

S, SO
orm.
isms
fault

Vol. 55 — 2009 SOFTWARE VERSUS HARDWARE TESTING OF MICROPROCESSORS 33

testing needs more complex DFT circuitry or BISTs. However, native mode testing in
software based self-tests facilitates to resolve this problem (compare section 3).

Natural extension of DFT techniques is autotesting circuitry (BIST — built-in-self-
test). Circuit level (or structural) BISTs use various scan path techniques, employ line-
ar feedback shift registers (LFSRs) and signature analysers (e.g. MISR — multi input
signature register) for test vector generation and result compaction, respectively. They
offer good test quality at the cost of area overhead and some performance degradation.
Functional BISTs use special instructions for testing. Test instructions can be generated
by an additional hardware (pseudorandom generator or deterministic generator). In 90s
and early 2000s DFT and BIST circuitry comprised in most microprocessors covered
a limited chip area ([22,29,32] and references). Most BISTs were targeted at simple
test algorithms detecting single stuck-at faults. In most microprocessors BIST mecha-
nisms are limited to some functional blocks such as cache memories, memory address
translation buffer (TLB), branch target buffer (BTB) with branch prediction circuitry.
In contemporary processors the microarchitecture circuitry is beyond DFT or BIST
range due to unacceptable chip area overhead and possible performance degradation.
For complex circuits, e.g. SoC (system on chip) or SiP (system in package), we may
have separate BISTs related to various resources or common BISTs for similar func-
tional blocks. The used BIST approaches are limited to some specific test algorithms
covering a basic class of faults and cannot be adapted to new fault models revealed
during exploitation ([29,31] and references). These limitations are systematically al-
leviated in recent microprocessors and some optimisation of test management is also
introduced (lowering power consumption, reducing test time and test data volume). We
will illustrate this trend in the sequel.

An example of complex processor with sophisticated DFT and BIST mechanisms
is UltraSPARC T1 [32]. It is composed of 8 Sparc processor cores, each has 4 har-
dware supported threads per instruction pipeline. Each core comprises level one cache
(L1) and has an access, via fast switch, to a common second level (L2) cache (4 ways
banked). DFT features provide several test access modes and are targeted at production
tests with high stuck-at fault coverage and high toggle coverage (bit flips) for burn-in
tests. In RAMTEST mode a direct access interface is available to facilitate testing
(externally) of embedded RAM structures (L1, L2 caches, etc.). In MBIST mode L1
and L2 caches are tested with BIST performing modified March C- algorithm (20n
operations, n is the number of memory words). This is at-speed test (with internal clock
frequency). For the remaining memory arrays (278 small memories) there is Macrotest
support based on so called memory scan collars providing accesses to their inputs
and outputs but at low speed. Such additional functional at-speed tests are needed for
some critical memories. The processor is almost a full-scan design (only 3% flip-flops
and latches are out of the scan). Good testability is assured by 32 parallel scan chains
balanced to reduce test time: 16 chains within CPU cores (2 per core) and 16 within the
non core circuitry. Tests are performed individually on each CPU core and additional
tests check the interoperability of the multicore structure. To speed-up the tests, it is

34 JANUSZ SOSNOWSKI, PIOTR GAWKOWSKI ETO.

planed to develop parallel testing of all cores. Moreover, power testing is performed
which involves maximum activity of cores up to 32 threads. The automatically gene-
rated test patterns (ATPG) cover 92% stuck-at faults, Macrotest patterns increase this
to 94%. It was found that 4-8% memory arrays passed RAMTEST but failed MBIST.
This confirms that dynamic defects in memories are important (detected by high speed
MBIST, which assures at-speed testing).

A study of improving testability in AMD Athlon processor is presented in [22].
The main idea was to introduce modular testing based on scan chains. The initial single
level design assumed scan paths with maximum 4000 flip-flops. Partitioning the chip
into 10 modules scan paths were reduced to 33-921 flip-flops, at the cost of about
5% increase of flip-flops. Unfortunately, this resulted in an increase of the number
of test patterns by 370% and 290% for compressed and non compressed version,
respectively. However, the test time reduction due to shorter test paths was 40% and
68%, respectively. Introducing the second level of partitioning of the main modules
(in total 33 submodules, 1-6 submodules per module) better results were achieved:
test time reduction over 80% at the cost of 6.5% of additional flip-flops. The test data
volume was similar to the basic solution. Moreover, the modular approach assured
higher fault coverage.

In parallel with DFT and BIST mechanisms various on-line error detection and
system monitoring circuitry are included. The on-line error detectors mostly relate to
various error detection (or correction) codes in memory structures and transmission
channels. They cover faults with limited multiplicity e.g. single faults. Most micro-
processors generate so called exceptions in abnormal situations e.g. memory access
violation (AV), illegal instruction (I), privileged instruction (PI), breakpoint (BP),
stack overflow (SO), integer overflow (I0). We have analyzed the effectiveness of these
mechanisms for a sample of programs executed under Windows at IBM PC platforms
by injecting bit flip faults. These faults generated 16-70%, 0-15% and 13-50% excep-
tions, for faults located in the program code, data memory area and CPU registers,
respectively. The distribution of activated exceptions was as follows (they confirm the
dominating effectiveness of access violation):

AV: 56-96%, 95-100%, 98-100%; 11: 3-14%, 0%, 0-1%;
SO: 0-6%, 0%, 0%; 10: 0-3%, 0%, 0%.

In contemporary processors we have more functional blocks with higher comple-
xity. Quite often it happens that some blocks are replicated e.g. multicore processors,
multiple ALUs, multithreaded control units. On one hand this creates new challenges
for testing but on the other hand some possibilities to simplify testing appear. In systems
with built in redundancy, e.g. based on duplication, test results can be easily compared
from two modules e.g. at the level of bus transfers. Some processors adapted for fault
tolerant structures comprise a built in comparator at the level of external bus. So in

Vol. 5

the s
proce
]
impa
meck
cesse
pipel
90s (
hards
€0-0]
Som
(load
be cl
point
coun
intery
adde
load
with
cond:
The
allow
times
etc. 1
In fir
event
than :
In the
becor
syste:
can h
CPU
POW
other:
some
monis
with
L
opera
the te

some
state

ETQ.

rmed
rene-
> this
3IST.
peed

[22].
ingle
chip
ibout
mber
sion,
, and
dules
eved:
“data
sured

\ and
e to
ssion
icro-
ccess
(BP),
these
orms
Xxcep-
sters,
n the

nple-
SSOTS,
enges
stems
pared
fault
So in

Vol. 55 ~ 2009 SOFTWARE VERSUS HARDWARE TESTING OF MICROPROCESSORS 35

the slave mode they compare states on the bus with those produced internally by the
processor. All these mechanisms improve test observability.

Many manufacturers have added so called performance counters to monitor the
impact of various architectural mechanisms on the system performance [11,28]. These
mechanists can also be used during testing to improve observability of some hardly ac-
cessed blocks e.g. related to the microarchitecture circuitry, instruction flow through the
pipeline. Original studies related to this problem have been initiated in our Institute in
90s ([28] and references) and continued later on. Typically, the performance monitoring
hardware (PMH) detects and counts events related to instruction decoding, memory
co-operation, resource utilisation, instruction flow cache, TLB and BTB operation, etc.
Some examples of monitored events are the number and type of instructions completed
(loads, stores, branches, floating point). The utilisation of a considered resource can
be characterised by counts of the number of cycles a given resource (e.g. floating
point multiplier) is in use or busy. Appropriate configuration of monitor detectors and
counters provides the requested information under various conditions for specified time
intervals or program execution points, segments [11,28]. Sometimes event masks are
added for better qualification of interesting events, e.g. in Pentium II detection of
load accesses to the L2 cache allows specifying a mask to select accesses to lines
with a specified state (modified, shared, exclusive, valid). We can similarly create a
condition to mask out events qualified by the current privilege level of the processor.
The counting process can be tuned to specified edge and threshold conditions. This
allows counting the number of stalls or total number of stall cycles, the number of
times the processor completed in a cycle more than a specified number of instructions,
etc. Newly developed processors extend the number of detected events and counters.
In first Pentium processors only a few counters were available. Pentium 4 provides 48
event detectors and 18 event counters. This assures more data collected simultaneously
than in older processors. In the case of testing this will reduce the number of test runs.
In the newer processors the interface between the monitoring hardware and software is
becoming more complex, hence some supporting software is available at the operating
system or user level [11] (e.g. brink and abys). In the case of multicore processors we
can have independent counters for each core (e.g. POWER 4 implements 8 counters per
CPU and they can be divided into 2 sets of 4 counters for monitoring each thread). The
POWER 5 provides many events: the most critical are linked directly to the counters,
others are selected and transmitted via three 32 bit busses. Beyond event monitoring
some processors comprise supply current monitoring (IDDQ). Tests involving IDDQ
monitoring are quite efficient, in [33] 90% stuck-at fault coverage has been achieved
with 10 test patterns.

DFT and BIST mechanisms operate in a test mode, which differs from the normal
operation mode. Hence, some circuitry used in the operational mode is not checked in
the test mode (circuit reconfiguration). With DFT and BIST techniques we also face
some power problems [36]. The achieved high test controllability results in frequent
State changes of signals within the circuit during testing. This may be much more

36 JANUSZ SOSNOWSKI, PIOTR GAWKOWSKI ETQ.

than during the normal operation, so the problem of excessive power consumption and
circuit overheating may appear. This issue can be taken into account while configuring
the test strategies e.g. by performing test sequentially for different functional blocks. As
the nanotechnology scales down more attention is needed to delay faults by developing
specially adapted DFT and BIST circuitry. Moreover, increasing circuit complexity
leads to the requirements of faster tests and lower volume of test data (compression
techniques). DFT and BIST mechanisms based on structural testing are not acceptable
in many functional blocks (e.g. microarchitecture) due to excessive area overhead,
performance degradation and power consumption. '

Resuming we can state that hardware implemented testability improving mecha-
nisms facilitate testing and increase fault coverage, but they do not resolve the testing
problems completely. The outlined test gaps in DFT and BIST as well the need for
functional tests checking module interactions and normal operational mode are chal-
lenging problems for software based testing.

3. SOFTWARE BASED SELF-TESTING

The drawbacks of hardware implemented testing (outlined in section 2) can be
alleviated by software based testing (SBST), which uses inherent system intelligence
of the incorporated CPUs. SBST techniques move the testing processes from external
testers to the tested chip by using native processor language to generate test stimuli
and analyse test responses. This approach assures an operation in normal conditions
(at-speed tests). SBST can be used in classical computer systems, embedded SoC and
SiP systems which comprise deeply integrated processors usually with no direct access
from the outside.

In software based testing (SBST) the CPU applies test patterns to the functional
blocks [4,8,12,13,23,29] by standard read/write instructions related to these blocks.
The test data can be either stored in memory or generated by a test program running
on CPU. The CPU captures test responses with read instructions. The methods of
testing system functional blocks depend upon their program level visibility. From the
program level perspective we can distinguish visible, partially visible, not visible and
hidden components. For visible components we can control their inputs and observe
outputs with single or coupled instructions. These components can be accessed via
data (inputs and outputs relate to program data e.g. data processing units such as ALU,
barrel shifter, memory and data transfer units) or via addresses (e.g. program counter,
address calculation unit). Partially visible components generate control signals, which
affect the operation of visible components (e.g. operation mode register, instruction
sequencer). Hidden components are used for improving system performance (e.g. CPU
microarchitecture circuitry). Hidden and nonvisible components (related to external
environment co-operation) are difficult to test.

SBSTs can be based on functional or structural approaches. Functional SBSTs use
high abstract level models related to instruction sets (e.g. [4,8,17,21,27]). To achieve

Vol.

higl
witl
SBS
thei
patt
vari
riou
(e.g
deta
[27]
mer
this
com

stru
[15]
tests
for I
96.4
sion
62%
than

RIS
sure
test |
fest

flow
of e
T2%
fault
addi
mult
(mos
test |
adde
ms,
peric

use ¢
This
1S mi

ETQ.
1 and
uring
S. As
ping
exity
$sion
table
head,

echa-
sting
d for
chal-

n be
rence
ernal
imuli
tions
> and
ccess

ional
ocks.
ning
ds of
n the
e and
serve
d via
ALU,
unter,
vhich
iction

CPU.

ternal

s use
hieve

Vol. 55 - 2009 SOFTWARE VERSUS HARDWARE TESTING OF MICROPROCESSORS 37

high fault coverage they need long test sequences. Their effectiveness can be improved
with additional pseudorandom instruction sequences (PSR) [19,26,27,30]. Structural
SBST bases on finding test patterns targeted at specified components in relation to
their low level models (e.g. gate level) and logic faults [4,6,15,34]. So, generated test
patterns are transformed into appropriate instruction sequences (taking into account
various restrictions). This approach can be encountered for simple processors and va-
rious test pattern generators were proposed. Many functional blocks of regular structure
(e.g. ALU, barrel shifter, register file, RAM) can be tested with high accuracy without
detailed knowledge of their implementation (mixed structural and functional approach
[27]). In developed SBST methods the authors optimise test time, memory require-
ments, fault coverage, and average power consumption [30,36]. Some experience with
this approach in our Institute is reported in {26-31] and references. In the sequel we
comment selected results.

Classical functional test approaches assure 80-95% stuck-at fault coverage. Using
structural approach it is possible to assure 95-99.8% fault coverage for path delays
[15]. Pseudorandom tests of the same length assure only 40-80% [15]. However PSR
tests may cover other fault models (including not known). Improved functional SBST
for Plasma RISC processor assured 90-99.9% of fault coverage for visible components,
96.4% for hidden (pipelines), 63.1% for others and 95.6% total [19]. In [2] some exten-
sion of SBST into self diagnostics (SBDT) was proposed. It allows uniquely diagnose
62% of single stuck-at faults and to classify 84% in equivalent classes containing less
than 10 faults for i8051 microcontroller [2].

Simple short pseudorandom tests assure relatively low fault coverage e.g. for Open-
RISC1200 processor [16] basic random instruction test (about 37000 instructions) as-
sures 68% fault coverage. Directed random test generator presented in [16] optimises
test patterns generated for the processor functional model (gate level independent). This
test uses some set of template instruction blocks, special test data related to control
flow and corner cases. The operands in the block templates are random (several tenths
of each template were instantiated). A balanced selection of templates assures over
72% fault coverage. Test cases are improved by identifying functional blocks with low
fault coverage and adding more templates targeted at these blocks. In particular 300
additional templates targeted at multiplier circuitry increased fault coverage to 78% (the
multiplier contained abut 42% of the processor faults). The third round of improvement
(mostly for ALU — 500 additional template instances) assured about 83%. The random
test for the register file was not satisfactory, so some RTL level deterministic test was
added resulting in 86.5% of total CPU fault coverage. The test duration was about 27
ms, which is a small fraction for most applications. So, such tests can be embedded in
periodic testing with reasonably high frequency to mimic on-line testing [31].

Developing test sequences for functional blocks with limited access we have to
use special sequences of instructions to apply test stimuli and check their responses.
This increases the test time and may interfere with optimal flow of test stimuli. This
is more critical in testing components not visible at the software (assembler) level. In

38 JANUSZ SOSNOWSKI, PIOTR GAWKOWSKI ETQ.

particular this holds for performance mechanisms related to speculative execution units
e.g. ‘branch prediction circuitry, instruction pipelines, prefetch units, address genera-
tion circuitry (microarchitecture circuits — [28,29] and references). Faults within this
circuitry may result in performance and operational errors. The performance errors
cause lower processing speed while assuring correct functional results. For example,
an erroneous branch prediction may result in flushing the pipeline and correcting the
misspredicted branch target during the branch completion phase. So, the only penalty is
loss of some clock cycles. Operational errors propagate to the results of the functional
tests due to the implied faulty execution flow of the test program.

Test controllability and observability problems in SBST approach can be alleviated
with additional hardware improving testability (e.g. test registers, which provide direct
access to blocks with low controllability or observability: bit cells in cache memories,
BTB and TLB structures). We can also employ special test instructions dedicated to
some functional blocks (instruction level design for testability). Such instructions may
be interleaved with normal application related instructions to assure periodic testing
([23] and references). They can be executed during cache miss cycles or replace NOP
instructions, which appear quite often due to branch delays, etc. For simple PAYEX
RISC processor hardware BIST and instruction level DFT resulted in 13.1% and 5.6%
area overhead with fault coverage (stuck-at faults) of 91-100% and 82-97%, respectively
[23].

Test observability can be significantly improved using the on-chip counters as well
as available on-line detectors. These mechanisms allow us to catch the effects, which
normally escape classical software based functional tests targeted at operational errors.
We use these mechanisms in testing CPU microarchitecture, in particular, circuitry
involving parallel processing of instructions (e.g. decoding), speculative circuitry sup-

ported with various memories such as caches, TLB and BTB. They have significant -

impact on system performance, which is not visible directly at the program level.
Cache memories constitute significant part of CPUs. Unfortunately, software te-
sting of caches is quite complex due to accesses conditioned by tag addresses (stored
in cache directory) and comparison circuitry. Moreover, in instruction caches read and
write operations are invoked by instruction execution. Original test procedures were
presented in [25]. They can be significantly simplified using on-chip monitoring. In
particular, we can count cache hits (or misses), data writes and CPU clock pulses
during execution of test sequences. This simplifies and improves test observability. So,
each test procedure has to be preceded with reading the states of these counters. They
are verified at specified points of tests. For data caches we have reduced significantly
test execution from 15n+9 to 11n+6 operations in the test of the cache control logic;
and from 92n+2Del to 25n +7 + 2Del for the cache directory test based on March G
algorithm (n is the number of memory words, Del is about 100ms delay). Similarly
we have reduced abut 3 times the execution time of tests for instruction caches, in
particular we do not need additional sequences assuring that the cache delivers the

Vol.

reqt
cacl

tem
POs:
inst;
con
is s
Inte
on-(
take
cycl
nuIm
of s
ever
to a:
alig
cach
time
the s
of C
the
distt

ce tc
instr
capa
cesst
proc
79%
Thes

cove

2. T.0.

nits
1era-

this
rrors
nple,
y the
Ity is
jonal

jated
irect
ries,
>d to
may
sting
NOP
YEX
5.6%
ively

well
/hich
TOTS.
uitry
sup-

icant .

e te-
fored
| and
were
g. In
ulses
. So,
They
antly
ogic;
ch G
ilarly
S, in
s the

Vol. 55 - 2009 SOFTWARE VERSUS HARDWARE TESTING OF MICROPROCESSORS 39

requested information (not the higher level memory) as this is resolved by monitoring
cache hits, etc. More details are given in [30].

More spectacular are improvements of testing functional blocks optimising sys-
tem performance. There is no direct access to individual pipe stages. However, it is
possible to force appropriate stimuli to any of them using sophisticated sequences of
instructions. Similarly, the reaction to the applied stimuli can be deduced by observing
consecutive state changes of the whole pipe. This is quite cumbersome process which
is simplified with the use of on-chip monitors (section 2). Developing such tests for
Intel Pentium processors we used the following events: memory data read, data write,
on-chip data or code cache misses, external cache misses, BTB hits and TLB misses,
taken branches, number of mispredicted branches, instructions executed, number of
cycles instruction fetch is stalled, number of cycles instruction length decoder is stalled,
number of misaligned data memory references, number of instructions retired, number
of simultaneously decoded k instructions, etc. Due to the limited number of available
event counters, some tests required repetitions to collect more parameters. Moreover,
to assure accurate results, some care is needed (e.g. the test measurement sequence is
aligned to 16 byte boundaries and interrupts are disabled). Additionally, to eliminate
cache loading and branch prediction effects, the measurement sequence is repeated 6
times (loading cache, setting 4-bit BTB history and final execution). The last run gives
the stable results. For an illustration tab. 1 presents a set of performance characteristics
of QOsort program. They were derived from activated on-chip monitoring counters. In
the case of performance or operational faults the presented parameter values will be
disturbed. Some other examples are given in [28,29].

Table 1

Selected results of monitoring Qsort program

CPU clock pulses: 14195 BTB misses: 170

Number of decoded instructions in a clock | misspredicted taken branches: 55
cycle: branches decoded: 1740
02743, 1 ~ 5863, 2 - 3277, 3 - 2325 resource stalls: 2393

It is relatively easy to check the functional coverage of developed tests in releven-
ce to the considered blocks. We did this using statistics of monitored events, executed
instructions, sequences of instructions, etc. This data was also helpful in refining test
capabilities. Fault coverage analysis needs special tools and RTL level models of pro-
cessors. Interesting results are presented in [10]. They relate to RISC MIPS R10000
processor model for 1 and 2 bit branch predictors. The classical tests assure 76% and
79% coverage of stuck-at faults in 1 and 2 bit branch prediction circuitry, respectively.
These tests enhanced with on-chip monitoring assure over 97% and 96% stuck-at fault
coverage, respectively. Enhancing all functional tests with event monitoring improved

40 JANUSZ SOSNOWSKI, PIOTR GAWKOWSKI ETQ.

fault coverage to the level of 93% and 92%, respectively. Classical CPU functional
tests (with no sequences dedicated to BTB) assure 72% and 74% fault coverage of
the whole processor and about 42% fault coverage for BTB. Here it is worth noting
that the BTB circuitry contributes 25% and 75% of hardware for control logic (mostly
susceptible to performance errors) and memory storing branch information (mostly
susceptible to operational errors), respectively.

In the literature on SBSTs most authors deal with stuck-at fault models and use
deterministic or random tests generated for functional of RTL models of processors.
SBST is promising to cover path delay faults, however, generation of effective test
programs is still an open problem. Recently some effective solutions dealing with
delay faults have been also proposed e.g. [15,24]. In [15] functionally testable paths
are identified from the CPU gate-level model taking into account restrictions resulting
from instruction set. Next, for such paths, appropriate instruction sequences covering
signal propagation are derived. Most of the proposed delay tests base on RTL circuit
models and sometimes are supported with special test instructions [2]. In practice it is
not possible to sensitise all possible signal propagation paths, so an important issue is
to select the most representative and critical ones e.g. signal paths with delay crossing
some specified threshold, like a% of the clock period (in [5] it is assumed that a=
5%). Moreover, we can eliminate functional redundant paths i.e. paths which do not
determine circuit performance. In [3] tests of path delay faults were generated for
8051 microcontroller (using RTL model). The identified critical paths were grouped
into coherent sets which can be sensitised simultaneously (they begin at some register
output and terminate at some register inputs). The generated tests (1.3 KB of static
code) cover 97% of considered paths. It is worth noting that classical functional test
targeted at stuck-at faults (with 94% coverage) assures only sensitisation of 26% paths
and detects 13% delay faults. This confirms the need of special dynamic tests.

In [9] the authors present a methodology of mapping dynamic tests into CPU
instructions for RISC processor OR12000 basing on its Verilog RTL description. The
authors generate automatically tests for robust delay faults and paths whose delays
are over a specified threshold. It assures 96% fault coverage. In [5] more complex
processor was considered (Sun’s Niagara multiprocessor chip). The authors propose
adding special set of instructions (Access Control Extension — ACE) improving test
controllability and observability of internal functional blocks. This enhancement leads
to 5.8% chip area increase. The software based test procedures can be performed also
in a periodic way without loosing the current state of the processor. So this can mimic
on-line testing as well. The software nature of tests provides the capability of upgrading
tests during the processor lifetime. The fault coverage achieved is 99.2% (for individual
CPU modules it ranged from 91.4 to 100%). Test lengths for a single CPU core were
in the range 200K and 150K instructions for tests related to stuck-at and path delays
faults, respectively. The path delay tests are limited to paths with delays within 5% of
the clock period.

Vol. .

stim
testi
depe
disty
prob
direc
syste
diffe
micr

SOMIe
only
exter
repre
s0 th
deco
mang
a ch
prog
(e.g.
is fis
fixed
need
wind
sensi
depe
here

]
tistic
resou
mem
Instit
We i

appli

deve]
bytes
instr

onal
e of
ting
stly
stly

use
0TS,
test
with
aths
ting
ring
cuit
it is
1e 18
sing
t a=
not
| for
1iped
ister
tatic
test
aths

_PU
The
lays
plex
pose

test
eads
also
imic
ding
dual
were
>lays
7o of

Vol. 55 — 2009 SOFTWARE VERSUS HARDWARE TESTING OF MICROPROCESSORS 41

Delay faults involve more complex techniques and tools to find test paths and
stimuli. They can be improved with evolutionary approach [16]. It is worth noting that
testing faults related to delays and various data, instruction or structural (resource)
dependencies is based on very specific instruction sequences which should not be
disturbed by test observability requirements (e.g. embedded checking instructions). This
problem can be alleviated by using on-chip monitors and on-line detectors which deliver
directly some responses (with no interference with normal operation). In multicore
systems arises the possibility of more accurate comparison of tests executed using
different resources. This comparison can be performed at specified boundaries e.g.
microatchitectural level, but this requires built-in comparators.

4. APPLICATION BASED TESTING

In many embedded microprocessor systems there is only one program executing
some specified tasks. This creates a possibility of simplifying testing by restricting it
only to the used resources. Practically, data processing resources are used in a large
extent by most programs (e.g. ALU, register stack), so they should be tested for a
representative test cases. These blocks have good test controllability and observability,
so they are relatively easy to test. The most difficult part of CPU relates to instruction
decoder, sequencer and control unit blocks, interrupt handling circuitry and perfor-
mance enhancement microarchitecture circuitry. Complete testing of this circuitry is
a challenging task, which was discussed in previous sections. In the case of a fixed
program the scope of used functionality within these circuits is significantly reduced
(e.g. the number of used instruction codes). Moreover, the data and instruction flow
is fixed, so the problem of various instruction and data dependencies is limited to
fixed patterns that can be tested completely as opposed to universal testing which
needs taking into account wide range of possible dependencies within a specified time
window (or instruction cycles). Similarly we can test the propagation of signals in the
sensitised paths during the application execution. These remarks lead us to application
dependant testing. We have checked this possibility for some real microcontrollers and
here some results are given for an illustration.

Developing test procedures for the microcontroller, it is interesting to collect sta-
tistics related to resource usage: static and dynamic instruction coverage, activity of
resources, register state changes, sequences of correlated instructions, distribution of
memory states, etc. For this purpose we use various software tools developed in the
Institute. They provide useful information, which facilitates constructing test programs.
We illustrate this with some statistics of developed programs for two microcontroller
applications: a car immobiliser and controller of a chemical process.

The car immobiliser was implemented using Atmel AT89C51 microcontroller. The
developed program has been written in C language (800 lines) and comprises 1312
bytes of code (577 controller instructions) [34]. The program uses only 29 machine
instructions from the list of 255 opcodes. Dynamic distribution of instructions is given

42 JANUSZ SOSNOWSKI, PIOTR GAWKOWSKI ET.Q.

in Fig. 1. The most frequently used instructions are MOV (26%), IB (7.8%), JNB
(6.9%). There are 12 instructions within the group Others (SIMP 2.8% and the rema-
ining 11 — 0.8%). The static instruction distribution is a little bit different. However, the
general profile is similar to the dynamic one. For comparison purposes an equivalent
program was developed for Intel 80x86 processor platform. The code length was more
than twice longer (3157 bytes, which corresponds to 832 instructions). The program
uses only a small percentage from the very long reach list of instructions (26 different
instructions). The distribution of most frequently used instructions is as follows: mov
~29.9%, and ~ 18.38%, test — 8.3%, jnz — 71.3%, shr — 1.2%, push — 7,5% (lower
case mnemonics distinguish these opcodes from AT89C52 ones).

Fig. 1. Instruction statistics for a car immobiliser (AT89C51 microcontroller)

Resource usage of the controller is significantly restricted. The program uses only
1312 bytes within the controller 4kB flash memory and only 32 out of 128 bytes of
data RAM (22 locations assume only a few states). The on-chip used peripherals are:
timers/counters, port PO (5 bits within 8) and port P1 — 7 bits. The arithmetic unit is
used scarcely. Such statistics are useful in developing self test programs. This allows
us to optimise diagnostic programs. On one hand, there is no need to check not used
resources (e.g. serial transmitter in our case). On the other hand, the control programs
are fixed, so it is more effective to generate self-test procedure on the base of the
application then as a universal test program [29]. The developed 6 test scenarios cover
all possible situations during normal operation of the immobiliser. They cover faults
within instruction flow, decoding and the control unit (instruction sequencer). The data
path processing blocks (ALU) and memory are tested in classical way, these blocks
have good controllability and observability from the software level.

Another example of microcontroller was rectification column control based on
DMC prediction algorithm [7]. The controller program implemented on Intel 80x86

Vol.

pla
Fig
typ
pro

isa
ficar
pipe
whic
the ;
mou
proc
that
All

integ
func
ced.
base:
byte:
comy
the t
WOrd
avail
with
injec
obse

ETQ.
INB

ema-
1, the
alent
more
gram
‘erent
- mov
lower

s only
ites of
Is are:
unit is
allows
t used
grams
of the
5 cover
- faults
1e data
blocks

sed on
80x86

Vol. 55 - 2009 SOFTWARE VERSUS HARDWARE TESTING OF MICROPROCESSORS 43

platform written in C++ practically used only a small fraction of available resources.
Fig. 2 shows static and dynamic distribution of processor instructions. They relate to
typical control scenarios described by single step changes of input states. Checking
program flow coverage validated this test scenario.

30

25 [0 Static (%) B Dynamic (%)

15

10

o. — —
> o @ =SB o000 Nw S T NO S
852 3 &0 3250 co £ U UV 30 E
£ 0 - &K+ BT ® = 8= o ox =

Fig. 2. Instruction distribution for the Intel 80x86 microcontroller of the rectification column

The program uses only 19 instructions including 9 floating point instructions. This
is a small fraction of CPU and FPU instructions. This shows that we can reduce signi-
ficantly the testing procedure for instruction decoder, sequencer, and microarchitecture
pipelines. These circuits are sensitive to various data and instruction dependencies,
which are very difficult for universal testing of the considered processor. For example
the number of possible dependencies within any sequence of 10 instructions is enor-
mous. In the discussed application we can take into account only a small fraction of the
processor instructions (those used in the program). The dynamic distribution confirms
that only 50% of used instructions have a dominant impact on appearing dependencies.
All of them are verified by the application driven test.

It is also worth noting that only some subset of data processing functions (both
integer and floating point) are used, e.g. no division operations, neither elementary
functions nor barrel shifter. Hence, the added deterministic tests are significantly redu-
ced. This also holds for the used addressing modes and other resources. The application
based tests are checked by observing generated outputs of the DMC controller (4800
bytes for a test scenario composed of 300 iterations). Moreover, they can be easily
compacted at run time into a single value to save the memory space if required. Hence,
the test observation does not influence control and date flow of the application. In other
words, the testing process is consistent with the normal operation conditions and the
available on-line detectors can directly signal many faults. In simulation experiments
with injected transient faults we have found that 59.6%, 0.7% and 52.7% of faults
injected into code, data and registers generate system exceptions. This improves test
observability.

44 JANUSZ SOSNOWSKI, PIOTR GAWKOWSKI ETO.

5. CONCLUSIONS

The paper shows that the effectiveness of hardware implemented DFT and BIST
mechanisms is limited in functional and fault space coverage due to the cost compro-
mise. Software based testing gives new perspectives in this respect. However, some
functional blocks or circuits (microarchitecture) cannot be tested efficiently due to low
test controllability and observability. Hence, an important issue is to combine software
testing with hardware BISTs and support it with some additional hardware mechanisms.
We have proved that on-chip monitoring and on-line error detectors are useful in this
process. Microprocessor circuits are quite complex, so developing universal effective
tests covering all the functionality is cumbersome. In many applications this functio-
nality is used in a limited way and this gives a chance of significant simplification of
test algorithms. This was illustrated with some examples. The proposed approaches
give also new possibilities in efficient testing delay faults.

A new view is needed on self-testing integrating various approaches and techni-
ques. In particular, good interfaces with hardware implemented test mechanisms are
needed. In SoC and SiP chips the proposed approach may gain higher interest due
to the high complexity and limited access to internal resources. It is also interesting
to use programmable logic (e.g. FPGA) which can be reconfigured during testing to
improve test controllability and observability.

6. REFERENCES

1. M. Abramovici,M. Breuer, A. D. Friedman: Digital system testing and testable design,
Computer Science Press, 1996.

2. P. Bernardi, et al.: An effective technique for minimising the cost of processor software based
diagnosis in SoCs, IEEE DATE Conference, 2006, pp.412-417.

3. P. Bernardi, et al.: On the automatic generation of test programs for path delay faults in micro-
processor cores, 12" IEEE European Test Symp. 2007, pp. 179-184.

4. L. Chen, S. Ravi, A, Raghunathan, S. Dey: A scalable software based self-test metho-
dology for programmable processors, IEEE DAC Conference, 2003, pp. 548-553.

5. K.Constantinides, O. Multu, T. Austin, V. Beratcocco: Software based online de-
tection of hardware defects, 40" IEEE/ACM Int. Symposium on Microarchitecture, 2007, pp.97-108.

6. F.Corno,E. Sdnchez, M. S. Reorda, G. Squillero: Automatic test program generation:
a case study, IEEE Design and Test of Computers 21, 2004, pp. 102-109.

7. P. Gawkowski,M. Lawryficzuk, P. Marusak, P. Tatjewski,J. Sosnowski:
Software implementation of explicit DMC algorithm with improved dependability, In T. Sobh et al.
(Eds.), Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Elec-
tronics, Springer Science+Business Media B.V,, 2008, pp. 214-219.

8. S. Gurumurthy, S. Vasudevan, J. A, Abraham: Automated mapping of precomputed
module level test sequences to processor instructions, IEEE Int. Test Conference, 2005, paper 12.3.

9. S. Gurumurthy, et al.: Automatic generation of instructions to robustly test delay defects in
processors, IEEE European Test Symposium, 2007, pp. 173-178.

12.
13.

14. .

ETO.

BIST
npro-
some
o low
tware
isms.
n this
>ctive
nctio-
on of
aches

chni-
1S are
t due
sting
ng to

design,
- based
micro-
metho-
ine de-
)7-108.
ration:
wski
h et al.
] Elec-
mputed

¢ 12.3.
fects in

Vol. 55 - 2009 SOFTWARE VERSUS HARDWARE TESTING OF MICROPROCESSORS 45

10

18.

19.

20.

21

22.

23

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

- M. Hatzmibail, M. Psarakis,D. Gizopoulos, A. Paschalis A methodology for
detecting performance fauits in microprocessors via performance monitoring hardware, IEEE Int.
Test Conference, 2007, paper 29.3.

. L.K. John, L. Eeckhout, (editors): Performance evaluation and benchmarking, CRC Taylors
&Francis, 2006,

. K. Kambe, M. Inoue, H. Fujiwara: Efficient template generation Jor instruction-based

self-test of processor cores, IEEE Asian Test Conference, 2004, pp.151-158.
- N. Kranitis,etal: Application and analysis of RTL-level software based self-testing for embedded
processor cores, IEEE Int. Test Conference, 2003. pp. 715-785.

- A Krstic, W.C. Lai,L. Chen,K.-T. Cheng, S. Dey, Embedded software based self-testing

of SoC design, IEEEE DAC Conference, 2002, pp.355-359.

- W.Ch. Lai, A. Krstic, KT. Chen g Test program synthesis for path delay faults in micropro-

cessor cores, IEEE Int. Test Conference, 2000, pp. 1080-1089.

. A.Merentitis,G. Theodorou M. Giorgaras,N. Kranitis: Directed random SBST

generation for on-line testing of pipelined processors, IEEE Int. On-Line Testing Symposium, 2008,
pp. 273-279.

. P. Mishra, N. Dutt: Functional coverage driven test generation Jor validation of pipelined

processors, IEEE DATE Conference, 2005, pp. 678-683.

A.D. Palm a, et al.: Automotive microcontroller end-of-line test via software based methodologies,
8™ Int. Workshop on Microprocessor Test and Verification, 2008, pp.77-82.

A. Paschalis, D. Gizopoulos: Effective software based self-test strategies for on-line pe-
riodic testing of embedded processors, IEEE Trans. on CAD, vol. 24, no. 1, 2003, pp. 88-99.

M. Psarakis et al: Systematic software based self test for pipe-lined processors, IEEE DAC
Conference, 2006, pp. 393-398.

H. Rizk, C. Papachristou, F. Wolff: Designing self test programs for embedded DSP
cores, IEEE DATE Conference, 2004, pp. 816-823.

A. Sehgal] Fitzgerald, J. Rearick: Test cost reduction for the AMD Athion processor
using test partitioning, IEEE Int. Test Conference, 2007, paper 1.3.

S. Shamshiri et al: Instruction level test methodology for CPU core self testing, ACM Trans.
on Design Automation, vol. 10, no. 4, 2006. pp. 673-689.

V.Singh, M Inoue, K. K. Saluja H Fujiwara, Instruction-based delay fault self-testing
of processor cores, IEEE Int, Conf. on VLSI Design, 2004, pp. 933-938.

J. Sosnowski:Insystem testing of cache memories, IEEE Int. Test Conference, 1995, pp. 384-393.
J. Sosnowski, A, Kusmierczyk: Pseudorandom testing of microprocessors at instruc-
tion/data flow level, The 2" EDCC Conference, Springer, 1996, pp.246-263.

J.Sosnowski, T. Bech: Extensive testing of floating point unit, Euromicro Conference, IEEE
Comp. Society, 2000, pp. 180-187.

J.Sosnowski,R. JurkiewiczJ Nowicki: Experimental evaluation of CPU performance
Jeatures,. Proc. of EUROMICRO DSD Symposium, IEEE Comp. Soc., 2001, pp. 194-201.

I Sosnowski: Software based self-testing of microprocessors, Journal of System Architecture,
52, 2006, pp. 257-271.

I. Sosnowski: Improving software based self-testing for cache memories, 2* 1EEE Int, Design
and Test Wokshop, 2007, pp.49-54.

J. Sosnowski: Enhancing software tests for COTS systems, IEEE East-West Desgn and Test Int.
Symposium, 2007, pp. 63-68.

P.I. Tan etal.: Testing UltraSPARC T1 microprocessor and its challenges, IEEE Int. Test Conference,
2006, paper 16.1.

D. Wang, et al.: The design for testability features of a general purpose microprocessor, IEEE Int.
Test Conference, 2007, paper 9.2.

46 JANUSZ SOSNOWSKI, PIOTR GAWKOWSKI ETQ.

34. Ch. H.-P. Wen et al.: On a software based methodology and its application, IEEE VLSI Test
Symposium, 2005, pp.107-113.

35. A. Wilczyidski,J. Sosnowski, P. Gawkowski: Flexible microcontroller simulator for
testing purposes, IFAC Workshop PDS 2004, pp. 310-315.

36. J. Zhou, HJ. Wunderlich: Software based self-test of processors under power constraints,
IEEE DATE Conference, 2006, pp. 430-435.

occ:
that

of Pg

ETO.

ST Test
tor for

traints,

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 1, pp. 47-56

Dedicated to the memory of our friend Andrzej Mgkowski

On the Distribution of Numbers 7 Satisfying the Congruence
2"* = 1 (mod n) for k=2 and k=4"

ANDRZEJ PASZKIEWICZ", ANDRZEJ ROTKIEWICZ™

* Institute of Telecommunications, Warsaw University of Technology
anpa@tele.pw.edu.pl
™ Institute of Mathematics, Polish Academy of Sciences
rotkiewi@impan.gov.pl

Received 2008.12.02
Authorized 2009.01.08

In this paper we address an old problem concerning the existence of infinitely many
solutions n of the congruence 2"* = 1 (mod ») for an arbitrary positive integer k. The
existence of infinitely many solutions of that congruence follows from more general but not
constructive theorems, which do not give an answer about the number of solutions below
a given limit x. It is well known that if k = 1, then our congruence hold for every prime
number 1 > 2 as well as for infinitely many odd composite integers n, called pseudoprimes.
If k = 3 then every number 1 of the form 3p (p an odd prime) is a solution of the congruence
2"3 = | (mod n). We study the distribution of consecutive solutions of our congruence in
the two simplest but resistant cases k = 2 and k = 4

Keywords: prime and pseudoprime numbers, prime primitive divisors, Mersenne numbers

1. INTRODUCTION

Let a, k > 1 be arbitrary positive integers. The second author asked in many
occasions (see [10]) about the existence of infinitely many composite integers n, such
that

a"* = 1(mod n) %))

* The computational part of his paper was supported by the Ministry of Science and Higher Education
of Poland - research grant no. N517 003 32/0583 for 2007-2010

48 ANDRZEJ PASZKIEWICZ, ANDRZEJ ROTKIEWICZ ET.Q.

It is well known that the answer is affirmative in the case & = 1. The numbers satisfying
the condition are called pseudoprime numbers to the base a. In [3] A. Mgkowski
obtained a general result: for any natural number k > 2 there are infinitely many
composite 7 such that for any positive integer a with (a,n) = 1 such that (1) holds.
This extends an earlier result proved by D.C. Morrow for k = 3 (see [7]).

W.L. McDaniel proved the following general theorem.

Theorem:(McDaniel) The congruence a"* = b"™* (mod n) has infinitely many com-
posite solutions n for all triples (a, b, k) with possible exception of (2, 1, 4), (3, 2, 3),
(7,3,3), 2" + 1,24 - 1,3) foru=2and (b+1,b,2) and (b +3,b,2) for b # 1.

As we can see the case k = 4 is not covered by the above Theorem. The second
author has proved (see [9], [10]) that the above Theorem is valid in the case of k = 2.
Fortunately technique of that proof can also, with minor changes, be applied to obtain
the proof for k = 4. First we remark, that if 2" = 5 (mod m), then n = 2" - 1, satisfies
the congruence 2" = 1 (mod n). Indeed if (2™ - 5) / m is a positive integer, then from
the congruence 2™ = 1 (mod 2" - 1) it follows that

2™ = 1(mod 2" — 1),
22" = 1(mod 2™ — 1) and
2% = 1(mod n) for n = 2" - 1.

Thus 2"* = 1 (mod n) for n = 2™ — 1, where nyg = 19147 (This is the least solution of
the congruence 2" = 5 (mod n)).

Suppose now that 2% = 1 (mod n) and n > 10. Let p be a primitive factor of the
number 2"* — 1 (a prime factor of 2" — 1 is said to be a primitive if it does not divide
any of the numbers 2” — 1 for m = 1, 2, ..., n — 1. By the theorem of K. Zsigmondy
[11] such a prime factor exists for any n > 6 and is of the form nz + 1).

Now we shall show, that ny = np is also a solution of the congruence

2% = 1 (mod ny).
We have p = 2(n — 4)k + 1, where k is a positive integer and p > 2n~35 > n and
(p,n) = 1. Thus
np—4=n2n-4k+1]-4=n-4)2nk +1).

Hence 2% — 1| 2"™% - 1, and since

2"* = 1(mod n),
2"* = 1(mod p), (p,n) = 1,

we have np | 27P=% _ 1 and n; = np satisfies the congruence 2M=4 = 1 (mod ny).

This completes the proof of the first exception in the McDaniel’s Theorem. It has to
be pointed out, that general proof of Rotkiewicz’s Problem concerning the congruence
(1) was obtained, in rather complicated way, by Kiss and Phong [2]. It is easy to see

Vol.

that
solu
not

all
of t

The
SNF

This
exter
X an
512

solvi
prob
befor
¢ NoO

Joe (
beloy
know

extre
even.
odd 1
the fi
the 1
first

con-
2, 3),
.

econd
k= 2.
obtain
tisfies
 from

ion of
of the
divide
nondy

n and

has to

ruence
{o see

Vol. 55 - 2009 ON THE DISTRIBUTION OF NUMBERS N SATISFYING THE CONGRUENCE... 49

that from every solution of the congruence 2 = k +1 (mod m), k — fixed we can geta
solution of the congruence 2" = | (mod n), but even in the simplest case k = 2 we do
not know if the converse is true. An old conjecture of R, L. Graham [17 asserts that for
all k # 1, there are infinitely many » such that 2" = k (mod n). In many cases solutions
of the congruence 2" = k (mod n) are relatively small numbers, but unfortunately for
k =3, there are known only 5 solutions. Four of them are listed in the Table 1 below.

Table 1

Least consecutive solutions n of the congruence 2" = 3(mod n)

4700063497 D. H. and Emma Lehmer
3468371109448915 Max Alekseyev, Nov 2006
8365386194032363 Joe Crump, 2000
10991007971508067 Max Alekseyev, Nov 2006

The fifth solution was found by Peter Montgomery in 1999 by factoring 2*%° — 3 with
SNEFS (see [6]) and is the following:

n = 63130707451134435989380140059866138830623361447484274774099906755.

This is a good idea to find solutions 2" = ¢ (mod n) by other means rather than just
extensive trial method. We can, for instance, factor 2* — ¢ into primes p for various
x and test if n = px is a solution. But for very large n (having for example about
512 bits) this approach has also limited applications. Without new theoretical ideas
solving the congruential equation 2" = ¢ (mod n) for a fixed ¢ seem to be hard
problem. Nevertheless J. Crump, M. Alekseyev and P. Montgomery, just mentioned
before, found new solutions of the congruence 2" = ¢ (mod n) for initial odd numbers
¢ not exceeding 25.

For every k£ < 1000 there exists a solution of the congruence 2" = k(mod n) (see
Joe Crump’s web side www.immortaltheory.com/NumberTheory/2nmodn.htm). We list
below (Table 2) only these solutions n which are greater than 10° and any smaller are
known.

J. Crump observed some interesting facts when computing 2" (mod n) concerning
extremely not uniform distribution of these numbers. First is that 2" (mod n) is mostly
even. For every prime n > 2 the result is 2. Surprisingly, for no evident reason some
odd numbers occur very often. The first of them is 33857 which occurs 90 times using
the first 5000000 odd numbers. Next up is 233927 which occurs 84 times followed by
the 125000 which occurs 76 times. However the domination seems to be temporary. At
first 33857 dominated these three but quickly gave up the place to the number 233927,

50 ANDRZEJ PASZKIEWICZ, ANDRZEJ ROTKIEWICZ ETQ.

Table 2

Solutions n of the congruence 2" = k (mod n) (k < 1000,n > 10%)

k n _k n

33 2463240427 69 887817490061261
141 6782813041 185 680827363701
231 220567109627 273 137251416059
309 157458552833 311 343738144742266767
313 20703919615 399 1754831987
405 2908385595517 461 3885540629
465 164196324252985941533 510 14039809331
581 303976350129 609 7933293691

615 8495801767 619 855892952693
645 1067706307 649 3577612969291381957
651 2263272601 666 7213999231
669 455286451057 675 5808628761697
685 4677383419 741 9988731091037308003
771 128053255763 799 25455747038179
831 9741494677 849 2725497894187
861 8592082903 866 20935242067
871 930186118118867 881 9736056265781
885 100882904641861 913 2120018333
939 141691000109 969 93615868517
981 4443747872057 987 1158892877

2. NUMERICAL INVESTIGATIONS AND RESULTS

In our joint paper [8] we asked about growth rate of a function Cy(x), where Ca(x)
is the number of solutions of the congruence 2"2 = | (mod n) with n less than a
positive number x. For a given positive integer k we can in general define Cy(x) as a
number of solutions of the congruence 2"% = 1 (mod n) below x. We called them in
[8] — Fermat’s congruences with delay k. In this paper we significantly extend the table
of solutions of the congruence 2"* = 1 (mod n) for the delay 2, previously prepared

for the limit n < 10'%. We also determined all solutions of the congruence 2k =1
(mod n) with delay k =4 for n < 10,

Vol. 5

PCc
opers
of we

ET.Q.

[able 2

Vol. 55 -~ 2009 ON THE DISTRIBUTION OF NUMBERS N SATISEYING THE CONGRUENCE... 51

Our computations were performed in a small laboratory consisting of 10 Pentium
PC computers during their idle time. All computers were running under Windows XP
operation system and collecting all entries of Tables 3 and 4 took less than 30 hours
of work on every of the 10 computers.

Table 3

The initial solutions ny of the congruence 2% = 1 (mod ny) for ny less than 10"

k g k s

1 20737=89 - 233 2 93527=7 - 31 - 431

3 228727=127 - 1801 4 373457=7 - 31 - 1721

5 540857=31 - 73 - 239 6 2231327=7 - 151 - 2111

7 11232137=7 - 31 - 191 - 271 8 15088847=31 . 233 - 2089

9 15235703=7 - 79 - 27551 10 24601943=79 - 239 . 1303
11 43092527=71 - 337 - 1801 12 49891487=47 - 71 - 14951
13 66171767=89 - 233 . 3191 14 71429177=31 - 1103 - 2089
15 137134727=127 - 151 - 7151 16 207426737=7 - 151 - 311 - 631
17 209402327=23 - 199 - 45751 18 269165561=7 - 79 - 233 - 2089
19 302357057=23 - 463 - 28393 20 383696711=89 - 233 - 18503
21 513013327=31 - 32575081 22 1145222057=7 - 31 - 191 - 27631
23 1198235777=31 - 2089 - 18503 24 1200963953=7 - 73 - 89 - 26407
25 1210344599=73 - 337 - 49199 26 1336271543=89 - 233 dor 64439
27 1530206537=23 - 79 - 842161 28 1654163777=7 - 151 - 431 - 3631
29 2247340097=23 - 79 - 151 - 8191 30 2383604687=71 - 73 - 199 - 2311
31 2745926897=7 - 31 - 1831 - 6911 32 3067561177=71 - 1151 - 37537
33 3444456017=73 - 89 - 151 - 3511 34 3543720833=73 . 48544121
35 3567496337=31 4177 - 27551 36 3638049527=7 - 271 - 601 - 3191
37 4135367777=23 - 127 - 337 - 4201 38 4343487407=7 - 31 - 431 - 46441
39 4404655367=7 - 31 - 3191 - 6361 40 5056376807:191 - 271 - 97687
41 5108079407=23 - 79 - 881 - 3191 42 5793119327=31 - 73 - 239 - 10711
43 6008364727=23 - 31 - 1801 - 4679 44 6629012777=127 - 631 - 82721
45 6876643727=31 - 71 - 73 . 127 - 337 46 7650778457=7 - 151 - 631 - 11471
47 8143707497=23 - 3319 . 106681 48 8369326319=23 . 607 - 599479
49 8605878287=31 - 863 - 321679 50 9039241577=151 - 487 - 122921

52 ANDRZEJ PASZKIEWICZ, ANDRZEJ ROTKIEWICZ ETQ.
cd. Table 3

k ny k i
51 9046381577=127 - 1801 - 39551 52 10702466777=79 - 463 - 292601
53 10915386649=233 - 727 - 64439 54 12193861799=7 - 79 - 4177 - 5279
55 | 12299106503=23 - 73 - 103 - 71119 | 36 13985638127=31 - 13367 - 33751
57 17312443631=7 - 103 - 503 - 47737 | 58 17343716537=7 - 31 - 1721 - 46441
59 17554812167=73 - 881 - 272959 60 19414922177=7 - 89 - 199 - 156601
61 | 22869186617=73 - 89 - 151 - 23311 | 62 | 23155375817=7 - 31 - 73 - 79 - 18503
63 | 25367354777=31 - 71 - 127 - 151 - 601 | 64 | 25494650777=191 - 199 - 631 - 1063
65 | 26508475007=7 - 31 - 233 - 524287 | 66 | 27823040777=7 - 47 - 223 - 601 - 631
67 31109707127=337 - 751 - 122921 68 32024538119=7 - 73 - 89 - 704161
69 35802513623=47 - 10711 - 71119 70 | 35879030327=7 - 311 cdot 1801 - 9151
71 42245251127=23 - 71 - 89 - 290671 | 72 | 47909079407=7 - 73 - 89 - 991 - 1063
73 51416714351=199 - 431 - 599479 74 51563126617=127 - 1871 - 217001
75 | 55837893377=7 - 31 - 73 - 271 - 13007 | 76 | 63731873207=23 - 71 - 73 - 89 - 6007
77 | 64999529399=7 - 89 - 199 - 524287 | 78 72236945497=89 - 233 - 3483481
79 74605302977=337 - 1801 - 122921 80 | 75049066127=7 - 31 - 47 - 73 - 100801
81 | 78625368857=7 - 151 - 3191 - 23311 | 82 | 78943150127=271 - 337 - 751 - 1151
83 | 82597478537=7 - 23 - 79 - 991 - 6553 | 84 83072478127=127 - 22751 - 28751
85 | 83266672777=89 - 167 - 881 - 6359 | 86 | 90578716697=7 - 31 - 271 - 631 - 2441
87 94437919487=911 - 4447 - 23311 88 | 97019792537=31 - 431 - 1609 - 4513

Table 4

The initial solutions n; of the congruence for 2% = 1 (mod ny) for m; less than 101

13

13

7=T

40369=7 - 73 - 719

673663=337 - 1999

1697609=127 - 13367

2073127=7 - 73 - 4057

6462649=127 - 151 - 337

k
2
4 990409=7 - 151 - 937
6
8

7527199=79 - 151 - 631

O =3P W

7559479=23 - 103 - 3191

10

14421169=7 - 31 - 66457

“able 4

Vol.

53

55 -2009 ON THE DISTRIBUTION OF NUMBERS N SATISFYING THE CONGRUENCE...
cd. Table 4

k g k 1

11 21484129=79 151 - 1801 12 37825753=7 - 73 - 79 - 937

13 57233047=337 - 169831 14 130647919=31 - 631 - 6679

15 141735559=7 - 73 - 79 - 3511 16 179203369=89 - 631 - 3191

17 188967289=7 - 31 - 73 - 79 - 151 18 218206489=31 - 337 - 20887

19 259195009=11119 . 23311 20 264538057=7 - 73 - 79 - 6553

21 277628449=7 - 151 - 262657 22 330662479=7 - 73 - 79 - 8191

23 398321239=79 - 151 - 33391 24 501126487=1447 - 346321

25 506958313=4177 - 121369 26 612368311=47 - 73 - 178481

27 767983759=89 - 103 - 83777 28 936337783=79 - 1447 - 8191

29 1009345159=71 - 79 - 179951 30 1043030839=103 - 151 - 199 - 337

31 1557166769=23 - 743 - 91121 32 1654549879=199 - 751 - 11071

33 1674606289=89 - 271 - 69431 34 2179652017=23 - 2927 - 32377

35 2487376129=7 - 601 - 631 - 937 36 2945176609=127 - 2647 - 8761

37 3060103279=31 - 73 - 631 - 2143 38 3073399489=31 - 79 - 151 - 8311

39 3141290569=337 - 1999 - 4663 40 3476295697=7 - 73 - 79 - 86113

41 3702682129=31 - 73 - 631 - 2593 42 3811185679=7 - 47 - 73 - 89 - 1783

43 4040908249=7 - 23 - 31 - 881 - 919 44 4085251609=47 - 487 - 178481

45 4345359529=T - 73 - 79 - 107641 46 4774978639=31 - 127 - 1212847

47 5145413719=103 - 2143 - 23311 48 5207822239=71 - 151 - 199 - 244}

49 5434493719=31 - 4409 - 39761 50 8112440119=7 - 151 - 937 - 8191

51 8952662047=7 - 103 - 12417007 52 9509147641=7 - 727 - 1868569

53 9590474929=T7 - 31 - 151 - 487 - 601 54 10425250879=79 - 8191 - 16111

55 12160941223=337 - 36085879 56 12746032159=7 - 151 - 271 - 44497

57 15351309439=337 - 4663 - 9769 58 15524707279=23 - 31 - 71 - 73 - 4201

59 16984371289=127 - 5737 - 23311 60 18023668537=7 - 73 - 79 - 446473

61 18335476849=151 - 5209 - 23311 62 19745250529=239 - 4967 - 16633

63 22442226769=31 - 127 - 607 - 9391 64 22534825009=31 - 73 - 89 - 127 - 881

65 22677320761=337 - 4663 - 14431 66 23110996279=7 - 31 - 4513 - 23599

67 26427995689=79 - 151 - 631 - 3511 68 26921830279=103 - 2593 . 100801

ANDRZE] PASZKIEWICZ, ANDRZEJ ROTKIEWICZ ETQ. Vol
cd. Table 4
k 1y k Hy
69 28706132137=337 - 7993 - 10657 70 28837802569=23 - 233 - 937 - 5743
71 28970538007=23 -89 -199 71119 72 1 30502999993=23 - 89 - 103 - 199 - 727
73 32510425369=31 - 10657 - 98407 74 33241731943=7 - 73 - 79 - 823447
75 35830141663=79 - 223 - 2033839 76 35927776399=31 - 28351 - 40879
77 37284039577=23 - 89 - 2089 - 8719 78 41344905169=151 - 2089 - 131071
79 41915535679=79 - 151 - 1801 - 1951 80 42213350953=337 - 4663 - 26863
81 43307250529=103 - 2143 - 196201 82 43624199479=T7 - 47 - 1151 - 115201
83 44277688129=73 - 7591 - 79903 84 46220564737=47 - 2143 - 458897
85 46649950879=7 - 73 - 4951 - 18439 86 46726848679=7 - 151 - 44207047
87 47708928337=7 - 103 - 479 - 138143 88 47788795729=89 - 191 - 881 - 3191
89 47900002297=7 - 79 - 89 - 233 - 4177 90 51295825039=71 - 79 - 191 - 47881 ?n I
91 53085400879=7 - 1951 - 3887047 92 55876862209=7 - 30391 - 262657 ' '
93 61655287009=79 - 151 - 631 - 8191 94 61920838399=7 - 73 . 79 - 1533871 (
95 68280792529=151 - 2239 .- 201961 96 75237309679=7 - 151 - 271 - 262657 2.
97 | 75958473199=7 - 23 - 31 - 89 - 271 - 631 | 98 76126153537=7 - 233 - 2089 - 22343 ‘
99 77652121369=631 - 1327 - 92737 100 79491041959=7 - 73 - 79 - 1969111 3.
(
101 | 81235557319=7 - 23 - 31 - 89 - 199 - 919 | 102 | 82396696729=31 - 47 - 73 - 601 - 1289 4.
103 83083752679=23 - 89 - 127 - 319591 104 86123562529=3511 - 4201 - 5839 (
105 89682628039=151 - 233 - 1103 . 2311 106 94162480129=31 - 359 - 1151 - 7351 :
]
(
Initial solutions of Fermat congruence with delay 2 E
and base equal to 2 for x < 10*11
5.]
120 ;
100 :
80 . ﬂ __________
£ o st ~ ﬁcw)
o . —=— Ln(x}
4 /r -
20 / :
to tk
0 .
0,0E+00 2,0E+10 40E+10 60E+10 80E+10 1,0E+11 take
x
Fig. 1. The number C,(x) of solutions of the congruence 22 = | (mod n), n < x
1.1
¥
1

Vol. 55 ~ 2009 ON THE DISTRIBUTION OF NUMBERS N SATISFYING THE CONGRUENCE... 55

Initial solutions of Fermat congruence with delay 4
and base equal to 2 for x<10* 11

C4(x)

80 ——
60
et = Lty
40 1 -
20 -
0

0,0€+00 2,0e+10 4,0E+10 6,0E+10 8,0E+10 1.0E+11

X

Fig. 2. The number Cy4(x) of solutions of the congruence 2™ = | (mod n), n < x

The results of our computations are expressed in Table 3, Table 4 and illustrated

on Fig. 1 and Fig. 2. There are some observations when analyzing these data.

1.

Let Si be the set of solutions of the congruence ko= (mod n). The intersection
of two sets related to different numbers k and j (k > j) is not empty with possible
exception if n divides 247 — 1. Our sets S, and S, are disjoint;

All numbers in the sets S, and S, are composite squarefree integers (see Table 1
and Table 2);

The growth rate of the function Cp(x) and Cy(x) is much faster than logarithmic
(see Fig. 1 and Fig. 2);

There are only four solutions of the congruence 2" % = 1 (mod n) for k = 2 which
consist of two factors: 20737 = 89 - 233, 228727 = 127 - 1801, 513013327 = 31 -
32575081, 3543720833 = 73 - 48544121.

For k = 4 we have five solutions of that congruence which consist of two factors:
673663 =337-1999, 1697609 = 127 - 13367, 57233047 =337 - 169831, 259195009
= 11119 - 23311, 12160941223 = 337 - 36085979,

Most of elements of both sets S, and S, are numbers having their last decimal
digits equal to 1.

3. ACKNOWLEDGEMENTS

We are very indebted to Mrs. Danuta Ojrzenska Wéjter for kindly making access

to the students laboratory in the idle time. Without this help our computation would
take much more time and effort.

4. REFERENCES

I. P. Erdds, R. L. Graham: Old and new problems in Combinatorial Number Theory, Old and

new problems and results in combinatorial number theory. Université de Geneve, L'Enseignement
Mathématique, 1980;

56

ANDRZEJ PASZKIEWICZ, ANDRZEJ ROTKIEWICZ ETQ.

W

10.

11.

. P. Kiss, Bui Minh Phong On Problem of A. Rotkiewicz, Math. Comp. 48(1987), pp.

751-755;

A. Mg kowski: Generalization of Morrow’s D numbers, Simon Stevin, 36(1962), 71:

W. L. McDaniel: The generalized pseudoprime congruence " * = b"* (mod n), C.R.H. Math.
Rep. Acad. Sci. Canada, Vol. 9(2), 1987, pp. 143-147;

W. L. McDaniel: Some pseudoprimes and related numbers having special forms. Math. Comp.
53(1989), pp. 407-408;

P. Montgomery: http//www.spacefire.com/numbertheory/2nmodn.htm, at the web side of J.
Crump;

D. C. Morrow: Some properties of D numbers, Amer, Math. Monthly 58(1951), 324-330;

A Paszkiewicz A. Rotkiewicz: Onpseudoprimes of the form a" — a, Proceedings of the
Eleventh Conference on Fibonacci Numbers, Braunschweig, 2004 (still being in press);

A. Rotkiewicz: Pseudoprime numbers and their generalizations. Student Association of the
Faculty of Sciences, University of Novi Sad, Novi Sad 1972, pp.i.+169; M.R. 48#8373

A. Rotkiewicz: On the congruence 2" = | (mod n), Math. Comp. 43(1984), pp. 271-272; MR
85e : 1105;

K. Zsigmondy: Zur Theorie der Potenzreste. Monatshefte Math. Phys. 3(1892), pp. 264-284

mod
root
prim
rese
Lem

On t

wher

Math.
“omp.

of J.

of the
of the
2; MR

284

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 1, pp. 57-69

On Least Prime Primitive Roots mod 2p for Odd Primes p*

ANDRZEJ PASZKIEWICZ

Institute of Telecommunications, Warsaw University of Technology
anpa@tele.pw.edu.pl

Received 2008.11.27
Authorized 2009.01.09

In this paper we derive a conditional formula which allows to compute the natural
density of prime numbers with a given least prime primitive root modulo 2p and compare
theoretical results with the numerical evidence. We also illustrate graphically these densities
as functions of the upper limit x for primes below x.

Keywords: Primes, primitive roots, prime primitive roots, extended Riemann hypothesis

1. INTRODUCTION

Let g(m) and G(m) denote the least primitive and the least prime primitive root
modulo m, respectively. It is' well known since C. F. Gauss that if m has a primitive
root then it should be equal to 2, 4 or be of the form p* or 2p*, where p is an odd
prime. In [1] we proved the following two Lemmas in which the letters p,q,r are
reserved for primes and log,x = log log x.

Lemma 1. Let M = {ry,...,ry,}, be a set of primes,

Ny(x) = {p < x:everyrin M is a primitive root mod p)}.

On the assumption of the Riemann hypothesis for each extension

OV, Y, ..., fm)

where k = l.c.m.l; is squarefree we have

INu(0)| = Ay - Lix + Op(Lix(log x) ™' (log, x)* ")

" The computational part of his paper was supported by the Ministry of Science and Higher Education
of Poland - research grant no. N517 003 32/0583 for 2007-2010

58 ANDRZE] PASZKIEWICZ ETQ.

where Ay is defined as follows.
Let ¢(p) be the natural density of the set

{g : ¢ = 1(mod p), at least one of ry,....rn is a p—th power residue mod r}
and let &(p) = 1 = c(p). Also let G(ry, ...,r,) denote the set of numbers of the form

a=r{..ry=1(modd), & =0or 1, and finally let

c(p)
fo=| I
pla

Then

AMuﬂcm >, f@. ()

i=1 AEG(Fysuvstin)

Lemma 2. In the notation of Lemma [

c(p):_l_(l_(l-l))
p-1 P

Let G(p, py) be the least prime primitive root of p greater than py. It is easy to
see that G(p,2) = G(2p). The main our result is the following theorem.

Theorem. Assume that Riemann hypothesis holds for each of the fields
o(Vi, [\'/r—, vees l’{/'r—n:), where k = lLc.m.l; is squarefree. Then the set of primes p such
that G(p, pr) = p, has a natural density equal to

n—k

E(pepn) =), (=1 A Gl)
m=1
where
w0555)
i=1 pi— 1 pi
1
Chmn =5) {ﬂ (L+dyp)+ [[0+ (=1ip)- dm,,»}, 3)
IM|=m peM peM
MC{pkH aaaaa [7111
M3p,
and

Vol.

Prc¢
equ

hen

Noxy

hen

On

18 e

and

ey

sy to

such

2

3)

Vol. 55 ~ 2009 ON LEAST PRIME PRIMITIVE ROOTS MOD 2P FOR ODD PRIMES P 59

Proof. By the sieve principle the number N(py, x) of primes < x with G(p, pr) = p,
equals

D DM (),

MCUpyatsenpal
M>3p,
hence, by LLemma 1,
N(pk,x) = Z (DM Ay - Lix + Oy, (Lix(log %) (log, x)zn"l).
Mc{prtsespal
Epep) = D (=DM iay, @)
Mc{pk+1 """ 1)”}

Now if M = {ry,...,r,} we have by Lemma 2

amﬁﬂ——i~@~@~i))
pi—1 Di

cp) _
L—c(py ™7
hence
H c(pi) = Ay (%)

i=1

On the other hand, if M, = {r € M : r = & mod 4}, the condition l—[r;“ = 1 (mod4)
=1

is equivalent to Z &, = 0(mod2) (note that r € M implies r > 2).

VHEM_l
We have
[W_ﬂ
M| 2

20 f@=2, 3 [fdn 20 >0 [dw =

A€G(r st m) k=0 NcM, reN k=0 NCM., reN
IN|=k IN|=2k

_ H (1 + dm,r) HreM_, 1+ dm,r) ;‘ HrEM_l (I - dm,r) _ (6)

reM;

1 .
25h70+%w+fhru4m»@@

peM PEM

and (2) follows from (3), (4) and (6), which finishes the proof.

60 ANDRZEJ PASZKIEWICZ ETQ.

2. COMPUTATIONS AND RESULTS

Let E5(py, x), E*(x) be two functions defined as follows

1
Epni=—s), |

p<x:G2py=py,

. 1
B = = >.G@p).
p<x

The first function is a natural density of primes below x, with the least prime
primitive root modulo 2p equal just to p, and the second, the average value of the
least prime primitive root modulo 2p extended over primes below the limit x. We
tabulated the functions with the step 10® up to the limit x < 10'°, and n < 25. Results
are illustrated on Fig. 1-17. We also calculated the initial values of the function E(2, p,)
defined by (2), (see Table 2). There is a very good agreement with results of calculation
and numerical evidence (column 3 and column 4 of Table 2). The average value of
the least prime primitive root modulo 2p illustrates Figure 17. One can suppose, that
there exists a finite limit of the function E5(x) as x tends to infinity.

All computations were performed on one powerful PC computer with Pentium
processor running on Linux operation system. The experiment has finished after ap-
proximately one day of computation.

G(2p)=3, p< 1070

0,37402
0,37400 +¥

0,37398 fre, :
0,37396 .
0,37394 : -

0,37392

0,37380
0,37388
0,37386

Fig. 1.

Vol.

ET.0.

rime
f the

sults
., Pn)
ation
1e of
, that

itium
r ap-

Vol. 55 - 2009

ON LEAST PRIME PRIMITIVE ROOTS MOD 2P FOR ODD PRIMES P

61

0,23190

G(2p)=5, p<10*10

0,23185

0,23180 +

0,23175 -

M»

0,23170

0,23165
0

20 40 60

80

100

Fig. 2.

G(2p)=7, p< 10710

0,13395

0,13380

0,13385

0,13380

0,13375
0

20 40 60

100

Fig. 3.

0,08672

G(2p)=11, p< 10410

0,08670
0,08668 -

0,08666
0,08664

0,08662
0,08660

0,08658

20 40 80

80

100

Fig. 4.

62

ANDRZE] PASZKIEWICZ

ETQ.

G@2pi=13, p<10*10

0,05585 :
0,05584 MW
0,06583 f;ﬁvf‘.

0,05582 % ’Af + 2

0.05581 LA
0,05580
0,05579 ; : : :

0 20 40 60 80 100

Fig. 5.
G@p)=17, p< 10410

0,03697
0,03695 4}
0,03695 - b L
0,03694 % = . L
0,03693 : 2 e
0,03692 W
0,03691 :
0.03690 +——— : : :

0 20 40 80 80 100

Fig. 6.
G(2p)=18, p<10~10

0,02496 =
0,02494 4 : et :
0,02492 M
0,02490 e
0,02488
0,02486
0,02484 : -
0,02482 ; , ey

0 20 40 60 80 100

Vol,

5 T.Q.

Vol. 55 - 2009

ON LEAST PRIME PRIMITIVE ROOTS MOD 2P FOR ODD PRIMES P

63

0,016820
0,016910
0,016900
0,016890
0,016880
0,016870

G(2p)=23, p< 1070

20 40 60 80

100

Fig. 8.

0,01162

G(2p)=29, p< 100

0,01160

0,01156

0,01158

0,01154 -

0,01152

100

Fig. 9.

G(2p)=31, p< 1070

0,00809

0,00808

0,00807

0,00806

u——

0,00805

0,00804
0,00803 -

0,00802

20 40 60 80

100

Fig. 10.

64

ANDRZEJ PASZKIEWICZ

ETQ.

G{2p)=37, p< 10M0

0,00562
0,00560 -

0,00558

0,00556

0,00554

0,00852

20 40 60 80

100

Fig. 11.

G(2p)=41, p< 10710

0,003990

0,003880

0,003870

ry

0,003960 e -
0,003950 W

0,003940 : ;

0O 20 40 60 80 100

Fig. 12.
G(2p)=43, p< 10710

0,002830
0,002825 - e .
0,002820 R e
0,002815 WMW
0,002810 e e

0 20 4 60 8 100

Fig. 13.

Vol.

ET.Q.

Vol. 55 - 2009

ON LEAST PRIME PRIMITIVE ROOTS MOD 2P FOR ODD PRIMES P

65

0,002010

G@2p)=47, p< 10410

0,002005

XN

0,002000 -+
0,001995

£

0,001990 -+

0,001985
0

20 40 60 80

100

Fig. 14.

0,001440 -
0,001435

G(2p)=53, p< 10410

0,001430

0,001425

0,601420

0,001415

0,001410

20 40 60 80

100

Fig. 15.

G(2p)=59, p< 10410

0,001060

0,001055

0,001050 +

0,001045
0,001040 -

0,001035

20 40 60 80

100

Fig. 16.

66 ANDRZEJ PASZKIEWICZ ETQ.
Average value of G(2p), p< 10410

TF,903 o T < -

7,902 M W“ ettt

7,901 ‘/-“V

7,900]

7,899 HH——

7,898

7,897

7,896 v

20 40 80 100
Fig. 17. Average value of the least prime primitive root mod 2p
Table 1

Least primes p with a given least prime primitive roots modulo 2p

G(2p) g(2p) G(p) g(p) p p-1
5 5 5 5 23 211
7 7 2 2 11 2.5
11 11 2 2 59 2-29
13 13 13 13 457 22.3.19
17 17 2 2 131 2-5-13
19 19 19 19 191 2-5-19
23 21 2 2 181 22.3.5
29 21 29 21 409 22317
31 31 31 10 1021 22.3.5.17
37 21 37 14 1031 2-5.103
41 41 41 6 1811 2-5.181
43 15 43 6 271 2-3.5
47 33 2 2 1531 2.3.5.17
53 15 53 6 2791 2-3%.5.31
59 15 2 2 31531 2-3.5.1051
61 15 2 2 28477 22 .3%.7.113
67 57 2 2 33301 22 .3%.58.37
71 35 2 2 149341 22.3.5.19-131

Vol.

ETOQ.

Table 1

Vol. 55 - 2009 ON LEAST PRIME PRIMITIVE ROOTS MOD 2P FOR ODD PRIMES P 67
cd. Table 1

G(2p) §2p) G(p) &) p p-1

73 15 73 6 23911 2-3.5.797

79 15 79 10 11971 2-32.5.7.19
83 69 83 69 110881 2°.32.5.7.11

89 21 89 6 103091 2.5-13%.61

97 87 97 44 71761 24.3.5.13.23
101 33 2 2 266701 22.3.5.7.127
103 35 103 35 290041 2°.3.5.2417
107 21 107 10 31771 2.32.5.353

109 39 109 14 448141 22.3.5.7-11-97
109 39 109 14 448141 22.3.5.7.11-97
113 33 113 33 2447761 24.3.5.7.31.47
127 35 127 6 674701 22.3.52.13.173
131 115 131 10 3248701 22.3.52.72.13. 17
137 55 2 2 2708581 22 .3.5.7. 6449
139 21 139 18 690541 22-3.5.17.677
149 21 149 14 190321 24.3.5.13.61
151 35 151 6 2080597 22.3.7.17-31-47
157 33 157 33 4076641 2°.3.5.19.149
163 21 163 14 3545281 2. 3%2.5.1231
167 33 167 33 11643607 2-3%.13.17-2927
173 133 173 18 16135981 2*.3.5.7.103-373
179 141 179 94 5109721 22.3.5.72.11-79
181 15 181 15 9633751 2-3.5%.7.367
191 21 2 2 2697301 2%.3%.5%. 37
193 15 193 15 25738831 2-3.5.13.7333
197 21 2 2 63577141 22.3-5-11-96329
199 15 199 6 37565431 2:3.5-7-41.-4363
211 39 211 6 4022911 2-3%.5. 44699
223 21 2 2 24694141 2%.3.5.411569
227 15 227 6 298155271 2-3-5-7-71-19997

68

ANDRZEJ PASZKIEWICZ ETQ.
cd. Table 1
G2p) | 82p) | G | &» P p-1
229 91 2 2 194948461 22.3%.5.7%.23. 317
233 69 233 6 453507991 2-3-.5-13-31-37511
239 15 239 12 187155691 2-3.5.1223- 5101
241 35 241 14 449032321 27.32.5.11-19-373
251 35 251 22 672618871 2-3.5.7-11-32353
257 117 257 10 794932741 2% .3%7.5.7 630899
263 65 263 14 137568061 22.3%.5.7.23.47-101
269 93 2 2 3495804181 22.3.5.11-17 - 311569
271 69 2 2 8742210541 | 22.3.5.7%.59.101 - 499
277 57 277 57 443571241 2%.3.5.7-29-131-139
281 57 281 34 8493717961 2% .3%.5.7.13 - 259271
283 69 283 22 1095701881 22.3.5.7-13-19-5281
307 39 307 12 565822531 2.3%.5.7-13-23029
347 15 347 15 1160260711 | 2-3-5-72-17-29 - 1601
349 39 349 6 1622723341 22.3.5.7.1511 - 2557

Vol.

T
matic:

T.Q.

le 1

Vol. 55 - 2009 ON LEAST PRIME PRIMITIVE ROOTS MOD 2P FOR ODD PRIMES P

69

Results of theoretical and numerical computations

n P E2, p) E3(pn,), x < 10"
2 3 03739 0,37396
3 5 0,231 0231718
4 7 0,133 0,133812
5 1 0,086 0,086684
6 13 0,055 0,055841
7 17 0,036 0,036915
8 19 0,024 0,024921
9 23 0,016 0,016894
10 29 0,011 0,011545
1 31 0,008 0,008034
12 37 0,005 0,005606
13 41 0,003 0,003952
14 43 0,0028 0,002817
15 47 0,0020 0,002006
16 53 0,0014 0,001436

3. ACKNOWLEDGEMENTS

Table 2

The author is very grateful to Professor A. Schinzel from the Institute of Mathe-

matics of Polish Academy of Sciences for sketching the proof of Theorem.

4. REFERENCES

l. A, Paszkiewicz, A. Schinzel: On the least prime primitive root modulo a prime, Math.

Comp., vol. 71, No. 239, pp. 1307-1321.

7 N

sup,
rang
twe
whe
syst
and
four

mox
add

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 1, pp. 71-93

SystemC-based Codesign of Distributed Embedded Systems

STANISLAW DENIZIAK, RADOSLAW CZARNECKI

Cracow University of Technology, Warszawska 24, 31-155 Cracow, POLAND
E-mail: pedenizi@cyf-kr.edu.pl, czarnecki@pk.edu.pl

Received 2008.12.02
Authorized 2009.01.20

Most of existing co-synthesis methods for embedded systems requires a task graph
model of a system. This work presents a codesign methodology for embedded systems
specified using SystemC language. For each system specification, developed according to
this methodology, it is possible to automatically generate the task graph or the conditional
task graph corresponding to this specification. To simplify the codesign process and to
reduce the time required to develop the specification, a framework in the form of a library
built on top of the SystemC language core was created. This library contains definitions of
communication channels, interfaces, ports and macros implementing a model of computation
corresponding to the task graph semantics. Benefits of the presented methodology were
demonstrated by comparing synthesis results of the same system, represented by different
SystemC models and using our co-synthesis methods for SOC, SOPC and dynamically
reconfigurable SOPC systems.

Keywords: SystemC, codesign, system synthesis

1. INTRODUCTION

SystemC [1] is the most widely accepted system-level specification language. It
supports a powerful generic model of computation, which enables defining a wide
range of different customizable methods of communication and synchronization be-
tween processes. SystemC has proven to be suitable for design of embedded systems,
where the ability to develop heterogeneous specifications is very important. Electronic
system level design environments use specific models of computation, abstraction levels
and design methodologies. To make SystemC more general, only a basic modelling
foundation has been added to the language. It is assumed that design libraries and
modelling guidelines needed to support these specific design methodologies will be
added on the top of the language core.

72 STANISLAW DENIZIAK, RADOSLAW CZARNECKI ETQ.

To perform system-level optimizations, like static task scheduling, task allocation,
hardware/software partitioning, co-synthesis methods require models providing infor-
mation about static data/control flow. The most widely used models of dataflow-oriented
embedded systems are: a task graph [2-7] and a conditional task graph [8-12]. The
task graph represents information about static data/control flow in a graphical form,
it is not an executable specification required for modelling. Though it is possible to
extract task graph from C program [13], it works only on sequential programs and
is not applicable to system-level specifications given in SystemC. Default SystemC
model of computation does not enable to determine data/control flow using static code
analysis. Therefore, it is not possible to create an efficient task graph model. To avoid
this problem an embedded system should be specified using the model defined by the
task graph semantics.

In this work we present codesign method for embedded systems specified using
SystemC language. Our approach is based on the methodology of creating SystemC
specifications semantically equivalent to the task graph or the conditional task graph.
The methodology consists of a library of C++ classes built on top of the SystemC
language and a set of rules restricting use of SystemC constructs to the model of
computations consistent with the task graph semantics. For each specification deve-
loped according to the methodology the corresponding task graph can be generated
automatically, reducing the amount of development time and a potential for mistakes
to occur. For the task graph generated from the specification given in SystemC, a
co-synthesis algorithm can be applied to generate target architecture of the system. In
this paper we present 3 co-synthesis methods for distributed embedded systems, each
of them optimizes the system assuming SOC (System on Chip), SOPC (System on
Programmable Chip) or DRSOPC (Dynamically Reconfigurable System on Program-
mable Chip) implementation. The target architecture of the system consists of general
purpose processor cores and dedicated hardware modules. Algorithms start with an
initial solution (architecture with highest speed or architecture occupying smallest chip
area). Next, they produce new solutions using iterative improvement methods. In our
approach the same executable SystemC specification is used for system modelling
and for codesign. In this way we may avoid divergence between co-verification and
co-synthesis. This is the main advantage of our methodology.

The rest of the paper is organized as follows. The next section reviews related
work concerning methods for the co-synthesis of distributed embedded systems. Exi-
sting environments defining different models of computation in SystemC language will
also be presented. Next, the main system-level features of SystemC are outlined. The
overall specification methodology is presented in section 4. Section 5 contains a short
description of our co-synthesis methods. Next, experimental results are given. The
paper ends with conclusions.

Vol. ¢

Alloc
comy
I
mixe:
syste:
stics.
algor
(
pone:
differ
these
PEs
Altho
result
algor
by m
trapp
der or
are ca
depern
the M
which
S
consu
methc
[19-2
them

T
Syster
tion is
specif
Syster
the Tr

C, a
1. In
>ach
1 On

reral
1 an
chip
our
ling
and

ated
Exi-
will
The
hort
The

Vol. 55 - 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 73

2. RELATED WORK

The co-synthesis of distributed embedded systems consists of the following tasks:
— allocation; determines the quality-and quantity of resources (processing elements

~ PEs and communication links — CLs), to be used,

— assignment; determines tasks to be executed on each PE, and a CL for each trans-
mission,

— task scheduling; determines time at which each task and each transmission will
start.

Allocation, assignment and scheduling are each NP-complete, thus the co-synthesis is

computationally a very hard problem.

Due to the complexity of co-synthesis, the algorithms giving best solutions (e.g.
mixed integer linear programming [14] or exhaustive exploration) are limited to small
systems, only. Other approaches are based on constructive or iterative refinement heuri-
stics. Some probabilistic optimization methods e.g. simulating annealing [12] or genetic
algorithms [15] have been applied to the co-synthesis problem as well.

Constructive algorithms [16] build a system allocating incrementally new com-
ponents. Since such approach is capable of inspecting only local effects of changes,
different performance estimation methods were used to predict the global impact of
these changes. The methods, usually based on the best- and worst-case analysis, prefer
PEs with the highest speed or with the lowest cost and disregard remaining PEs.
Although constructive algorithms are fast and are capable of producing high quality
results, they are prone to becoming trapped in local minima. Iterative improvement
algorithms [17] start with a sub-optimal solution and try to improve the system quality
by making local changes to the system. Existing iterative algorithms also tend to be
trapped in local minima. The main reason is that iterative improvement methods consi-
der only local changes driven by immediate gain. Probabilistic optimization algorithms
are capable of escaping local minima. However, performance of these methods strongly
depends on selected values of parameters controlling the algorithm. For example, in
the MOGAC genetic algorithm [15] each task graph has a different random seed for
which the algorithm finds the best solution most rapidly.

Since, certain system features that are to be optimized, like cost, speed or power
consumption, strongly depend on the implementation method, different co-synthesis
methods were proposed for SOCs [18], SOPC, dynamically reconfigurable SOPCs
[19-21], systems with dynamic voltage scalable processors [22], etc. But almost all of
them use the task graph representation of the system.

The semantics of the task graph defines a certain model of computation. Therefore,
SystemC specification will be synthesizable using the above methods, if the specifica-
tion is created according to this model, or if it is possible to automatically convert this
specification to conform to this model. Several design environments were proposed for
SystemC. The OSCI TLM [23] defines a library of channels and interfaces which meet
the Transaction Level Modelling standard requirements [24]. HetSC library [25] [26]

74 STANISEAW DENIZIAK, RADOSEAW CZARNECKI ETQ.

supports some of the well-known models of computation: SR, KPN, PN, CSP, and
SDF. SysteMoC library [27] [28] also permits the development of specifications under
the well-known models of computation, for the purpose of the model based system
design. None of the above models of computation is consistent with the task graph.
Moreover, all the above approaches are frameworks for modelling, verification, design
space exploration and embedded software generation. There is no any codesign method
which may be applied to the proposed models.

3. SYSTEMC SEMANTICS

SystemC is a library of C++ classes and macros for system and hardware design.
System-level specification is a set of modules, communicating using channels. Channels
are connected to module ports. Each module contains at least one process. Processes
are activated according to a sensitivity list, defined statically or dynamically. SystemC
provides the following system-level features: events, channels and interfaces. These
constructions define the model of computation used in the specification

3.1. EVENTS

The event is a low-level primitive which is used to construct different forms of
synchronization. Wait/notify model is used. Processes waiting for events are suspended.
Process resumes its execution when any event (or set of events) from the specified
sensitivity list is generated. The sensitivity list for each process is defined statically or
dynamically. The static sensitivity list is defined in the module constructor, separately
for each process and can not be changed during execution. The dynamic sensitivity list
is specified inside the wait operation and temporarily overwrite static list.

Three kinds of process are possible: thread process, method process or clocked
thread process. Each thread process has its own thread of execution and can be su-
spended and resumed. Method process is executed to its end each time after activation.
Clocked thread process is a thread process which can be activated only by positive or
negative clock edge event.

3.2. INTERFACES

The interface specifies a set of methods to be implemented within a channel. Only
ports matching given interface type may be used with channels implementing this
interface. The main role of interfaces is to separate transmissions from computations,
i.e. interfaces provide for modules an access to communication methods implemented
in channels.

Vol.

chic
Hie
may
chai

Trar
ever
afte:

king
ratio

putat
whic
stamy

broac
to ch
rules
comr
mech
proce
resun

T
fulfill
requir
that s
task g
whene
First,
be suj

ETQ.

P, and
under
ystem
graph.
design
1ethod

lesign.
annels
cesses
stemC
These

'ms of
ended.
ecified
ally or
arately
ity list

locked
be su-
vation.
tive or

1. Only
g this
fations,
mented

Vol. 55 — 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 75

3.3. CHANNELS

The channel implements one or more interfaces and may be primitive or hierar-
chical. Primitive channels do not contain processes and can not access other channels.
Hierarchical channels are modules, they may contain processes and other modules, and
may access other channels. In SystemC only two types of communication primitive
channels are predefined: signal and fifo.

The signal is a simplest communication channel. It corresponds to a hardware line.
Transmission is without blocking and buffering, any change of signal state generates an
event. Another kind of signal is a buffer. The only difference is that event is generated
after every write, even if it does not change a buffer state.

The fifo enables transmissions with buffering and with blocking or without bloc-
king of communicating processes. Operations for reading and writing as well as ope-
rations for checking the fifo state are provided. ‘

3.4. MODEL OF COMPUTATION

The semantics of SystemC corresponds to the Discrete Event (DE) model of com-
putation. Each process may generate any number of events, for each event a time at
which it will occur is specified. All pending events are ordered according to their time-
stamp. When the given event occurs all processes waiting for this event are activated.

Synchronization capabilities provided by events and the wait operation allow a
broad range of different communication methods to be implemented without having
to change the simulation engine. Designer may construct specific channels defining
tules for communication between processes and for process activation. For example
communication methods implemented in the fifo channel specify the synchronization
mechanism used in dataflow process networks: the read() method suspends the calling
process when the buffer is empty, while the write() method generates the event which
resumes the suspended reading process.

4. SYSTEMC SPECIFICATION METHODOLOGY

The specification methodology defines a set of requirements which should be
fulfilled by any specification developed for the purpose of the co-synthesis. These
requirements restrict the communication and synchronization methods in such a way
that specifications are consistent with a model of computation corresponding to the
task graph semantics. To reduce the time required for the specification development,
whenever it was possible requirements were expressed with C++ classes and macros.
First, the methodology of the task graph specification will be presented. Next, it will
be supplemented to support the conditional task graph.

76 STANISEAW DENIZIAK, RADOSEAW CZARNECKI ETQ.

4.1. TASK GRAPH

Task graph is a directed, acyclic graph G =< V, E >, where: V is a set of vertices
corresponding to tasks, E is a set of edges corresponding to communication between
tasks. Labels associated with edges represent a size of single transmission. Only one
node vs has no predecessors, it will be called the initial node. System specification
may consist of more than one task graph, each executed with different rate. A sample

task graph is presented on Fig.1.
(%),
15

50’

Fig. 1. A sample task graph

Let u; be any node in the task graph and vy, ..., v, be all its predecessors.
Definition 1 [Task graph model of computation]

Task graph model of computation (TGMoC) is defined as follows:

Task v, is self-activated with the rate fg (fr = 0).

Any active task is executed to its end without suspending.

Task ui is activated every time after finishing the execution of all tasks vo, ..., V.
Transmissions from v; (j=O0,...,n) to u; are buffered. The size of a buffer is defined
by the label of the corresponding edge.

Above definition specifies the only synchronization and communication methods
which are permitted in the TGMoC. In the presented methodology they are supported
by a library containing the following components:

e TG_NODE(proc, inpy,..., inp,) — the macro for process declaration,

e tg_chan — the communication channel,

e tg.in_if,tg out if — interfaces declaring operations implemented in tg.chan,
® tg_in,tg_out — ports matching tg.in_if and tg_out.if interfaces,

e fire_event — an event activating process.

TG_NODE defines a method process proc activated by a fire_event instantiated
in this macro. This event is generated each time after finishing the execution of all
processes connected to inpy, ..., inp, ports. Channel 1g_chan contains a fifo buffer with
a size equal to the label of the corresponding edge. This channel does not generate an

Rl el e

Vol. 55

event
betwe

C
Syster
lowin;
RI1. A
R2. C
R3. T

Ti
last co
mentes
in Sys

Th
additio:
nodes.
conditi
join no
join no

Le
conditic
node w

ices
veen

one
ition
nple

oy Ve

thods
orted

tiated
of all
r with
ate an

Vol. 55 - 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 77

event after each write but only after end of transmission. This is the main difference
between the 1g_chan and the standard SystemC fifo channel.

Components described above implement all rules given in Def.1. Therefore, any
SystemC specification is semantically consistent with TGMoC when it fulfils the fol-
lowing requirements: ‘

R1. All processes are declared using TG_NODE macro.
R2. Communication is specified using only tg_chan channels.
R3. There are no static sensitivity declarations.

The first two conditions exclude synchronization other than using ¢g.chan. The
last condition ensures that processes will be activated only according to rules imple-
mented in the TG_NODE macro. Fig.2 presents a structure of the specification given
in SystemC, corresponding to the task graph from Fig.1.

TG_NODE(V+) (Y- process
@ [- primitive
hannel
TG N v, tg_chan(15) N
- ODM - . communication
TG_NODE(V,)
g\ tg_chan(12) tg_chan(50)
Ny TG_NODE(V4)
tg_chan{20) Iy
TG_NODE(V,)
tg_chan{1)

Fig. 2. Structure of a TGMoC specification

4.2. CONDITIONAL TASK GRAPH

The conditional task graph is also a directed, acyclic graph G =< V,E >, but
additionally it contains conditional edges and two types of nodes: fork nodes and join
nodes. The fork node is a node with conditional output edges. All mutually exclusive
conditional edges for the same fork node begin conditional paths which meet in the
join node. Fig. 3 shows a sample conditional task graph with one fork node v, and one
join node vy,

Let w; be any fork node, ej,...,e, be a set of all mutually exclusive output
conditional edges and x; be the join node ending conditional paths coming out from
node w;.

78 STANISEAW DENIZIAK, RADOSEAW CZARNECKI ETQ.

Fig. 3. A sample conditional task graph

Definition 2 [Conditional task graph model of computation]

Conditional task graph model of computation (CTGMoC) is defined as follows:
5. After finishing the execution of task w; only one task (ending edge e, for which the

condition equals true) is activated.

6. Task x; is activated every time after finishing execution of one ending task, for each
set of incoming mutually exclusive conditional paths.
For all other nodes and edges rules 1-4 from Def.1 are applied.

Def. 2 specifies semantics for the fork task and the join task. Thus, the library was
supplemented with the following components:

e CTGIOIN(chang, chany,...,chan,). the macro joining channels chany, ..., chan,
corresponding to edges ending mutually exclusive paths, into one channel chany,

e ctg_chan: the communication channel corresponding to a conditional edge,

e ctgout_if: the interface defining operations implemented in ctg_chan class,

e ctg_ out: the port matching the czg_out_if interface.

Methods of activation of fork tasks are the same as in Def.1, thus these tasks may
be declared using TG.NODE macro. Conditions associated with conditional edges are
specified in declarations of the corresponding cfg-chan. Channel cfg_chan generates
an event activating the next process only when the condition evaluates to true. The
main problem in determining activation of the join task is to detect mutually exclusive
paths. CTG_JOIN macro joins all specified channels into one channel, which should
be specified as an input channel in the join task declaration. In this way all mutually
exclusive input channels are visible as one channel. This solution is similar to that
used in [9] and it can be also applied for graphs with nested conditions.

To assure consistency with CTGMoC, any SystemC specification has to meet
requirements R1-R3 and the following ones:

Vol.

CTC

fron

]
dwar
of th
e.g. |

]
mize
SOP
derat
from
and
iterat
CO-8}
iterat
— the
- the

~ 8YyS
The
capal
algor

ETQ.

OWS.
ich the

r each

ry was

. chan,
hany,

S may
oes are
nerates
e. The
clusive
should
utually
to that

> meet

Vol. 55 - 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 79

R4. All channels corresponding to conditional edges are specified as ctg_chan.

- RS. All mutually exclusive input channels for each join task are declared using
CTG_JOIN macro.

Structure of the specification given in SystemC corresponding to the task graph
from Fig.3 is presented on Fig.4.

TG_NODE(V4)

tg_chan(20)
TG_NODE(V,) @

TG_NODE(Vs)
ctg_chan(30) TG_NODE(V,)

ry ; tg_chan(20 CTG_JOIN
o Y pa n
ctg_chan(50)
TG_NODE(V3)
- 78
N pp w0
tg_chan(40) tg_chan(5)

TG_NODE(V,)

Fig. 4. Structure of a CTGMoC specification

5. THE CO-SYNTHESIS

HW/SW co-synthesis is the process of partitioning system specification into har-
dware and software processing elements connected by communication links. The goal
of the co-synthesis is to find the best target architecture satisfying given constraints
e.g. maximal cost or minimal speed.

In this section three co-synthesis methods will be presented. Each of them opti-
mizes different system implementation: SOC, SOPC and Dynamically Reconfigurable
SOPC. The algorithms are based on iterative improvement heuristics, taking into consi-
deration sophisticated modifications and possibilities of further improvements. Starting
from the initial solution, at each step some changes to the actual solution are considered
and then the solution giving the best gain is selected. Architecture of the system 1is
iteratively modified until it achieves the best architecture that satisfies the goal of the
co-synthesis (the lowest cost or the highest performance). The main components of the
iterative improvement algorithm are:
~ the initial solution,

- the metric of the gain,

~ system refinement methods.

The above components have to be defined in such a way that the algorithm will be
capable of escaping local minima. The draft of the iterative improvement co-synthesis
algorithm looks as follows:

80 STANISEAW DENIZIAK, RADOSLAW CZARNECKI ETQ.

Cur |

Generate initial solution 4™,

Repeat {

Abesl___ACm',

gain=0;

while ({4 '=Modifications(A™")) # 0) do{
gain(4)=Quality(4’)-Quality(4°");
if(gain(d’)>0) then A" =4";

}
Juntil (gain(4°)>0);

Refinement process is controlled by the gain that describes a quality of the improve-
ment. The gain is the difference between two compared solutions. Quality of solution
is usually characterized by a few parameters (e.g. cost, performance). Since the number
of possible changes in the system is very large, therefore only a few of these changes
should be taken into consideration. Otherwise, the algorithm would be not suitable for
large systems due to high computational complexity. In our co-synthesis algorithms
two basic methods of refinement are considered: an allocation and a removing of single
resource. It is possible to perform both kinds of changes in the same step, in this way
movement of a task from one PE to other ones can be done. Such system modifica-
tions allow global changes of the system architecture. Moreover, simple modifications
are still possible. For example, allocating one PE, assigning one task to it and then
removing this PE and moving this task to some other PE, moves task from one PE

to another.

5.1. CO-SYNTHESIS OF SOC SYSTEMS

System on Chip is one of possible implementations of distributed embedded sys-
tems. It is assumed that the target architecture of SOC includes processor cores (GPPs)
and dedicated hardware components, also called hardware virtual components (VCs).
A GPP executes all of assigned tasks sequentially. Each VC executes exactly one task.
With each PE; (GPP or VC) the following parameters are associated:

— Ci(v;) — implementation cost of each task v,
- t;(v;) — execution time of each task v;.

Values of C;(v;) and t;(v;) are known for IP modules. For other tasks they can be
computed using performance and hardware effort estimation methods [29]. Moreover,
with each GPP; the unit cost CUj, is associated. CU; is independent of the number of
tasks allocated to GPP;.

Communication between processing elements is established using communication
links (CLs). Sharing of communications links is allowed. Communication links are tre-
ated similarly as GPP. During synthesis link allocation and scheduling of transmissions
are performed. Each type of communication link CL; has the following parameters:

It is
comi
buffe

may

wher
comn

T
(EW/4
satisf
lected
is ali
syster
algori
The n
into ¢
preser
steps

where:
S —
Li — i
S; and
Possib,
then tt
solutio
During

rove-
ution
mber
nges
le for
thms
ingle
s way
ifica-
itions
then
e PE

d sys-
7PPs)
VCs).
> task.

~an be
€OVer,
ber of

cation
re tre-
issions
ters:

Vol. 55 - 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 81

- cost of the link CC;,
- bandwidth b; (Bytes/s).

The time #(v;,v) required for data transfers between tasks v; and v; using com-
munication link CL, is evaluated using the following rule:

d;; .
bV, ;) = bﬂ — if tasks are assigned to different PEs, 0

0 — otherwise.

It is assumed that transmissions do not interfere with computations. Such model of
communication is most commonly used, and may be implemented using dual-port
buffers between PEs and buses or as communication using shared memory.

Assuming that a cost is defined by the total ASIC area, the total cost of a system
may be specified using the following equation:

C:Zrlcyﬁicw,);rica (2)
i=1 J=1 i=1

where r is the number of GPPs, p is the number of tasks, and ¢ is the number of
communications links.

The goal of the co-synthesis algorithm for SOC systems, used in our approach
(EWA [30]), is to find the system architecture occupying the smallest chip area and
satisfying given time constraints. The fastest architecture of the system is always se-
lected as the initial solution. In this solution, the PE with the fastest execution time
is allocated to each task. Since the goal of refinement is to reduce the cost of the
system, so this cost should be the main factor influencing the gain. However, greedy
algorithms, taking into consideration only cost, are quickly trapped into local minima.
The main idea of the algorithm is to define the gain in such a way that it will take
into consideration the global impact of the considered improvement. In the approach
presented here the possibilities of modifying system architecture in the subsequent
steps of the algorithm are defined using the following parameter:

Q= Z (Li — S) 3)
i=1

where:

S; — is the earliest time to start the execution of the i-th task,

L; - is the latest time to start the execution of the i-th task, ensuring satisfaction of

all time constraints.

S; and L; are evaluated using ASAP (As Soon As Possible) and ALAP (As Late As
Possible) algorithms for the current architecture. If for any of the tasks we have L; < S;
then the current solution violates time constraints. This condition is verified for each
solution. Bigger L; — §; usually means more possibilities of allocating the i-th task.
During system refinement task assignments and scheduling are changed, and so L;

82 STANISLAW DENIZIAK, RADOSLAW CZARNECKI ETQ.

and S; should be computed after each step. The global impact of any modification is
defined as the increase of Q caused by the modification:

AQ = Qe = Qo 4)
Finally, the gain AE taking into consideration cost reduction and the global impact
of the system refinement is defined as follows:

—-AK;
':_A—gi,fOFAQ <0

AE =4 _AKg, forAQ = 0)

~AKg - AQ, forAQ > 0

where AK;s denotes the cost increase. Gain is defined only for modifications decreasing

the cost of a system (otherwise the modification is not taken into consideration).
The following system changes are considered during refinement:

1. Allocation of one PE and assigning to it as many tasks as possible to achieve the
highest gain.

2. Removing one PE with all tasks, which were assigned to it, being moved to other
PEs. All task movements are done according to the highest gain principle.

More details about EWA method are presented in [30].

5.2. CO-SYNTHESIS OF SOPC SYSTEMS

Modern FPGAs enable the integration of a complex system on one device, also
called System On Programmable Chip (SOPC). The goal of the co-synthesis is to find
the architecture of SOPC system with the highest performance, which does not exceed
the size of a target FPGA. Each task is characterized by the same time and cost (area)
parameters as for SOC systems. The time of the transmission is also computed in the
same way as for SOC systems (equations 1). The total area of the system implemented
in FPGA is defined as in equation (2). Execution time of all tasks in the system is
defined as follows:

T = max(max(t(GPP), ..., tx(GPP,)), max(VCpit)s---s t(VC)) (6)

where: 1, (PE;) is the finish time of a task scheduled as the last one on PE; (VC; or
GPP;). Therefore, performance of the SOPC system is the following:

A=YT (7

The initial solution in co-synthesis of SOPC system [31] is the architecture where
all tasks are assigned to one GPP occupying the smallest area. Such solution leaves

Vol.

mos
usec
be r

in th
V; ar
prio
sche

poss
calc

whet
solut
for s
next

impr

whert
modi
are p
best s
SOP(

Y
featur:
recon]

compt
overhe

M
reconf
in this
and D
the ta

4

act

o)

ing

the

ther

also
find
ceed
rea)
| the
nted
m is

©

or

9,

shere
>aves

Vol. 55 ~ 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 83

most space in FPGA available for new resources. Two methods of the modification are
used: adding one GPP or VC, and removing one GPP or VC. Both modifications can
be made in one step of the algorithm.

The list scheduling method, where priorities are assigned to each task, is applied
in the algorithm. For each task v;, times of execution of tasks, on all paths starting from
v; are computed. The longest time is taken as the priority of the task. Tasks with higher
priorities are scheduled first. Task scheduling, allocation of CLs and communication
scheduling are done simultaneously.

To increase the probability of getting out of local maxima of performance, the
possibility of optimization in the next steps is also taken into consideration in the
calculation of the gain. Let the parameter « define the available space in the FPGA:

a = Cmax = Ceur (8)

where: C,,, is the area of the target FPGA device and C.ur is the area of the current
solution. The best solution is a solution with the highest A. But from the other side,
for solutions with the highest @, there is a greater probability of optimization in the
next steps of the refinement. Thus, the gain AE, that describes the quality of the
improvement, is defined as follows:

Aa x Al when Aa > 0

Ad when Aa = 0 and A1 >0
AE = ~-Ad Ao when Ao <0 ©
0 when A1 <0

where: Aa = a(A™) — a(AP™) is the increase in the available area caused by the
modification, A2 = A(A*™) — A(AP™) is the increase in the speed, a(A™") and A(A®™)
are parameters of the current solution, &(AP®) and A(AP™) are parameters of the
best solution, found in the previous step. More details about co-synthesis algorithm of
SOPC systems are presented in [31].

5.3. CO-SYNTHESIS OF DYNAMICALLY RECONFIGURABLE SOPC SYSTEMS

Many FPGA devices support a partial and dynamic reconfigurability [32]. This
feature enables a larger part of the application to be accelerated in hardware. In partially
teconfigurable FPGAs only a part of the configuration can be modified. In this way,
computations may overlap with reconfigurations, reducing the reconfiguration time
overhead.

Many assumptions presented in the previous section are the same for dynamically
reconfigurable SOPC systems (e.g. library of components, parameters of tasks). Thus
in this section only differences between the co-synthesis of SOPC (described in p.5.2)
and DRSOPC systems (COSEDYRES [33]) will be pointed out. It is assumed that
the target architecture includes GPPs, CLs and dynamically reconfigurable sectors

84 STANISEAW DENIZIAK, RADOSEAW CZARNECKI ET.Q.

RSs. Hardware components (VCs) are placed in sectors RSs. One or more VCs can
be assigned to one sector for the same time frame, thus RS can execute exactly one
selected subset of tasks. Tasks assigned to one RS may run in parallel. After all tasks
assigned to the same sector have finished their execution the sector is reconfigured to
allocate new VC modules. A

Areas of all available RSs are calculated as the sum of areas of some VCs from
the library, next they are justified according to the requirements of a module based
reconfiguration. The area occupied by the sector RS; is defined as Cgs;. Reconfiguration
time for each RS is calculated on the basis of the reconfiguration time of one logical
cell (¢,), which is taken from the datasheet of a target FPGA. It is assumed that the
target architecture includes an additional embedded processor GPPr, which controls
reconfiguration process. Let the architecture of a system be composed of p processor

cores GPP; (i = 1,..., p), one processor that controls reconfiguration GPP, occupying
the area Cu,, r sectors RS; (i = p+ 1,..., p+r) and ¢ communication links CL;
(j = 1,..., ¢). The total area of the system is defined as follows:
P [I'H" c
C=Y Cur+) Crsi+), Cej+Cu, (10)
i=1 i=p+1 j=1

During the initialization all available sizes of RS are being calculated. Next, the
initial solution is created in the same way as for SOPC systems. The best sector size
is the size that can contain as many as possible different groups of tasks. To achieve
greater flexibility a few different sizes of RS should be available. First, sums of areas
of all possible VC groups are being computed. Next, sums which are most frequent or
sums which values are the most similar (values are in a given range) are being chosen
as available sector sizes. If an embedded system is represented by the conditional
task graph, then all mutually exclusive tasks (MET) should be determined during the
initialization step. For this purpose, the algorithm of a CTG labelling is used.

Two methods of the modification are also used: adding or removing one GPP or
RS, moreover modifications that remove or add so called “time context” of RS, are
also considered. “Time context” is a time between consecutive reconfigurations of RS
(only limited number of VCs can be executed in such context of RS,) and it is treated
as resource. The gain AE that describes the quality of the improvement is defined
according to equation (9).

In the COSEDYRES, the physical constraints on placement of reconfigurable mo-
dules are taken into account [21]. Reconfigurable sectors are always strict linearly
placed, i.e. each RS occupies a contiguous set of CLB columns. Such restrictions
eliminate some possible optimal solutions, but physically unrealizable because of pla-
cement infeasibility.

If DRSOPC system is specified using CTG graph, the algorithm prefers to assign
MET tasks to the same RS. In this way the area of a system is decreased and then
more tasks may be assigned to hardware, thus the system performance may be higher.

Vol

W
tin

the
fra
co!
thi
in

RS
nic
imy

ces
or

stai
oth
alg

terr
CO-
the
mal
sys
of t
exa
33]
and
opti

equ
befc
sho
time
par:
Firs

part
moc
Ben
enatl

ETQ.

s can
y one
tasks
red to

from
based
ration
ogical
at the
ntrols
cessor
pying
S CLJ

(10)

xt, the
or size
chieve
f areas
jent or
chosen
litional
ing the

7PP or
RS, are
5 of RS
treated
defined

rle mo-
linearly
rictions

of pla-

) assign
nd then
higher.

Vol. 55 - 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 85

When MET tasks are assigned to the same GPP, they can be scheduled in the same
time frame; therefore the scheduling algorithm takes them into account, too.

It is assumed that the basic reconfigurable module in FPGA is a frame, spanning
the height of an FPGA (as in Xilinx FPGAs). Each RS consists of multiple adjacent
frames. Hence, RS placement should be strict linear. Another constraint concerns the
communication scheduling: the sector reconfiguration and any transmission through
this sector are not allowed in the same time. Therefore, transmissions can not overlap
in time with reconfiguration. To find the best sector placement, all possible layouts of
RSs in an FPGA are evaluated. For each RSs placement, task scheduling and commu-
nication scheduling, satisfying reconfiguration requirements, are performed. The fastest
implementation is selected as the A%,

Architecture generated using COSEDYRES is supplemented with the GPPr pro-
cessor that controls the reconfiguration of sectors. GPPr is a general purpose processor
or a special IP module. Part of an FPGA is reserved for GPPr, before the algorithm
starts. In this way the whole system is implemented in one FPGA and there are no
other external modules to control reconfiguration process. Details of COSEDYRES
algorithm are presented in [33].

6. EXPERIMENTAL RESULTS

In this section the benefits of using our methodology for developing the sys-
tem specification using SystemC language, to achieve high quality results during the
co-synthesis, will be presented. First it will be showed that if designer does not consider
the methodology presented in this work, results of the synthesis may be far from opti-
mal. Next, some experimental results of the co-synthesis of SOC, SOPC and DRSOPC
systems that are specified as task graphs using SystemC will be presented. The benefits
of the dynamic reconfigurability also will be demonstrated. For this purpose, the same
example will be synthesized and implemented as DRSOPC and SOPC systems [31,
33]. Next, by comparing results of the co-synthesis of systems represented by TG
and CTG graphs, benefits of considering mutually exclusive tasks during the system
optimization will be presented.

If we do not consider methodology of creating SystemC specifications semantically
equivalent to the task graph, the static dependencies between tasks will not be known
before the co-synthesis (DE model of computations). Thus, the co-synthesis process
should assume the worst case, where all tasks should be executed during the required
time period. Let the library of available resources given in Tables 1 and 2 specifies task
parameters for the system specified in Fig. 3. Table 3 presents experimental results.
First, the system was synthesized as a SOC, using the method described in p.5.1. First
part of the table contains results obtained for the system specified using DE and TG
models of computation, the following rows correspond to different time constraints.
Benefits of our methodology are especially visible for hard constraints, where TG model
enables higher area minimization. Moreover, for the first case without our methodology

86 STANISEAW DENIZIAK, RADOSLAW CZARNECKI ETQ. Vol.

it was not possible to find solution satisfying given constraint. The second part of

Table 3 presents results obtained for SOPC systems. Here we may observe opposite 10 ¢
dependency: results of optimization are lower for hard area constraints. When the is vi
available FPGA area is small, it is occupied mainly by GPP and only a few tasks incre
may be allocated in hardware. Thus, most tasks are executed sequentially. For larger are
FPGAs it is possible to allocate more GPPs or VCs, therefore more tasks may be is pe
executed in parallel. Specifying MET tasks using CTG model of computation gives arch
more possibility of optimization in all cases, especially for DRSOPC systems.
Table 1
Library of software and hardware components
—
tr=0.86 us / CLB "
GPP
(Cu=180 CLBs) ve -I:
Task | t(v;) [ps] Ci(vy) t(v;) [ps] Ci(v;) [CLB] I
Vo 202 66 61 152 3
v, 220 32 94 109 >
Va 264 24 30 184 L7
V3 136 29 21 224
Vy 190 32 26 167 (
Vs %0 8 40 181 tasks
syste
Table 2 comy
Parameters of the communication link 5).T
enab)
Cl CC [CLB] b availability (up t
B1 10 9kB/us GPP, all VC (HW) may
is sal
the n
Table 3 perfo
Results of co-synthesis for SOC, SOPC and DRSOPC systems
T max| SOC-DE | SOC-TG [FPGA areaj SOPC-DE |SOPC-TG| DRSOPC-TG |DRSOPC-CTG
time| area [time| area time| area |time]area|time| area |time| area e
250 | - - | 155 (1017 900 449 802 (313802313 802 263 900 —
400 |272 1017|313 | 829 700 5771 693 |454 650|374 690 345 676 N
600 |578| 743 | 545 | 637 550 714 541 | 618|483 1477 523 374 523 H_.g
800 {742 608 | 741 | 534 400 871 374 1838374567 358 507 358 ’
Smax = 1027, tmin = 155|Smin = 180, tmax = 1102 ‘

of
Site
the
sks
ger

vES

le 1

le 2

le 3

1 &4

Vol. 55 - 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 87

Table 4 shows the comparison of co-synthesis result for random task graphs (from
10 to 70 nodes) for SOC and SOPC systems specified using DE and TG models. It
is visible that the difference between optimized system parameters, for both models,
increases according to the growth of the number of tasks. For larger systems there
are more tasks belonging to parallel paths in task graphs, thus using TG model it
is possible to achieve higher level of parallelism. In this way it is possible to find an
architecture with lower cost (for SOC system) or with higher speed (for SOPC system).

Table 4
Comparison of results for co-synthesis for DE and TG models
SOC-DE SOC-TG SOPC - DE SOPC - TG
T FPGA
N max time area time area area time area time area

10 1500 1171 3813 1498 | 1979 1500 2903 1345 1772 | 1274
30 | 6000 | 5983 5606 5989 | 3559 2000 14993 1893 | 6292 | 1894
50 | 8000 | 8000 9424 7951 | 4331 2500 24865 | 2423 | 8046 | 2488
70 | 9000 | 8975 13024 | 8981 | 5819 3000 33024 | 2882 | 9543 | 2952

CTG model enables to specify mutually exclusive tasks. Information about these
tasks may be used for area optimization, especially during co-synthesis of DRSOPC
systems. The results of the synthesis of systems specified by random CTG graphs were
compared with results obtained for the same systems specified by TG graphs (Table
5). The experiments showed that considering mutual exclusive tasks specified by CTG,
enables to increase performance of a DRSOPC system using the COSEDYRES method
(up to 30%). If MET tasks are assigned to the same reconfigurable sector, more tasks
may be executed in hardware. METs are allocated only when the proper condition
is satisfied (after reconfiguration of a sector). The performance increase depends on
the number of MET tasks in CTG. If the number of METs in CTG is small then the
performance increase may not be such significant.

Table 5
Comparison of co-synthesis results of DRSOPC specified by TG and CTG
DRSOPC —- TG DRSOPC - CTG

Nodes | FPGA number | performance

[N] area time area HW time area HW | of MET | increase [%)]

10 1500 941 1498 4 804 1490 5 1 15

30 2000 4642 | 1863 13 3448 | 1986 15 2 26

50 2500 7054 | 2303 6 6531 | 2373 13 3 8

4

70 3000 9174 | 2935 21 8396 | 2964 35

88 STANISEAW DENIZIAK, RADOSEAW CZARNECKI ETQ.

6.1. EXAMPLE: EMBEDDED WEB SERVER

Today, many devices are controlled through Internet using HTTP protocol. There-
fore, many embedded systems implement some network functionalities. Qur real-life
example is the module implementing a simple web server. Function of this server
may be specified by the conditional task graph presented on Fig. 5. It consists of the
following tasks:

Fig. 5. Ctg specification of the embedded web server

— GetReq: process that waits on notifications on port 80. All requests are send to
ProcReq and after emptying transceiver buffer the information is send to Trans.

— ProcReq: process that is activated after receiving information from GetReg. It reads
data packages into buffer. After completing a full HTTP request the information is
send to ProcGet or ProcPost, depending on the request type. Since this process is
the most complex, it is decomposed into ProcReql and ProcReq?2.

-~ ProcGet: process the GET requests.

—~ ProcPost: process the POST requests.

— Trans: sends consecutive parts of HTML files.

— ManCon: manages the connection status.

Tasks Trans and ProcReq (ProcReql, ProcReq2) are never executed in the same time,
but depending on the Dir condition. If Dir=1 then after finishing ProcReq, task ProcGet
or ProcPost will be executed, depending on the Req condition. Thus, in this CTG
hierarchical conditions exist.

Assume that there is only one GPP module available, with an area equal to 200
CLBs, and that the available communication channel transmits 30 B during 75 ns.
Table 6 presents the library of hardware and software components. Synthesis results
are given in Table 7. In the TG model only 2 tasks may be executed in parallel with

Vo

Ot]
im
co
co
hig
tas
the
tas
ass
col

per
on

Con

max

900(
600(

450(
3500

ET.Q.

ere-
I-life
>rver
f the

d to
5.

eads
on is
SS is

ime,
cGet
“TG

ﬁ FPGA

Vol. 55 ~ 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 89

others (Trans and ProcGet or ProcPost) , thus the difference between costs (in SOC
implementation) for DE and TG models is not such significant. But, for the hardest
constraint it is not possible to obtain solution using DE model. Similarly, for hard area
constraint almost all tasks are executed by one GPP, thus it is not possible to achieve
high speed, even for DRSOPC system. When the large FPGA area is available, most
tasks are allocated in hardware, and reconfiguration is not necessary. Fig. 6 presents
the Gantt chart for the fastest SOPC architecture containing one GPP executing 3
tasks and four VCs. Task schedule obtained for the same FPGA area constraint, but
assuming DRSOPC architecture, is presented on Fig. 7. Increase in performance, in
comparison to the SOPC implementation, equals 28%. Reconfigurations were partially
performed in parallel with computations, thus the impact of the reconfiguration time
on the decrease in the system performance was reduced.

Table 6
Parameters of tasks from the embedded web server specification
SW HW
Task t{us] C[100B] t[us] C[CLB]
GetReq 2000 6 400 250
ProcReql 1200 15 650 300
ProcReq2 2800 5 850 200
ProcGet 2500 13 1000 300
ProcPost 1500 12 300 50
Trans 500 4 150 150
ManConn 600 5 200 200
Table 7

Comparison of results for co-synthesis of SOPC and DRSOPC for different available area of FPGA for
Embedded Web Server

max SOC-DE SOC-TG area SOPC-DE SOPC-TG | DRSOPC-TG |DRSOPC-CTG

time[us]| area time[s]| area time[ps]| area time[us]| area time[ps]| area time[us]| area
90001 7950 |493 | 8650 |455| 400 9900 284] 9600 |284 | 9100 |[384| 7668 336
6000| 6000 |883 | 5550 |737| 750 6350 | 734 | 6050 | 734 | 5092 |734| 4792 736
4500| 4500 |1170| 4050 [1024(1000 6050 1984 | 5150 |968 | 3694 |850| 3402 964
3500 - — | 3500 [1309) 1300 | 4450 11234] 3650 |1268 3100 11270) 3100 | 1220
Cmax = 1220CLB, (Cmin = 200CLB,

tmin = 3100us tmax = 11100 ps

90 STANISEAW DENIZIAK, RADOSEAW CZARNECKI ETQ.

GPP1 ProcReq1 Trans | ProcGet
HW]GetReq ProcReq2 |PPost| ManConn |
CL1 GReq-PReq1->| |<GReg-Trans <PReq1-PReq< Trans en| <-PReq2-PPOSE Pget-ManConn->)
CL2 <PReq2-PGet “m.‘?
0 400 1600 2450 4950 5150
Fig. 6. Gantt chart of the web server implemented as SOPC
RS1(280) ‘@w ProcReq2 LN [Man
RS2(336) ProcRec;1 A L AbLZ DI = ProcGet
HW 0S
cL1 |<—GRquPReq1I<-PHeq1-PReq4<--Trans—Man I<APReq2—PGet <-PPost-Man I<-PGet-Man)
|<-GReq-Trans |<-PReq2-Ppo= tlmg
0 1050 1502 2202 2494 3694 "

Fig. 7. Gantt chart of the web server represented by TG and implemented as DRSOPC

Finally, the system specified by the conditional task graph was synthesized. A few
pairs of tasks are mutually exclusive: {(Trans, ProcReql), (Trans, ProcReq2), (ProcGet,
ProcPost), (Trans, ProcGet), (Trans, ProcPost)}. COSEDYRES algorithm found the
architecture with two reconfigurable sectors, with areas equal to 280 and 336 CLBs.
Fig. 8 illustrates scheduling of tasks for DRSOPC system specified by the CTG graph.
Tasks ProcReq?2 and Trans were assigned to the same RS sector and scheduled parallel
(they are executed depending on the Dir condition). Such tasks need not be allocated
in the same time, but can be allocated by dynamic reconfiguration after the condition is
evaluated. Performance was increased by 8% in comparison with the previous solution.

F81(280),) T T R U
roctae
HW PPos
CcL1 GReq-PReq1 ->l <-GReq-Trans|<-PReq1-F’Rqu i—Tr-Man PR2-PGet <-PPost-Man I<'PGet—Man tlmg
0 1050 1352 3402 4

Fig. 8. Gantt chart of Web Server represented by CTG and implemented as DRSOPC

Presented examples showed that designing using task graph semantics in SystemC
gives more information about dependencies between tasks and thus let for better opti-
mization of designed systems by co-synthesis methods. The dynamic reconfiguration
gives faster systems when reconfiguration tasks are properly scheduled and executed
in parallel with computations. Moreover, considering mutually exclusive tasks in a
system model brings additional possibilities of optimizations, in order to achieve faster
dynamically reconfigurable systems (when MET tasks are allocated in the same sector).

Vol.

cific
crea
com
usec
crea
prev

lopn
maci
to be

grap|

ple ¢
of ¢«
CO-8)

s

the
20(C

Jou
Isst

few
Get,
the
.Bs.
aph.
allel
ated
m is
jon.

emC
opti-
tion
uted
in a
aster
tor).

Vol. 55 - 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 91

7. CONCLUSIONS

This paper presented the methodology of developing synthesizable SystemC spe-
cifications of embedded systems and co-synthesis of such systems. System models
created according to this methodology are semantically consistent with the model of
computation represented by task graphs. In this way the same SystemC code may be
used for modelling and for system synthesis, eliminating the necessity for manually
creating task graphs. Moreover, the same model used for synthesis and for validation
prevents from design errors.

To simplify the design process and reduce the time required for specification deve-
lopment the library of SystemC definitions was created. Communications channels and
macros for process declaration restrict the synchronization and communication methods
to be consistent with a task graph, a conditional task graph or a control-datafiow task
graph.

Experimental results obtained for random generated systems and for real-life exam-
ple confirmed, that our methodology forces designers to specify systems using model
of computation, which enables obtaining very efficient architectures, using existing
co-synthesis methods.

8. REFERENCES

1. IEEE Standard SystemC Language Reference Manual, IEEE, New York, 2006.

2. R.P. Dick, N. K. Jha: CORDS: Hardware-Software Co-synihesis of Reconfigurable Real-time
Distributed Embedded Systems, Proc. ICCAD, 1998, pp.62-68.

3. KB.Chehida, M. Au guin: HW/SW Partitioning Approach Jor Reconfigurable System Design,
Proc. CASES 2002, 2002, pp. 247-251.

4. K. S. Chatha R. Vemuri: Hardware-software codesign for dynamically reconfigurable archi-
tectures, Proc. FPL, 1999, pp.175-184.

5. 8. Banerjee, E. Bozorgzadeh, N. Dutt Physically-aware HW-SW partitioning for re-
configurable architectures with partial dynamic reconfiguration, Proc. DAC, 2005, pp. 335-340.

6. Y. Qu,J-P. Soininen, J. Nurm#i: A Parallel Configuration Model for Reducing the Run-time
Reconfiguration Overhead, Proc. DATE’06, 2006, pp. 965-969.

7. W. Wolf: High-Performance Embedded Computing: Architectures, Applications, and Methodologies,
Morgan Kaufman, 2006.

8 A. Daboli,P. Eles: Scheduling Under Data and Control Dependencies Jor Heterogeneous Ar-
chitectures, Proc. of the International Conference on Computer Design, 1998, pp. 602-608.

9. Y. Xie, W. Wolf: Allocation and Scheduling of Conditional Task Graph in Hardware/Software
Co-synthesis, Proc. DATE, 2001, pp. 620-625.

10. D. Wu, BM Al-Hashimi,P. Eles: Scheduling and mapping of conditional task graph for
the synthesis of low power embedded systems, IEEE Proceedings Computers and Digital Techniques,
2003, Vol. 150 Issue: 5 pp. 262-273.

11 Y. Xie, L. Li, M. Kandemi r, et al.: Reliability-aware co-synthesis for embedded systems,
Journal of VLSI Signal Processing Systems for Signal Image and Video Technology, 2007, Vol. 49,
Issue: 1, pp. 87-99.

92

STANISLAW DENIZIAK, RADOSEAW CZARNECKI ETQ.

12,

16.

18.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

P.Eles, K. Kuchcinski,Z. Peng A. Doboli, P. Pop: Scheduling of Conditional Process
Graphs for the Synthesis of Embedded Systems, Proc. of the IEEE DATE Conf., 1998, pp.132-138.

. K.S. Vallerio, N. K Jha: Task Graph Extraction for Embedded System Synthesis, Proc. IEEE

Int. Conference on VLSI Design, 2003, pp. 480-486.

. S. A Khayam, S. A. Khan, S. Sadiq A Generic Integer Programming Approach to Har-

dware/Software Codesign, Proc. of IEEE International Multi Topic Conference IEEE INMIC 2001.
Technology for the 21st Century, 200, pp. 6-9.

. R.P. Dick, N. K. Tha MOGAC: A multiobjective Genetic Algorithm for the Co-Synthesis of

Hardware-Software Embedded Systems, Proc. of the International Conference on Computer Aided
Design, IEEE Computer Society Press, Los Alamitos, 1997, pp. 522-529.

B.P. Dave,G. Lakshminarayana, N. K. Jha: COSYN: Hardware-Software Co-Synthesis
of Embedded Systems, Proc. of the 34" Design Automation Conference. ACM Press, New York, 1997,
pp. 703-708.

. TY. Yen, W. H. Wolf: Sensitivity-Driven Co-Synthesis of Distributed Embedded Systems, Proc.

of International Symposium on System Synthesis, 1995, pp. 4-9.

R.P. Dick, N. K. JTha: MOCSYN: Multiobjective Core-Based Single-Chip System Synthesis, Proc.
of the Conference on Design Automation and Test in Europe. IEEE Computer Society Press, Los Ala-
mitos, 1999, pp. 263-270. [19.] L. Shang, R. P. Dick, N. K. Jha: SLOPES: Hardware-Software
Cosynthesis of Low-Power Real-Time Distributed Embedded Systems With Dynamically Reconfigura-
ble FPGAs, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007,
pp. 508-526.

J. Oy, S.B. Choi, V. K. Prasann a: Energy-Efficient Hardware/Software Co-synthesis for a
Class of Applications on Reconfigurable SoCs, International Journal of Embedded Systems, 2005,
Vol. 1, No.1/2, pp. 91-102. ’

F Ferrandi,M.D. Santabrogio, D. Sciuto: A Design Methodology for Dynamic Re-
configuration: The Coronte Architecture, 19" IEEE International Parallel and Distributed Processing
Symposium - Workshop 3, 2005, pp. 163-166.

M. T Schmitz, B.M. Al-Hashimi, P. Eles: Energy-Efficient Mapping and Scheduling
for DVS Enabled Distributed Embedded Systems, Proc. of the Conference on Design Automation and
Test in Europe. IEEE Computer Society Press, Los Alamitos, 2002, pp. 514-521.

A. Ross, S. Swan, J. Pierce, J.-M.: Fernandez: Transaction Level Modeling in SystemC,
WWW.SySteme.org.

A. Donlin: Transaction Level Modeling: Flows and use models, Proc. CODES+ISSS’04, 2004,
pp.75-80.

H. Herrera, P. Sanchez E. Villar: Modeling and Design of CSP, KPN and SR Systems
with SystemC, in C. Grimm (ed.) Languages for System Specification, Kluwer, 2004.

H. Herrera, E. Villar: A Framework for Embedded System Specification under Different Models
of Computation in SystemC, Proc. IEEE/ACM Design Automation Conf., 2006, pp. 911-914.
J.Falk,C. Haubelt,J. Teic h: Efficient Representation and Simulation of Model-Based Designs
in SystemC, Proc. Forum on Design Languages, 2006, pp. 129-134.

C. Haubelt, J. Falk,J. Keinert,T. Schlichter, M. Streubiihr, A. Deyhle, A,
Hadert, J. Teich: A SystemC-based Design Methodology for Digital Signal Processing Systems,
EURASIP Journal on Embedded Systems, March 2007.

J. Henkel,R. Ernst: High-level estimation techniques for usage in hardware/software co-design,
Proc. Asia and South Pacific Automation Conference, 1998, pp. 353-360.

S. Deniziak: Cost-Efficient Synthesis of Multiprocessor Heterogeneous Systems, Control and
Cybernetics, 2004, Vol.33, No.2, pp. 341-355.

R. Czarnecki: Kosynteza dynamicznie samorekonfigurowalnych systemow wbudowarnych, PhD
Thesis, 2008, p.123, (In Polish).

Vol.

32.

33.

Har-
001,

is of
ided

hesis
997,

Proc.
Proc.
Ala-
ware
oura-

007,

for a
005,

> Re-
ssing

uling
1 and

emC,
2004,
stems
odels
SIGNS

e, A.
fems,

eSIgn,
| and

PhD

Vol. 55 - 2009 SYSTEMC-BASED CODESING OF DISTRIBUTED EMBEDDED SYSTEMS 93

32. Xilinx Inc: Two flows for partial reconfiguration: module based or difference based, Xilinx
Application Note XAPP290, v.1.2, 2004,

33. R. Czarnecki,S. Deniziak Co-Synthesis of Dynamically Reconfigurable SOPCs Specified
by Conditional Task Graphs, The Open Cybernetics and Systemics Journal, 2008, Vol. 2, pp.206-218.

gning
PLA:

progi
mabl
algor
and t

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no {, pp. 95-111

A Novel Non-Disjunctive Method for Decomposition of
CPLDs

ADAM OPARA, DARIUSZ KANIA®

Silesian University of Technology, Department of Computer Science,
*Department of Electronics 44-100 Gliwice, ul. Akademicka 16
Adam.Opara@polsl.pl, Dariusz. Kania@polsl.pl

Received 2008.12.15
Authorized 2009.01.20

The paper discusses the concept of a novel decomposition method dedicated for
PAL-based CPLDs. The proposed approach is an alternative to the classical one, which
is based on two-level minimization of separate single-output functions. The key idea of
the algorithm is to search for free blocks that could be implemented in PAL-based logic
blocks containing a limited number of product terms. In order to exploit better the number
of product terms, a non-disjunctive decomposition is to be used. In contrast to classical
methods, the functions are represented by Reduced Ordered Binary Decision Diagrams
(ROBDD). The results of the experiments prove that the proposed solution is more effective
in terms of the usage of programmable device resources, compared to the classical ones.

Keywords: Technology mapping, decomposition, CPLD, BDD

1. INTRODUCTION

Nowadays, programmable logic devices (PLDs) are very extensively used in desi-
gning electronic digital circuits. Simple PLDs can be divided into several kinds: PALs,
PLAs, and PLEs. Based on simple PLDs, there is a group of devices called complex
programmable logic devices (CPLDs). Other PLDs include FPGA (Field Program-
mable Gate Array) devices. Due to high complexity of these systems, efficient CAD
algorithms must be developed to address their design challenges. Logic minimization
and technology mapping are two important elements in this process.

96 ADAM OPARA, DARIUSZ KANIA ETQ.

Fig. 1. Structure of a typical PAL-based CPLD block

A classical approach to the synthesis of PAL-based CPLD structures, implemented
in many computer aided design tools, employs a two-level minimization of separate
functions and technological fitting to the structure of programmable logic blocks [1].
The Espresso algorithm is mainly used for two-level minimization of Boolean functions
[2].

The strategies of synthesis implemented in commercial CAD tools are designed
mostly for small group of devices produced by single manufacturers, but they do
not provide effective solutions. The synthesis methods implemented in the Hardware
Description Language (HDL) compilers, such as VHDL or Verilog, use a multi-level
representation of functions, while the synthesis process consists in fitting a function to
the technology library patterns. These methods lead to inefficient use of the available
product terms in PAL-based logic.

Recently, synthesis methods dedicated for FPGA devices based on functional de-
composition have become very popular [3]{4]1[5][6]{7]. Sometimes, these methods are
used for CPLD devices [8][9][10][11][12][13][14], but they cannot be directly applied.
In order to use efficiently the resources of programmable structures, it is necessary
to consider the characteristic features of CPLDs in the initial stage of the synthesis
process. The most important feature is the number of product terms in a PAL-based
logic block (Fig. 1).

The purpose of this paper is to present the decomposition methods based on
binary decision diagrams (BDD) [15] dedicated for CPLDs. Only the devices with
PAL-type logic blocks have been considered. The ideas presented here were inspi-
red by a two-stage PAL-decomposition described in [16]. A novel non-disjunctive
PAL-decomposition based on BDD was introduced. This decomposition model is par-
ticularly promising in case of hardly decomposable functions, and also in case of
the devices incorporating PAL-based logic blocks with the number of product terms
different than power of 2.

2. A DECOMPOSITION WITH PAL-BASED BLOCK FEASIBILITY

The kernel of the most popular CPLD devices is a PAL-based structure, which
consists of the determined (in most cases, constant) number of terms connected to

Th

val
oY

(RS

ed
1te

ns

ed
do
re
el

le

o1
th
i-
ve
A~

ns

Vol. 552009 A NOVEL NON-DISJUNCTIVE METHOD FOR DECOMPOSITION OF CPLDS 97

an output cell. The terms with the output cell are called PAL-type logic blocks. A
two-stage PAL decomposition is presented in [16]. This decomposition offers a more
efficient logic block use than the standard two level minimization and fitting. An
adaptation to number of terms in PAL based logic block is a characteristic feature of
a two-stage PAL decomposition. Similarly to the Ashenhurst-Curtis decomposition, a
partition of a variable set into the free and bound sets has the major importance (Fig.
2). The partition is chosen so the free block can be created in one PAL based logic
block.

e [“Freeblock
8O |
X, E §) | [
ot [32| ‘ |
_ £ . P ..
X J\ — 2 . | 77 PAL f
iiiiiiiiiiiiii ‘ A ————
L] . |
X=Xux, e ‘ S i Programmable
X, L ,,,,,,,,,,,, - Interconnect
Xfm szg [_ ”' Area

Fig. 2. Circuit partition after decomposition

X3X4X5

XoXiX2 000 001 011 010 110 111 101 100
0000 1 0 110 1 .0]1] a
010 0 1 001 1 0 b
01, 0 ' 1 -0 11011 ol 1! a
oo 1t Jofli1]Jol1rTloli1]0] a
o0 1 70 11701170 1! a
1010 07070 00,0 0
107 S U U O U A A B A B
10000 0l 1 700 111]0"mp

f

Xp={xox x,}, X,={x;, x, x4}
a—r g (x;,x,, x5)=)T3')“c;x5+x_3x4f§'+x3x4x5+x3fc]x_5
b-g,(x,, x, ,x5)=x4x5+x3x5

Fig. 3. Karnaugh map with distinguished row patterns

The two-stage PAL decomposition algorithm uses a Karnaugh map as a representation
of the logic function. The rows of the map are described by the values of bound
variables, whilst the columns are denoted by the values of free variables. In this map,
row patterns can be determined. For function f(X),X = X FUXp, XrUX, =0, arow
pattern is a row described by the function

98 ADAM OPARA, DARIUSZ KANIA ETOQ.

g(X},), which returns the value 1 for all cubes associated with the columns, for which
the function f(X) value is 1. In case of the Karnaugh map depicted in Fig. 3, the first
row denoted by letter a is described by the function fip=0x1=0x2=0 = & (X3,X4,X5) =
| BaXaXs + B3xaXs + X3X4x5 + x354.55. There are here three rows described by this pattern
Sr0=0x120,0220 = [r0=0x2=122=1 = fuo=t1x1=1,02=0 = 81 (X3, %4, xs5). If the row pattern a is
described by the function g; (X,), the row pattern described by g;(X;), denoted by a,
is called the row pattern complement. In case of the Karnaugh map illustrated in Fig.
3, there were determined two other special cases of row patterns: a full row denoted
by 1 and an empty row denoted by 0.
The rows in the Karnaugh map can be broken down into a few groups:
— empty rows,
- full rows,
~ rows associated with the same row pattern or its complement.
A row multiplicity of a partition matrix denoted by u(Xy|X;) is defined as a
number of different row groups, except the groups containing empty and full rows. It
is defined by the expression (1).

f(X’X = {xO, -"axn—-l},Xb = {xq, ---,xn—l},q<n,
Xy |) Xr =X, XX, = 0
A = {g(xq’ -"9xn-l):

8= on=ﬂQ,,..,,¥q_1=ﬁq_;’ﬁj € {O, 1}9] = O’ YN/ A 1} (1)
A — a row patterns s et, B—a row groups s et
def
HXp | Xp) =
| B : Y

g-8€B.g2g;8i» 8 € A g # gj, g #0,8#1|

For function presented in Fig. 3, the row multiplicity is u(X|X;)=2; the first group
of rows contains rows a and a, the second — rows b.
Each group of rows can be assigned a function defined as follows:

1, for full rows
0, for all other rows

ho(Xy) = {

1, for rows, for which the row pattern is
hi(Xy) = described by the function g;(X)
0, for all other rows

1, for rows, for which the row pattern is
h(Xy) = described by the function g:(X})
0, for all other rows

where i = 1,..., u(Xr | Xp) (2)

Using these functions, and assuming that the row multiplicity is p, the following
equation is derived:

Vol. 5

and fi

device
logic 1

To
troduce
by a su
approac

 a
Tt

(1)

up

@

ing

Vol. 55~2009 A NOVEL NON-DISJUNCTIVE METHOD FOR DECOMPOSITION OF CPLDS 99

Xp 1 Xp)=p = f(X)=
r
, —— 3
ho(Xy +) [WX) - 8iXe) + HX,) - 5105 ®)
i=1 :
In case of the discussed example of a function with variables partition
Xy = {x0,x1,x2}, Xp = {x3, x4, x5}, the functions # are expressed as follows:
ho(Xr) = xoX1x2,
hi(Xy) = X0X10 + Xoxi X + Xoxi %2, h{(Xf) = Xox, 53
h(Xy) = XoXi x2, hy(Xp) =0
and finally, function f will be of the form:
F(X) = xox1x,

+(Xo X152 + Xox1 X2 + XoX1 %) g1 (%3, X4, X5) “@
+XoX1X281(X3, X4, X5) + XX X2 82(X3, X4, X5)

Fig. 4. depicts the implementation of the function under consideration into a CPLD

device with 6 product terms in one PAL-based block. As it can be seen, 3 PAL-based
logic blocks were employed here.

Ei}x_s I Free block }
BRESTTpAL | &%) |
X3 XaXs k=6 i ‘
Xy X, XS“‘”"_“"" | |
p— — |
. 3 PAL f
Xy Xy ! P k=6 -3
X, X, PAL | g(X,) i I — |
k=6 1A |
I |
X, :
X, B
Xe{Xp % %) Xl — [
K= {xy x, x5} :

Fig. 4. Circuit after decomposition

To compare the obtained result with the classical one, a new formula must be in-
troduced. With k-input PAL-based configurable logic blocks and functions represented
by a sum of A, products, the required number of logic blocks & utilized in a classical
approach is determined by the expression (5).

Ar—k
5f:[kf—1J+l (5)

100 ADAM OPARA, DARIUSZ KANIA ETO.

After a two-level minimization is done with the use of the Espresso algorithm,
the function under consideration (Fig. 3) can be represented as a sum of 21 products.
A classical approach requires 4 PAL-based logic blocks with 6 product terms i.e. one
more block compared to the decomposition-based approach.

The main idea of the two-stage PAL decomposition is to search such variable
partitions which could provide (i) a free block realisation in one PAL-based logic
block and (ii) the smallest number of the bound block outputs. The number of the
bound block outputs is equal to the row multiplicity. An effective computation of the
row multiplicity for a given variable partition is the major problem in two-stage PAL
decomposition algorithms. The detailed description of the decomposition algorithm
can be found in [16].

3. BINARY DECISION DIAGRAMS

The Binary Decision Diagram is a graph-based structure used for a memory-efficient
representation of logic functions. The BDDs were first proposed by Akers [17], and
popularized by Bryant [15] and Brace et al [18]. Due to their implicit power to repre-
sent Boolean functions, BDDs are considered the most efficient Boolean representation
known so far.

A BDD is a directed acyclic graph (a tree) with each node associated with a
function variable. All nodes (except terminal ones) have two outgoing edges pointing
two children nodes, one for variable value O and 1. This binary tree contains two
terminal nodes termed O-node and 1-node. The analysis of the paths connecting to the
BDD terminal nodes determines the value of the function according to the values of
the variables.

Only the Reduced Ordered Binary Decision Diagrams (ROBDD) have a practical
meaning. In an Ordered BDD, the variables in all paths has the same variable order,
and they are presented at most once on every path. The Reduced Ordered BDDs have
a minimal number of nodes for the given variable order and are canonical forms of
function representation. The reduced form is obtained from an OBDD by applying the
reduction of the same sub-graphs and through removing all redundant nodes.

There are some ROBDDs with special attributes added to the edges for efficient
memory use and faster computations [19]. A complement is one of the most known
attributes. If the edge is complemented, it means that the sub-diagram pointed by this
edge must be interpreted as a negation of the formula represented by the sub-diagram.

4. ROBDD APPLICATION IN DECOMPOSITION

A classical two-stage PAL decomposition employs a partition matrix as a repre-
sentation of the logic function. There is a possibility to develop an algorithm using a
Reduced Ordered Binary Decision Diagrams (ROBDD) as an effective representation,

V

fc

bl
th
us
an
le
va

af
re:

thrc
can
nod
chil
pro
fina
patl
10 1]

0. Vol. 55 -2009 A NOVEL NON-DISJUNCTIVE METHOD FOR DECOMPOSITION OF CPLDS 101
n, followed by a non-disjunctive decomposition, whilst the application of the negation
S, attribute can additionally increase the algorithm’s efficiency.
ne
4.1. COUNTING THE NUMBER OF PATHS
le
ic As far as the synthesis of digital circuits in programmable structures with PAL-based
he blocks is concern, the key problem is to determine the minimal number of products in
he the product representation sum. In a classical approach, the Espresso algorithm may be
L, used for this purpose. When the ROBDD is used for the logic function representation,
m another concept can be exploited. Each path in the diagram obtained from a root to a
leaf 1 corresponds to one product. The total number of paths can vary with different
variable orderings in the diagram. Changing the variable order is a way to minimize the
path number. Often, the smallest number of paths is greater than the number of products
after minimization, although the decomposition with path counting can provide better
results than the classical approach with two level Espresso minimization.
ent
nd a)
e- A/ _L\
Xi
o A1=Az+Q
T
a v, /) Ys
X\ x‘>
ng j i
o NPANN
he
of
al
er,
ve
of T .
- - Y. il & .
e of ik
>Nt Fig. 5. Counting the number of paths
KII: The main advantage of the method used to determine the number of products
m. through counting the paths is the low computation complexity. The number of paths
can be counted by a recursive procedure. The number of paths A; connecting the given
node v; to the leaf node 1 is equal to the sum of the number of paths connecting the
children node (high(vy), low(vy)) to the leaf node 1 (Fig. 5a). Similarly to the standard
procedure bdd.apply() [15], a computed table is used to store the intermediate and
re- final results of each algorithm iteration. A result in this context means the number of
7 a _ paths for a given node, which is the root of a sub-graph representing a function. Due
on, ~ to the use of cached intermediate results, a path counting procedure will be performed

102 ADAM OPARA, DARIUSZ KANIA ETQ.

only once for each node. For instance (see Fig. 5b) for a node denoted by w, the
number of paths will be computed only once, although two edges point to this node
and during a depth first traversal across the diagram, this node will be visited twice.
The computation complexity of the procedure counting number of paths is O(n), where
n is the number of nodes in the diagram.

) ¢ o ;
3 a3 N 2
ofio SN W e W
/oy \ /Oy \ T \

a be¢e d a ¢ b d a d a

Fig. 6. An example of variable swapping in BDD ordering

The number of paths in the diagram highly depends on the variable order. It is
possible to use heuristic algorithms similar to the algorithms aiming at the minimizing
the number of nodes for the number of paths minimization [20]. For this purpose, a
sifting algorithm [21] can be used but the optimality criterion must be changed. Each
variable is moved up and down in the variable order and the position that produces
the smallest OBDD size is maintained. At each position, the resulting ROBDD size is
recorded and finally, the variable is moved to the best position. The ordering change
is performed by swaps of variables which are adjacent in the variable ordering. The
variable swapping affects the BDD structure of only two levels involved in the swap,
whilst the whole part of ROBDD above and below these levels remain unchanged.
All modifications have a local scope and concern two levels of nodes. This local-level
of the swap operation is responsible for the efficiency of the sifting algorithm. Fig. 6
illustrates some portions of the ROBDD diagrams before and after the swap operation
on two levels assigned variables x; and x,. The number of nodes and paths after
swapping is unchanged (see Fig. 6a) and changed (see Fig. 6b), respectively. In the
second case, there is a need to recompute the total number of nodes in the diagram.
Since only two levels are altered, only the number of nodes in two levels must be
recounted, and the difference between the nodes number before and after swapping is
added to the previous total number of nodes in the diagram. In order to compute the
new number of paths in the diagram, also the results of the previous calculation can
be employed. Exchanging two adjacent levels has no influence on the number of paths
below these levels. The number of paths for all nodes in the upper part of the diagram
must be updated. In this case, only the time of processing of the lower part of the
diagram is saved.

Vi

ur

on
on
Wi

the
Or

IS €
var

1e
ie

e

1g

ch
es

ge
he

\p,

ths

Vol. 55 - 2009 A NOVEL NON-DISJUNCTIVE METHOD FOR DECOMPOSITION OF CPLDS 103

4.2. PAL-ORIENTED BDD-BASED DECOMPOSITION

The core of the PAL-oriented decomposition is to search for a such partition of
function variables to assure the free block implementation in one PAL-based block
with a constrained number of the product terms. Furthermore, the partition found must
provide a structure with the smallest possible outputs number of the bound block. The
partitioning of the variables in a partition matrix is equivalent to the cut in the ROBDD
diagram representing the logic function. The variables associated with the nodes above
the cut line form a free set X;, and below the cut line — a bound set X, (contrary to
the Ashenhurst-Curtis decomposition using the ROBDD representation).

Fig. 7 depicts the ROBDD corresponding to the Karnaugh map of the function
under consideration in Fig. 3. All nodes pointed by edges crossed by the cut line
will be termed the cut nodes. As it can be seen, each cut node is associated with
one row pattern. The row multiplicity u(Xy|X,) is the number of row groups, being
one row group formed by a row pattern or its complement. All nodes in a ROBDD
with edge complement attributes corresponds to one row group. The row multiplicity
can be efficiently computed in ROBDD with edge complement attributes by counting
the number of cut nodes. Different partitions are obtained by changing the variable
ordering in ROBDD and fixing the level of the cut line diagram.

a- g (x5, x4, %)
b—g,(xs, x,,x5)

Fr=x %%,
X 8
+Xpx X, 8
+xoX, % 8,
XX % 8y
TXXX, 8,

Fig. 7. A diagram with the number of paths of the function under consideration

The decomposition algorithm consists of some phases. During each phase, there
is established the number of free set variables which corresponds to the cut level. A
variable partition is searched, which allows to obtain a free block in one PAL-based

104 ADAM OPARA, DARIUSZ KANIA ETQ.

logic block and the smallest number of the bound block outputs. If in a given phase
the solution is found, the cut level is incremented.

I woid decBDD{kdd £, //decomposed function diagram s
2 int &levels, //returned number of levels
3 int &blocks, // and PAL blocks 3
4 int K, //product term # in PAL block
5 int prlesp){ //function first time called

//with products # of espresso Dso I
6 int pr0=0, prl=0, min_pr0l; //products #

//path # counting - reorder BDD, return minimal # of

//paths (products) to leaf “0” and “1” :
7 prod bdd(sf, &pr0d, sprl): 1
8 if{priesp!=0}
9 min_pr0l= prlesp;//first call only products to “1”
10 else \
11 min_pr0l= min(pr0, prl) ¢

12 //for comparison classical algorithm results
13 int blocks_class= blocks_classical (min_pr01,K);
14 int levels_class= levels_classical (min_px01,K);

o ull ek

15 if(min_pr0l < 2*K)(

/S mmmm better classical realisation-==w==-=w=wmw=
16 blocks= blocks_class; f‘
17 levels= levels_class; :
18 J}else((
S AECOMPOS LT L ORI o o e et sttt e
19 int cut_level= floor_log2(K) + 1;
20 int li_wez_odc_best _dw;
21 tbdd_set cut_nodes_set= {J;
22 bool found, found_K1; .
//searching for best partition with fixed cut lev L
23 found_Kl= find part{&f, &cut_nodes_set,
cut_level, Kj:
24 1f (found_K1) {
25 do{ //searching for better solutions ¥¢
26 found= find_part{&f, &cut_nodes_set,
cut_level, Xj; 3
27 cat_level++;
28 Jwhile (found); al
29 cut_level--~;
30 telse(p;
31 S /search for cut level = log2 K
32 cut_level--;
33 found= find part(&f, &cut_nodes_set,
cut_level, K);
34 }
35 if(blocks class <= number of_cut_nodes+1) {
[~ better classical realisation---=----
36 blocks= blocks_class;
37 levels= levels_class;
38 ltelse(
)= cut nodes decomposition——-—=—===m=mw- fu
39 int tmp_level, tmp_blocks; //temporary var. ;
40 n_lev=0, n_blocks=0; //returned values i la
41 for (ftmp € cut_nodes_set) { { Of
42 decBDD (ftmp, &tmp_level, &tmp_blocks,
K, 0}/
43 blocks += tmp _blocks;
44 levels = max(levels, tmp_levels);
45 }
46 levelst=1; blockst=l; //free block
47 if {blocks >= blocks_class) {
48 //better classical realisation-—=--~=--=--
43 blocks= blocks_class; m
50 levels= levels_class; :
51 } - I
52 }
53 }//end decomposition-r==r=== == mmm e e e ha
54} -
thi
X0.

Fig. 8. The algorithm of PAL decomposition with BDD application : rin

Vol. 55 -2009 A NOVEL NON-DISJUNCTIVE METHOD FOR DECOMPOSITION OF CPLDS 105

A detailed listing of the decomposition algorithm is presented in Fig. 8. The
minimal number of products in the sum of products form is determined by the path
counting (line 7, Fig. 8) in the ROBDD. The number of paths to the leaf 1 and 0 has
been counted. Since the relation of the row complementing is symmetrical, there is
possibility to assign a function or its complement to the rows, and to obtain the solution
with the lower number of paths (products). In the case of using PAL-based logic blocks
without the possibility to program the output polarities first time the decomposition
procedure is employed, only positive polarisation is accepted (lines 8-11).

Additionally the number of levels and blocks in a classical approach (formula 5)
is computed in the lines 13-14.

The algorithm contains a few improvements just eliminating certain situations
which otherwise would be further processed, e.g. if a function after minimization is
described by less than 2k implicants (line 15) (where k is the number of product terms
in PAL-based logic block) then the decomposition will not reduce the number of blocks
because one PAL-based logic block is needed for the free block and at least one block
for the bound block, respectively. After this condition is met, a partition is searched
(line 23).

After a free block is ensured in one PAL-based logic block for all partitions for
which holds: 2% < , | Xy |< [logyk], the search process will start with | X¢ |=
Llog,k] + 1 (lines 19 and 23).

After a partition has been found, a check will be done if the partition could
reduce the number of PAL-based logic blocks compared to the classical approach (line
35). The minimal number of PAL-based logic blocks required to implement a circuit
after partitioning is equal to (X ¢|Xp)+1, so the condition necessary to eliminate some
partitions from further processing is given as:

+1 ©)

X, 1 X,) < 6f = |22
Xy | Xp) < f~(k_1

If the above condition is not true, further processing is to be continued and the
functions represented by cut nodes will be decomposed (lines 41-45). At the end, the
last check is made (lines 46-50) if the decomposed function truly gives lower number
of blocks than the classical approach.

4.3. ALGORITHM REFINEMENTS

The number of paths in a ROBDD diagram connecting the root to the leaf 1
in some cases can significantly differ than the number of product terms of two level
minimized logic function, e. g. a function with two products Jo = Xox1x2 + X3X4Xs,
has four paths with variable ordering xo, X1, X2, X3, X4, X5 (Fig. 9). Using these paths,
this function can be represented as a sum of four products Jo = xox1x0 + Tox3xaxs +
XX X3X4X5 + XoX| By X3X4Xs. Although this representation is not optimal (as the expe-
riments on benchmarks prove), the path counting decomposition gives good results

106 ADAM OPARA, DARIUSZ KANIA ET.Q.

(Table 1). For further enhancement of the algorithm, the Espresso algorithm has been
used instead of path counting. Looking at the algorithm in Fig. 8 the only difference
is in line 7, where a two level minimization algorithm is employed as an alternative.

Fig. 9. A diagram with bold paths to leaf “1”

4.4, A NON-DISJUNCTIVE PAL DECOMPOSITION

In order to reduce the number of blocks level a non-disjunctive partitions can be
employed. A non-disjunctive decomposition is that of the function under consideration
(Fig. 10) implemented with PAL-based blocks containing 3 product terms. The first
stage of the non-disjunctive decomposition is to find a good disjunctive partition. For
a given variable, the ordering only xg, can be included into the free set. In this case,
a free block described by formula f = xq - g2 (X1, X2, X3,X4) + Xp - & (X1, X2, X3, X4), 18
implemented by two product terms. Function g, describes a diagram rooted by node
vy, and g; by vi. Due to the inclusion of one more variable (x;) to the disjunctive
free set, 4 product terms are needed, so limit of 3 terms in a PAL block is exceed.
Function g, is created in one PAL block and g, in two blocks, respectively. Finally,
using a disjunctive decomposition, a circuit can be implemented with 4 blocks situated
in 3 levels.

Through the introduction of a non-disjunctive decomposition, the variable x; is
included into the free and bound set. The free block is described by the formula
f=x0-x - go+X0- % -8 + % &, and utilizes 3 product terms. The whole circuit is
built of 3 PAL-based logic blocks in 2 levels (Fig. 11).

The algorithm presented in Fig. 8 is modified so after a proper disjunctive partition
is found (lines 23-34), a procedure is employed to try to add one child of a cut node
to the cut node set. In the considered example, v is chosen as a child of v;. The node

pres
Tesp
pari
and

Vol. 55 -2009 A NOVEL NON-DISJUNCTIVE METHOD FOR DECOMPOSITION OF CPLDS

107

is accepted, if the resulting implementation of the free block fits one PAL-based logic

block.

XXX PAL

&

XX k=3

xl X%S'xd

x,xx.x, |PAL

Tt PAL f

Fxxx | k=3
XIXZXS)C4

Fig. 1. A circuit structure after non-disjunctive decomposition

x)"gg k=3

0170

P4 - Programable
Interconnect Area

5. NUMERICAL RESULTS

A method of implementing a function in PAL-based structures incorporating BDD
presented in this paper — decBDD — has been compared to a classical approach with
respect to the number of logic blocks used, and the number of logic levels. The com-
parison was made for an algorithm in two versions: a simple one, denoted by decBDD,
and enhanced one, denoted by decBDD+E in Table 1. For multi-output benchmarks,

S1
nt

1
3
1
10

Gait

22
3

2

1

32
8 212
2

5

5

s 4

6 4
3

54 %
2

T

RN

ETQ.
Table 2
121 k=16

415 4 o7

WE TN N
mmmo o

=8 jk
22 22
7 3 13
§ 2 32
32 22
32 22
22 22
22 272
52 4 2
32 2 2
73 7 3
10 3 6 2
113 72
342 3 8 2
52 42
42 32

S

NN N N
T T T e @

3

2

2

2

E

3
38423 4 2 3 17 4

B U B8 L B Y
3

34 324 22
16 2 15 2 12 28 11 2
42 32 22
72 62 42
53 32 32
11310 3 6 2
0425 324 3 18

3
4
3
2
5
4 7
4
14
a7
3

6 7
4

T TN
te Ttw o

3128 3119 3/89 20 79

44
2
g9
3
5 4
9
17416 3 15 2012 2| 1 4
5

DecBODHE
5% 4
8 4
46 4

T T

©wwv Ve ©

52 42
K

32 34
22 21
62 51
52 5 4
83 74
OEE

7
18 20 15 2 14 2 11 2] 7 2

19 2 18
11 3
18 3 13 3 11

57

RN
ve e »

2
2|
3|
3
3

19 3] 17 3] 15 4 156 2 16 2| 11 2| 10 2
2

18 3l 16 31 13 4 13 3 10 2| 9 2

8 i B L B U
13 3

7

7

11 8] 11 3

28 4 21 31 17

12
2

FINISIT e
©@m oo

lementation

s
4

7

B

75 7| 27 4] 23 4] 21 4 20 4 15 312 3 11 2 X0
4

32 4 2 4 17 Y W

29 4 21 4

36 4] 24 4 183 153123113 72
38 4] 26 4/ 19 31 18 3 13
131 6] 74 9

21 4
15
428
27 5
41§
01 307 5l 221 4[175 3{151
18 4

il
1278 5196 4]146 4}119 4100 3 93 31 62 3} 48 2

9 26 3| 20 3
9 35 3 21 2 19 2
0] 369 6 244 5{193 4155 4115 4 88 4 67

EXEara e
S

10| 66 4] 44 3} 38 3| 30 4 26 2 22 2114 2} 12 3

14 26 3 21 2
17] 373
12)

301

Gain

ion imp!

3

2 2
31
8 2121
2 2
7.2
5 2[34 37 8 20 4 17 3 14 4 12
5 2
5 2
5 2
8 2|
2 2

Ww NN
RSN

7 3 5 2 34 37 5 20 4 17 31 14 3 12
2]

2
8 2 6 2

22
3 2
14 2| 12 2
2 2|
9 2
2 2
7 2
7 3
6 2
6 2
7 2
72
8 278 2
2% 3 19 3
24 3 18 3
4 28 32
18 3 M2
3 2

4 11 21 10 2]
12 3 11 2

IR
wo oo~

3
4
q
9
El

54 42 32
4

54 42

7
32
5 2
3
3
3
7
5 2
4

T T
ERERE X

8t BU B LU B L
2

5 2

5 3

44

42

32

E KEE!
312 3

52

IR
ww B e

3 2 2422 4
2

2

42 32 3¢
2|

72 8 2

DecBDD

B L

22 22

18 2416 215 2 12 2 11 2
4 3 12 3

5
17 20 16 2115 2 12 2 11 2

15 2| 15 2| 15
21 41 20 4| 15 °
15 2| 14 2 11 3
14 3 12 3

4 3 1

13 30 11 3110 §
15 3 12 3 11
1% 3 13 3 11
151 31128 31118 3

30

BB TS TN
ww 0w o

E|
3
g

86 4 53 4 44 3/ 38 3
3

131 4105 4] 87 475 4 48 3 35 3

B8 Uy
3
3
18 2
9
38
7
7
18 4
18 4
119
155
7

T TTTTTT
N

4
3
q
Fi

4

8
9
5
7
8
18

83 5 76 4 6 4 47 3 40
9

66 4 50 4 40 3 33 3 29

20 4 17
13 3 11
1311
26 4 19 3
28

48 4 38 4

S

ey el

XN

g

3
38 4 24 4 18

27 4 23

11

15 4

37 § 20 4 17
33 4 22 417
324 22 418
98 &

k
132 § 88

456 7 246

83

2312 §222 4175

1

2

4

E

4

3138

3385 7 198

10 4 37 3 19 3 17 3
2

3

11

6 2 37 §
33 2114
3317 4
12 2 68 4 44
22011 3
3

32214
11 7 42

6 3 42 4§ 11 4
5 2 27

7 4 29 4 23 3
11 4 35 4 21
6

5

8 4 38

6 % 42 4
19

10 2 71

2 2 13 3
2 213

72 3532 6355 4267 4 214 4/ 178 41153 4 98 3 72 3
“

241313
2 2 13
22 13
2 2

12 | k=16

ADAM OPARA, DARIUSZ KANIA
5L
22
2 2
82
42
32
14 2]
2 2
1.2
42
42
14 2
BE
12 2
72
7.2
12 2
32
§32
62
72
8 2
% 3
EE
32

NN W N
@w oo~

2|
2|
3
3
2
3

ki
o4 3 62 3 46 4323 5216 4162 4 131 3109 31 84 3 62 3 46 2

k=8 |k
B i

2 2
5 2
2 2

[}

12

19 3

10

1

10

"

12

4 3 26 3
3B 3 243 18
26 3
21 3

1

118 3] 89 2 79
131 4f 83 3| 62

NN W N
T T T T

8 u
4
q

13
87 4 75 4 48 3 35 3261 §174

16 2 15 2

14 3

12 3

18 3 15 2|

15 3 13 3

3

1.3 10 3

178 4153 4] %
128 4 110 4 70 3] 52

T T T

29 9 24 4 20 2

Results of experiments compared to the classical method of funct

142 51 95 41 72 4 58 3 49 3 42 3] 2020 21 A V7 7 27 4 23

8

5x p1.00

clip.pia

i
sac2.pla

rdB4.pla
2
xab.pla

rd73.pla
13

2:
130
L8
f3:
rd53.pla
f0:
1
f2;
LEH
13:

t4:
25xp1.pla

z5sympla 86 1
ap ex3.pla

10
10

4

5:

f6:

7.
apex2.pia
7:

. pla
it:
codic.p
f64:

- -
¢ el] @~z B & vrglyy 2 83 8 Q @0 00w glecgNeoegyeslg
@ - - - gl
i &
% Ry I T TITeT R YT T T oY T TCRTTeY Y ¥ R LI oM TR T ™ T TTT T T T L Le
alw @iuly o~ = gle goneloo~gtgs [eltlroeers 8RB L~ eBRE8 cevow ~RBRRARNCNRTIRGE
GBBBE"IBRNEL gz
e e | T e o TSR e ot s S o o e e
LN e =2 e gle & P> RLHR 2 QY222 IR S BB B8 IR I @ mmmwmmmmwwmww
ERBERTBEREY 8 ge
B R LI e s LT o e I o
S slale v -~ oo ~ oy conlomo <o ool se ealoo s olugorvno oo oo oo arlolovo s ons o olg
i Qg~ o2 NeoeTnesge g QRN IesyeB LY LRRS TolBREoIE e B8 8
AT HTBHE = = 3G & | & 2 T[D O T B D (& & ¥ 4 B @EE @ DT o N~ BEEGEEIEGEER A 8555554554552ﬁ
o
Im T @R sk e RlE 5 Qln 8= RY TS 8@ B2 N AR YRBNE YRR ggTeeReerTeRgges B8R 88R 8 BT
g FHES B FTIE [FER k3] FRBE3s S [¢8 8 ¥ |88 EEE R E R EEENREEREEEREREEES
g 3 8 € ENE 7% 38 SIEEBEESLRESE
E] - - - -
gere (gess IR 258 [s§e © B8RrS (B3R 188 2F ARARNRRHER |BBERYTRIERE
wl <) ©
Rt
& E
&ls 3

65:
68:
169:
170:
172:

1

]

55

4
|
2

2
342
8
9
8
6
5
42
8 2
81 3 85
809 483
44
agram representing

2]
3

83 72

109
48

4 21 32
624 52 32
62 52 42

12 3 8 2

9 3 11 2

12 3 12 2|

8 3110

8 3 10 2

10 3011 2| 10 4

8 3 4 2

16 3 10 3

861
53 51

37| 550 6| 378 5300 3]|245 4224 2214 2]138 2(110 2

5 3
41 7 32 7 49 5| 47 5 46 f 21 4| 14 3] 546] 43 8, 39 7| 31 7| 47 § 45 § 45 5/ 21 4] 14

73 612
83 64
93 712
9
8
12
14 2] 81 2 43| 286 5/ 227 4{188 3157 3139 126
1089 941
56

1327

3
5
1

83

9

17 3 16 3| 12 3 12
20 4] 15 3| 12 3| 14 3 13

16 3| 14 3 13 3 11

10 3 11 3 813
29 5 21 4 16 4] 15

1666
8

15 4f 14 3(13 3l 11 310 3 10 3 & 2

25 4 16 3| 15 3 17 3 14

22 4/ 23 4 17 3} 11 3 11 1
20 4 14 3 13 3 10 §

24 4 26 4 20 3 12 4 11

12 8
12 8|
18 4|
17 4
14 4]

2453

2
2]

3 9
3 2
5

6

4 9
8 2
44

508

2,
7 2
10

32
4 2
8 3
2
49

28 426 3 21 3 17 3156 3 10 2
4

13 2 10 2|
23 31 19 3 16 3 11 2

p|
2 52
3 20
661
53

5

6
245 4{229 2(214 2138 2/110 2|

1097 997

72
27 3 22 3 19 9 12 2
12 3 10 3] 11

23 4 20 317 3 11 2
59

15 4| 16 31 13
2 4 17 416 J 10
12 4] 10 3| 10

28 3 24
1255

91

383 5308
4

1531
66

9 4 66 5 44 4 33
8 2 55 4 37 4 28
85

9§
37 4 28 4 21 4 19 3 16

27 4 22 3
47 4 35

3g 2]
p

85

39 4 26 4 18 §

3246 2088

34

6 2 43 3

7 4 51 9

8 2 60 § 38 § 30
8 4 55 8§

52 35 4 23 4 14 4
8 24 56 4 38 4 28

6 3
10 2 70

4 2
8 2|
16 2|
1 2]
12 2
10 2|
72
10 2|
13 2|
7 2
11 2
751 587

45

69 3] 44 3] 32 3§ 45
3|
11 3

5 2
13
16 3|
17 3|
19 3
19 3 16 3
16 3|
20 3
10 3]
16 3|
178 3117 2| 87 2612 5401 5303 4 237 4201 4|178

ts the number of paths in the ROBDD d

6 4
4
1134
1S

578 4/391 3)208 3263 2230 3215 21138 2| 110 4562
133

, “de” 1

minimization

1761

f80;

184
|apex5.pia
1

3

14

15:

16:

us

f8:

f9:

mi sex3. pla

f2.

the results of the synthesis performed on the benchmarks using the classical approach.
The column marked with “Esp” lists the number of function products after Espresso

this algorithm was applied separately to the outputs. The left part of the table shows

[

I

lglo

&

Vol. 55 -2009 A NOVEL NON-DISJUNCTIVE METHOD FOR DECOMPOSITION OF CPLDS 109

the function, the letter “B” list the numbers of k-product PAL-based blocks, and the
columns marked with the letter “L” — lists the numbers of logic levels. The second part
of the table, denoted with the heading “decBDD”, contains the results obtained using
the new method. In the set of 1730 cases compared, the proposed decBDD algorithm
allowed to find 153 solutions, whilst the decBDD+E algorithm 254 allowed to find
solutions, requiring a smaller number of logic blocks than that in the classical method.
For some benchmarks, the reduction of the logic block count was significant, e.g. for
rd84 {1, rd73.f1, misex_f7, cordic_fl, apex2f2, Sxpl.f2. Significant differences can
be noticed not only for small values of k. Unfortunately, the number of logic levels
does not follow the reduction of the number of logic blocks. Among the examined
benchmarks, only a few percent solutions demanded a smaller number of logic levels.
The results of experiments are presented in a synthetic way in Figs. 12 and 13. The
values represented on the axis of ordinates in Fig. 12 were calculated from the rational
formula shown in the graph. Tblocks classical and Eblocks decBDD denote the relevant
total sums of block counts obtained using the corresponding synthesis methods and
presented in Table 1. The values represented in Fig. 13 were calculated in a similar
manner. Analysis of the benchmarks allows us to state, that in most cases, reduction of
logic block counts by using this new algorithm is obtained at the expense of a certain
expansion of logic levels. The proposed method is particularly efficient, if k = 5 a
significant reduction of block counts was observed, while preserving a comparable
number of logic levels.

_— _Z blocks classical
| Z blocks decBDD

2 4,5 7 9.5 12 14,5
Fig. 12. A comparison of two algorithms with the classical method with respect to the number
of logic blocks (see text)

110 ADAM OPARA, DARIUSZ KANIA ETQ.

4,2
Z levels decBDD

wzmltzvels ciia>ssical .

1,15

s S P R e
i - 7 ST [e B0
Ve oo / v BD0oE
4,05]
1
y
1 T T T T ; k
2 45 7 95 12 145

Fig. 13. A comparison of two algorithms with the classical method with respect to the number
of logic levels (see text)

6. CONCLUSIONS

The paper presents a BDD-based PAL-oriented decomposition method (two va-
riants) dedicated for PAL-based CPLDs. The essence of the methods is to incorporate a
decomposition into the synthesis process dedicated for CPLD structures. The algorithm
consists in sequential search for a decomposition providing feasibility of implementa-
tion of the free block in one PAL-based logic block containing a predefined number of
product terms. The proposed method is an alternative to the classical approach based
on two-level minimization of individual single-output functions.

The proposed methods were practically proved. The results of experiments pre-
sented in the paper for two synthesis methods, closes to each other with growing k.
Conclusion is that for large £, it is better to use decBDD which works faster and gives
comparable results.

Through the adjustment of the decomposition elements to the logical resources
characteristic for a PAL-based logic block, significant improvement of the synthesis
effectiveness in relation to the classical approach could be obtained.

7. REFERENCES

1. M. Bolton: Digital Systems Design with Programmable Logic. Addison-Wesley Publishing Com-
pany, 1990

2. RK.Brayton, G.D. Hachtel,C. McMullen, A.L. Sangiovanni-Vincentelli:
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, 1984.

3. S.Chang, M. Marek-Sadowska, T. Hwan g: Technology Mapping for TLU FPGA’s Based
on Decomposition of Binary Decision Diagrams, IEEE Transactions on Computer-Aided Design,
Vol.15, No.10, 1996, pp. 1226-1235.

4. J-D. Huang, I-Y. Jou, W-Z. Shen: ALTO: An lterative Area/Performance Tradeoff Algorithm
SJor LUT-Based FPGA Technology Mapping, IEEE Transactions on Very Large Integration (VLSI)
Systems, Vol. 8, No.4, pp. 392-400.

5. Y. Lai, K. Pan, M. Pedram: FPGA synthesis using function decomposition, Proceedings of the
IEEE International Conference on Computer Design, Cambridge, 1994, pp. 30-35.

Vo

10.

11.

12.

16.

17.

19.

20.
21.

Vol. 55 ~2009 A NOVEL NON-DISJUNCTIVE METHOD FOR DECOMPOSITION OF CPLDS 111

1.

10.

11.

12.

15.

16.

17.

18.

19.

20.
21.

6.M.-T. Lai,K.-R.R. Pan, M. Pedram: OBDD-Based Function Decomposition: Algorithms and
Implementation, IEEE Transactions on Computer-Aided Ddesign of Integrated Circuits and Systems,
1996, Vol. 15, No. 8, pp. 977-990.

. C. Yang M. Ciesielski: BDS: A BBD-Based Logic Optimization System, IEEE Transactions

on CAD of Integrated circuits and systems, Vol.21, No.7, 2002, pp. 866-876.

. J.H Anderson S.D. Brown: Technology mapping for large complex PLDs, Proceedings of

Design Automation Conference, DAC’98, 1998, pp. 698 -703,

. Shih-Liang Chen, Ting Ting Hwang, C. L. Liw A technology mapping algorithm

Jor CPLD architectures, IEEE International Conference on Field Programmable Technology, Hong
Kong, 2002, pp. 204-210.

Jaejin Kim, Sangzoon Byun, Hiseok Kim: Development of technology mapping
algorithm for CPLD under time constraint, 6™ International Conference on VLSI and CAD, ICVC
'99, 1999, pp. 411-414.

Hi-Seok Kim, Jae-Jin Kim, Chi-Ho Lin: An efficient CPLD technology mapping
under the time constraint, Proceedings of the 12th International Conference on Microelectronics,
ICM 2000, 2000, pp. 265 -268.

L L. Kouloheris, A, El Gamal: PLA-based FPGA Area Versus Cell C+ Granularity,
Proceedings of the IEEE Custom Integrated Circuits Conference, 1992, pp. 4.3.1-4.3.4.

. K. Yan: Logic synthesis for CPLDs and FPGAs with PLA-style logic blocks, Fourteenth In-ternational

Conference on VLSI Design, 2001, pp. 291-297.

- K. Yan: Practical logic synthesis for CPLDs and FPGAs with PLA-style logic blocks, Pro-ceedings

of the Asia and South Pacific Design Automation Conference, ASP-DAC 2001, 2001, pp. 231-234,
R. E. Bryant Graph Based Algorithms Jor Boolean Function Manipulation, IEEE Transac-tions
on Computers, Vol.C-35, No.8, 1986, pp. 677-691.

D. Kania, J. Kulisz, A. Milik: A novel method of two-stage decomposition dedicated
Jor PAL-based CPLDs, Digital System Design, Proceedings. 8 Euromicro Conference, 2005, pp.
114-121.

S. B. Akers: Functional Testing with Binary Decision Diagrams, Eighth Anpual Conference on
Fault-Tolerant Computing, 1978, pp. 75-82.

K.S. Brace,R. L. Rudel,R. E. Br yant Efficient implementation of a BDD package, 27th
ACM/IEEE Design Automation Conference, 1990, pp. 40-45.

S. Minato: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic Publi-
shers, 1996.

R. Ebend, G. Fey,R. Drechsler: Advanced BDD Optimization. Springer, Dordrecht, 2005.
R. Rudell: Dynamic variable ordering for ordered decision diagram, IEEE International Con-ference
on Computer-Aided Design, 1993, pp. 42-47.

An art
racter:

Basic
The ar
Pared
cessor
Layou
e Title
o Auth
e Wor
e Corx
® Mair

Pages

Main t
Main
tal letes

Tables
Tables
with dc
mbers
should

Mathe
Charac!
above

the basi
Formul
symbol
of Stan

Referer
Referen
rences |
1. F
2. K
3. Y

Figures
Figures
tor — Cc
wing an
speared

INFORMATION FOR AUTHORS

An article published in other magazines can not be submitted for publishing in E.T.Q. The size of an article 1800 cha-
racters each, including figures and tables. :

Basic requirements
The article should be submitted to the editorial staff as a one side, clear, black and white computer print should be pre-
Pared in English. Floppy disc or a Cd with an electronic version of the article should be enclosed. Preferred wordpro-
cessors: WORD 6 or 8.
Layout of the article:
e Title
© Author (first name and surname of author/authors)
e Workplace (institution, address and e-mail)
e Concise summary in a language article is prepared in (with keywords).
¢ Main text with following layout:
o Introduction
o Theory (if applicable)
© Numerical results (if applicable)
o Paragraph 1
o Paragraph 2

© Acknowledgements (if applicable)
© References
Pages should have continuous numbering.

Main text
Main text cannot contain formatting such as spacing, underlining, words written in capital letters (except words in capi-
tal leters). Author can mark suggested formatting with pencil on the margin of the article using com monly marks,

Tables

Tables with their titles should be placed on a separate page at the end of the article. Titles of rows and columns letter
with double line spacing. Annotations concerning tables should be placed directly below the table. Table Arabic nu-
mbers on the top each table. Table can contain algorithm and program listings. In such cases ori ginal preserved. Table
should be cited in the text.

Mathematical formulas

Characters, numbers, letters and spacing of the formula should be adequate to layout of the article. Indexes reised
above

the basic line and clearly written. Special characters such as lines, arrows, dots should be place they are attributed to.
Formulas should be numbered with Arabic numbers placed in brackets on the right side measure, letters and graphic
symbols should be printed according to requirements of IEC (International Electronical) (International Organisation
of Standardisation).

References

References should be placed at themain text with the subtitle "References”, References should be numbered to refe-
rences placed in the text. Examples of periodical [1], non-periodical [2] and book [3] references:

L. F. Valdoni: A new milimetre wave satellite. E.T.T. 1990, vol. 2,005, pp. 141 148

2. K. Andersen: A resource allocation framework. X VI International Symposium, Stockholm (Sweden),

3. Y. P. Tvidis: Operation and modeling of the MOS transistors. New York, McGraw-Hill, 1987, p. 553

Figures

Figures should be clearly drawn on plain or milimetre paper in the format not smaller than 9x12 cm. Figures can (edi-

tor — CorelDRAW). Photos or diapositives will be accepted in black and white format not greater than 10x15 cm dra-
wing and on the back of each photo author name and abbreviation of the article title should be placed. Figure’sona

speared page. Figure should be cited in the text.

Additional information !
On a separate page following information should be placed:
e mailing address (home or office) i
e phone (home and/or office) ’
e e-mail)
Authors in entitled to free of charge 20 copies of article. Additional copies or the whole magazine can be order expense. !
Author is obliged to perform the authors correction, which should be accomplished within 3 days starting from from |
the editorial staff. Corrected text should be returned to the editorial staff personally or by mail. Corrected the margin ’
of copies received from the editorial staff or if needed on separate pages. In the case when the correction said time limit, !
correction will be performed by technical editorial staff of the publisher.

In case of changing of workplace or home address authors are asked to inform the editorial staff.

FORMULARZ ZAMOWIENIA

Zamawiam prenumerate nastepujacych tytuléw, ktérych dystrybucje prowadzi
WDN PAN w Warszawie, ul. Sniadeckich 8, 00-656 Warszawa

Cena legz. Cena za 4 umery Zamawiam
Lp. Tytut w PLN w 2009 roku egz.
w PLN
Electronics and Telecomunications
L. Quarterly 1-4/ 2009 40,00 160,00
Kwartalnik Elektroniki i Telekomunikacji
1-4/ 2009

Jestem zainteresowany zakupem nastepujacych numeréw

Tak, jestem zainteresowany otrzymaniem wiadomoéci o kolejnych tytutach oraz
; o szczegdlowej zawartoéei poszezegdlnych tytutéw.

FaX@IM, NUINET .ecvvivievriiesiceeereees e et steeresteeteeeseonesansenes

e-Mailem, AIES........coivuiiiiiiiecriie e e

Do faktury doliczamy koszty wysytki.

Zaméwienia przyjmujemy droga elektroniczna, faxem lub pocztg na ponizszy adres:
‘ Warszawska Drukarnia Naukowa Polskiej Akademii Nauk
00-656 Warszawa ul. Sniadeckich 8,
| tel/fax 022 628-76-14, 022 628-87-77
| e-mail: wdnpan @ wdnpan.pl, dystrybucja@wdnpan.pl

i Zapraszamy réwniez do naszego sklepu internetowego www.publikacje-naukowe.pl,
gdzie moga Pafistwo zapozna¢ si¢ z innymi publikacjami Polskiej Akademii Nauk.

Platno$¢ na konto:
Bank Zachodni WBK S.A. 94 1090 1883 0000 0001 0588 2816
za pobraniem TAK / NIE (odpowiednie podkre$l)

