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IMPORTANT MESSAGE FOR THE AUTHORS

The Editorial Board during their meeting on the 18" of January 2006 authorized the
Editorial Office to introduce the following changes:

|. PUBLISHING THE ARTICLES IN ENGLISH LANGUAGE ONLY

Starting from No 1’2007 of E&T Quarterly, all the articles will be published in
English only.

Each article prepared in English must be supplemented with a thorough summary in Polish
(e.g. 2 pages), including the essential formulas, tables, diagrams etc. The Polish summary
must be written on a separate page. The articles will be reviewed and their English
correctness will be verified.

2. COVERING THE PUBLISHING EXPENSES BY AUTHORS

Starting from No’2007 of E&T Quarterly, a principle of publishing articles against payment
is introduced, assuming non-profit making editorial oftice. According to the principle the
authors or institutions employing them, will have to cover the expenses in amount of 760
PLN for each publishing sheet. The above amount will be used to supplement the limited
financial means received from PAS for publishing; particularly to increase the capacity of
next E&T Quaterly volumes and verify the English correctness of articles. It is neccessary
to increase the capacity of E&T Quarterly volumes due to growing number of received
articles, which delays their publishing.

In case of authors written request to accelerate the publishing of an article, the fee will
amount to 1500 PLN for each publishing sheet.

In justifiable cases presented in writing, the editorial staff may decide to relieve authors
from basic payment, either partially or fully. The payment must be made by bank transfer
into account of Warsaw Science Publishers The account number: Bank Zachodni WBK
S.A. Warszawa Nr 94 1090 1883 0000 0001 0588 2816 with additional note: ‘‘For
Electronics and Telecommunications Quarterly”.

Editors
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Dear Authors,

Electronics and Telecommunications Quarterly continues tradition of the “Rozprawy
Elektrotechniczne” quarterly established 55 years ago.

The E&T Quarterly is a periodical of Electronics and Telecommunications Com-
mittee of Polish Academy of Science. It is published by Warsaw Science Publishers
of PAS. The Quarterly is a scientific periodical where articles presenting the results of
original, theoretical, experimental and reviewed works are published. They consider wi-
dely recognised aspects of modern electronics, telecommunications, microelectronics,
optoelectronics, radioelectronics and medical electronics.

The authors are outstanding scientists, well-known experienced specialists as well
as young researchers -~ mainly candidates for a doctor’s degree.

The articles present original approaches to problems, interesting research results,
critical estimation of theories and methods, discuss current state or progress in a given
branch of technology and describe development prospects. The manner of writing ma-
thematical parts of articles complies with IEC (International Electronics Commision)
and ISO (International Organization of Standardization) standards.

All the articles published in E&T Quarterly are reviewed by known, domestic spe-
cialists which ensures that the publications are recognized as author’s scientific output.
The publishing of research work results completed within the framework of Ministry of
Science and Higher Education GRANTSs meets one of the requirements for those works.

The periodical is distributed among all those who deal with electronics and tele-
communications in national scientific centres, as well as in numeral foreign institutions.
Moreover it is subscribed by many specialists and libraries.

Each author is entitled to free of charge 20 copies of article, which allows for easier
distribution to persons and institutions domestic and abroad, individually chosen by
the author. The fact that the articles are published in English makes the quarterly even
more accessible.

The articles received are published within half a year if the cooperation between
author and the editorial staff is efficient. Instructions for authors concerning the form of
publications are included in every volume of the quarterly; they may also be obtained
in editorial office.

The articles may be submitted to the editorial office personally or by post; the
editorial office address is shown on editorial page in each volume.

Editors







Guest Editors Preface

Most papers in this issue are devoted to research in the area of design methods for
finite state machines and microprogram control units targeted at field-programmable
gate arrays and complex programmable logic devices. The selection of papers was
done during the scientific seminar “Digital Control Units Design” which took place
in March, 6, 2009, at the University of Zielona Géra. The seminar was confined to
scientific visit of Professor Samary Baranov — one of the most experienced experts in
the field of control circuits design.

Professor Samary Baranov received M.Sc. degree in Computer Engineering from
the Electrotechnical University in St. Petersburg, Ph.D. degree and D.Sc. degree in
Computer Engineering from the Institute of Precision Mechanics and Optics, also in
St. Petersburg. In 1994, he became a professor in the Computer System Department and
the Head of the Center for VLSI Design at the Holon Academic Institute of Technology.
At the same time, he worked as a consultant for several high-tech companies in Israel,
including National Semiconductors, Fortress, and M-Systems. In February 2001, he
founded the North American Institute of Computer Systems (NAICS) in Toronto — the
first training center in Canada to offer an advanced and intensive 250 hour post-graduate
curriculum “Electronic Hardware Design” devoted to teaching Design Methodology,
Hardware Description Languages (VHDL and Verilog), EDA Tools and ASIC and
FPGA Design. More than 250 students (bachelors, masters and PhDs) successfully
finished this course in 2001 — 2005.

Professor Samary Baranov is a member of program committees of many internation-
al conferences, including: “New Frontiers of Information Technology”; “Engineering
Systems and Software for the next decade”; “Field Programmable Logic and Appli-
cations”; and the EUROMICRO Conferences on Digital System Design; a reviewer
for Design Automation Conference (DAC 2001 — 2008). He is an author of 10 books,
10 textbooks for students and more than 70 papers in Russian, French and English.
His book “Logic Synthesis for Control Automata” was published by Kluwer Academic
Publishers in 1994. His latest book “Logic and System design of Digital Systems” has
been published by Tallinn University of Technology in 2008.

Following extended articles have been prepared based on presentations from the
scientific seminar “Digital Control Units Design”:
® The paper by S. Baranov discusses some procedures of high level synthesis, im-

plemented in the experimental EDA tool. These tools are based on ASM transfor-

mations and special algorithms for data paths and control units design.

® The paper by M. Adamski and M. Wegrzyn is concentrated on behavioral speci-
fication of Reconfigurable Logic Controller programs given initially as Petri nets
and rewritten later in Hardware Description Languages.

* T. Luba, G. Borowik and A. Krasniewski focus on finite state machine synthesis
including logic optimization techniques, the technology mapping techniques, and




the techniques that provide the resulting circuits with concurrent error detection
capability.

In the paper by L. Titarenko and J. Bieganowski two methods oriented on imple-
mentation of compositional microprogram control unit with PAL macrocells and
embedded memory blocks of CPLD are presented. The first method is based on
introduction of additional microinstructions, whereas the second one is based on
expansion of the format of microinstructions.

R. Wisniewski and A. Barkalov focus on the structural decomposition of control
units. Eight methods of compositional microprogram control units are described
and compared. The aim of all the proposed solutions is to reduce the number of
logic blocks of the targeted programmable device.

New methods on synthesis and implementation of Mealy finite state machines in
FPGAs are the subject of the paper by A. Bukowiec and A. Barkalov. The Synthesis
methods presented are based on architectural decomposition of a logic circuit of
an FSM and multiple encoding of its some parameters (states or collections of
microoperations).

The paper by M. Chmiel, E. Hrynkiewicz and A. Milik presents a modified idea
of program execution in PLCs, where the event-driven execution is proposed in-
stead of serial cyclic execution of a control program. The proposed method can be
implemented either as software modification or as hardware accelerated solution.
In the paper by D. Kania, A. Milik, J. Kulisz, A. Opara and R. Czerwinski the orig-
inal synthesis strategies oriented towards PAL-based devices are presented. These
synthesis methods are aimed at minimization of required chip area or propagation
delay (by reducing number of levels).

A. Barkalov, L. Titarenko and S. Chmielewski deal with the method of combined
state assignment which targets on decreasing the amount of hardware exploitation
by combinational part of Moore finite-state-machine. It is based on the existence
of pseudo-equivalent states and a wide fan-in of PAL macrocells.

The last paper by P. Szotkowski and M. Rawski proposes a heuristic algorithm
for input selection and a new, clique-based algorithm for the construction of the
crucial decomposition blankets. This method yields better results than the current-
ly widespread, two-step approaches based on state encoding and mapping of the
resulting binary function.

As Guest Editors of these ten papers, we would like to thank all the authors who

submitted papers for this special issue.

Marian Adamski
Alexander Barkalov
University of Zielona Géra
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High level synthesis in EDA tool “Abelite”

SAMARY BARANOV

Holon Institute of Technology, Dept. of Computer Sc., Holon, Israel
samary@012.net,il

Received 2009.01.21
Authorized 2009.03.18

The paper presents the first description of methods and algorithms realized in expe-
rimental EDA (ool Abelite. High level synthesis, implemented in this tool is based on
Algorithmic State machine (ASM) transformations (composition, minimization, extraction,
etc.), special algorithms for Data Path and Control Unit design and a very fast optimizing
synthesis of FSM and combinational circuits with hardly any consiraints on the number
of inputs, outputs and states. Design tools supporting this methodology allow very fast to
implement, check and estimate many possible design versions, to find an optimized decision
of the design problem and to simplify the verification problem for digital systems.

Keywords: EDA tools, High level synthesis, Logic synthesis, VHDL

1. INTRODUCTION

High level synthesis, implemented in the experimental EDA tool Abelite is based on
Algorithmic State machine (ASM) transformations (composition, minimization, extrac-
tion, etc.), special algorithms for Data Path and Control Unit design and a very fast
optimizing synthesis of FSM and combinational circuits with hardly any constraints
on the number of inputs, outputs and states. Design tools supporting this methodology
allow very fast to implement, check and estimate many possible design versions, to find
an optimized decision of the design problem and to simplify the verification problem
for digital systems.

High level synthesis contains three stages:

L. Construction of Combined Functional ASM and FSM;
2. Data Path Design;

3. Control Unit Design.
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Since whole paper is devoted only to EDA tool Abelite we didn’t include references
to other works including works of the author of this paper.

2. CONSTRUCTION OF COMBINED FUNCTIONAL ASM AND FSM

Let us suppose that the task is to design a digital system. Problem orientation
regarding this system is nonessential — it can be a processor, a robot, a controller,
etc. If the system is rather complicated, it is possible to pick out some subbehaviors
(modes) in its behavior. For a processor it can be an instruction or a set of instructions
that can be described together; for a mobile robot — its different modes (cruise, follow,
avoid, escape etc.). We also suppose that any digital system is usually regarded as a
composition of a Control unit and an Operational unit (Data path). In a processor, for
example, a data path contains such regular blocks as memory, registers, ALU, counters,
coders, encoders, multiplexers, demultiplexers, etc. A control unit produces a sequence
of control signals that force an implementation of microoperations in a data path.

Now we will discuss the main steps of the first stage (Fig. 1) in more details. As an
example, we will consider the design of a simple processor with four instructions — ao
(arithmetic operation), lod (operation load), bun (branch unconditional) and operation
out.

Step 1. Drawing Functional ASMs in ASM Creator (see box 1 in Fig.1, ASM Creator).
At this step a designer draws separate ASMs for each subbehavior (for each operation or
a group of operations) in ASM Creator. It is really important that an ASM may contain
any number of generalized operators. Each of such operators is an ASM itself and it
will be automatically inserted in the combined ASM at the fourth stage. Moreover,
there are no restrictions on the number of such generalized operators in an ASM and
on the number of included levels — each of such operators can contain any number of
generalized operators itself. Our four operations are presented in Fig. 2. The generalized
operators for our processor are drawn in Fig. 3.

Vo
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Fig. 1. Construction of Combined Functional ASM and FSM

Step2. Combining of several Functional ASMs into one Combined Functional ASM
(box 2 ASM Combiner). After constructing separate ASMs we combine them into
one combined functional ASM still containing generalized operators. During ASM
combining we minimize the number of operator vertices in the combined ASM.
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If several ASMs contain the same operator vertex, there will be only one such operator
vertex in the combined ASM.

)

AdR1:=IRY(8-11)
ALU1 =B oR[AdR 1]
ALUZ=IR2

AdrW =tR1(8-11
BoR[AdrW [ =1R2

AdIR2:#IR1(12- 15)

| AdrR2:=IR1(12:15) .
IR2=BoRIAdIRZ]

IR2:=BoR(AdrR2]

AdrR2:=IR1{12-15) AdIW:=IR1 (8-11)

AdIR1:2IR1(8-11) AdR1=IR1B-11)
AdrR2:=1R1(12-15) Adrl=IR2 AdrW:=IR1(8-11) Adr1:=IR2
ALUT=BoRAGR1] ALUT:=BoRAGR1] BoR[AdW [=BoRAdR2] BoR[AdMW];=M1{Adr1]
ALUZ=BoRIAIR2] ALU2=MI{Adr] L l
otrALU:=IR 1(0-4) L
RALU:=ALU
chi=c e
visy =

AdYWiSIR HB-11)
BORIANWI=RALY

J AdR:=IR1 (12-15)
IR2:=BoR[AdR]

Stel

AdTR:=IR1(12-15)

Adri:=IR2
PCsM1AdT]

AdIW:=IR1(8-11)

PC =B oR[A )
BoR[AdewW]:=InpR RIGRI gen
FGL=0
AS
- Chsckint des

C%D bun

Fig. 2. ASMs ao, lod, bun and out

Step3. Minimization of combined Functional ASM (box 3 ASM Minimizer). This
procedure minimizes the number of conditional vertices in the combined functional
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ASM. Such minimization allows us to reduce dramatically the number of vertices in
the ASM (sometimes for two or three times) and to reduce the complexity of logic
circuits at the stage of logic design. The combined and minimized functional ASM
Funcm is presented in Fig. 4. It contains only 35 vertices, whereas there are 65 vertices
in the four initial ASMs. '

We can use ASM Minimizer after the second step as well. It means that a designer can
concentrate on the behavior description and does not think about minimization of the
number of vertices in ASMs in his drawings or in VHDL files. After compiling, ASM
Minimizer will minimize each separate ASM.

Adr:=IR2
RALU:=M1[Adr 1]

Adr0:=Ext_Adr

Adr :=Ext Adr Adi0:=Ext_Adr Adrl:=Ext_Adr
Ext_in:=MO[Adr0] Ext_in:=M1[Adri] MOJArO}: =Ext_Out M1[Adr1]: =Ext_Out
DMA cycle
nd [R1(12-1 50000
°
. AdrR=R1{12-15)
| Adrt=x"FFFE" IALU2:=BoR[AdrR]
‘ M1[Adr]=PC CrALU=1
Adrg:=PC Adr(:=PC RIALU=IALY
1R 1:=MOJAT0] HR2:=MOIA GO}
PC=x"FFFE"
EN:=0 IR2:=RIALU
PC=PCH

R:=0 i "
e é End End )
Fetcht Fetch2 IntCycle Checkint AbsAdr

Fig. 3. Generalized operator in our example

Step 4. Including of generalized operators (box 4 ASM Composer). At this stage,
generalized operators constructed at the first stage are included into the minimized
ASM constructed at the previous stage. It is the last stage of the functional ASM
design. This ASM can be presented as two-connected list (file Funcmi.gsa):
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0 begin 20 0 35 Y11 17 0
1 pat 10 0 36 Y13 17 4]
2 Yi2 35 0 37 Yi4 17 0
3 x10 40 41 38 Yis 17 0
4 Y2 1 0 39 Y16 17 ¢
5 ¥3 26 o 40 %9 37 36
6 ¥4 25 0 41 ®9 38 39
7 Y5 6 0 42 ¥17 45 0
8 x1 42 46 43 Yis 44 0
9 Y22 47 0 44 Y19 23 0
10 x14 50 17 45 Y20 46 0
11 Y24 51 0 46 x11 23 43
12 Y6 10 0 47 Y21 29 0
13 Y7 10 0 48 ¥23 17 0
14 Y8 10 0 49 x12 48 17
15 Y9 10 0 50 %13 48 49
16 Y10 10 0 51 Y21 34 0

The second file produced by Abelite after inserting generalized operators (file
Funcmi.txt) contains microinstructions, microoperations and logical conditions which
a designer wrote in ASMs in Fig. 2 and 3:

Micro Instructions: yl8 : PC:=BoR[AdrR]

Y1 = yl y2 yl9 : BoR[AdrW]:=IR2

Y2 = y3 y4 y5 y6 y7 y8 y9 y10 y20 : OutR:=BoR[AdxR]

¥3 = yll yi12 y21 : FGO:=0

¥4 = y13 y22 : PC:=x"FFFE"

¥5 = yl4 y15 y23 : IEN:=0

Y6 = yié y24 : R:=0

Y7 = yi4 yi7 y25 : Adrl:=x"FFFF"

Y8 = yli yi8 ¥26 : M1[Adrl]:=PC

Y9 = yl yl19 y27 : Adr0:=Ext Adr

Y10 = y3 y20 y21 y28 : MO[Adr0] :=Ext_Out

Y11l = y22 y23 y24 ¥29 : Adrl:=Ext Adr

Y12 = y25 y26 y30 : Mi[Adrl]:=Ext_Out

Y13 = y27 y28 y31 : Ext_in:=MIl[Adrl]

Y14 = y29 y30 y32 : Ext_in:=MO[Adr0]

Y15 = y29 y31 ¥33 : RALU:=Ml[Adrl]

Y16 = y27 y32 y34 : IALUl:=IR2

Y17 = yl4 y33 y35 : IALUZ2:=BoR[AdrR]

Y18 = y34 yll y35 y36 y37 y36 : CtrIALU:=1

Y19 = y38 y37 : RIALU:=IALU

Y20 = y39 y38 : IR2:=RIALU

Y21 = y40 y39 : IR2:=RALU

Y22 = yd4l y42 y40 : PC:=PC+l

Y23 = y43 y4l : Adr0:=PC

Y24 = y4l y44 y42 : IR2:=MO[Adx0]
y43 : R:=1

Micro Operations : v44 : IR1:=MO[Adr0]

yl : AdrW:=IR1(8~11)

y2 : BOR[AdrW]:=RALU Logical Conditions

¥3 : AdrR:=IR1(8-11) File Draw

y4 : ALUl:=BoR[AdrR] xl : IR1(6)

y5 : ALU2:=IR2 x2 : IR1(5)

y6 : ctrALU:=IR1(0-4) ®3 : IR1(7)

y7 : RALU:=ALU x4 : R

y8 : cf:i=c x5 : DMA

y93 : ve:=v %6 : 8

yi0 : zfi=z x7 : IR1({0)

yil : AdrR:=IR1(12-15} x8 : IR1({1})

yl2 : IR2:=BoR{AdrR]} x93 M

y13 : IR2:=BR x10 : Ext_RdWr

yi4 : Adrl:=IR2 x11 : IR1{12-15)=0000

y15 : BR:=M1[Adrl] x12 : FGO
: x13 : FGI
y17 : PC:=M1[Adrl] x14 : IEN
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doc
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Only for illustration we give this ASM as a graph in Fig. 5. Designer shouldn’t draw
any ASMs, except in Fig. 2 and 3, any more - Abelite continues to work only with
files Funcmi.gsa and Funcmi.txt.

We would like to underline here that in the description at the level of a functional
ASM we don’t have Data Path and each unit in such a functional ASM is presented as
a variable. For example, in microoperation IR2 := MO[Adr0] the word of memory MO
with address Adr0 should be sent to instruction register IR2, but we don not know yet,
and wouldn not like to know, how these units are connected and what signals must
come from the control unit to Data Path to implement this transfer. Really, a Data Path
does not exist yet and our goal at the second stage (Data Path Construction, see Fig. 8)
is to construct a Data Path formally using only the combined functional ASM.

AdR=IR1(8-11)
OulR =BoRAIIR] K
FGO:=

AdrR:=IR 1{12-15)
A PC:=BoRAdIR]

AR =IRY(12-15)
IR2=BORIAIR] {*

QST §
PC:=IR2 N

0
Adrt:=IR2
PC=MiAdr]

AdrRi=(R1(8-11)
ALU1=BoR[AdrR}

AdTW:=IR18-11)
BoR[AW=RALU

Fig. 4. Combined and minimized functional ASM

AdAW:=R1(3-11)
BORIAAW]=IR2
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Step5. Synthesis FSM from combined Functional ASM (box 5 FSM Synthesizer).
This procedure constructs 24 various types of minimized Finite State Machine tables
for Mealy, Moore and their combined model with or without state assignment (log or
one-hot). FSM Mealy implementing ASM in Fig. 5 is presented in Fig. 6. In this FSM,
Xi, ..., x14 correspond to logical variables written in conditional vertices, while
Y1, --., Y44 — to microoperations written in operator vertices of ASM in Fig. 5.

IR1:=MOJAdr0]

Adr1 =XFFFFE
MI[Adr1]=PC

Adi0:=E xt_Adr Adr1 =Ext_Adr | AdrO:=Ext_Adr I | Adrl =Exi_Adr I

T € xL_in:=MO[Ad 0} Ext_im=MifAdr] MO[AGIO}=E Xt Out MIAdr1]=Ext_Out
PC=CFFFE"
IEN=0
R:=0

A

iR =R (121 5)

e

1R2:=BoRAAR]

AdD:=PC
IRZ=MO{ALO]

PC=pPC+1

Adrt:=IR2
PO=MH{Adr]

AdrR:=IR1(811)
ALU 1:=BoR[AdR]

ALUZ:=IR2
SrALU:=IR 1 (0-4)
RALU=ALU
o

=
4=

AdrW:=IR 1(8-11)
BoR[AdI'W]=RALU

v
z

AW =IR1(8-11)
BoR{AdI'W]=IR2

¢

1
AdT=R2
RALU: =M1 A dr1)

IR2:=RA LU

R1(12-15)=0000
g

W1 R2
AGR =IR1(12-15)
WALU2'=BoR[AGIR]
Criall:=t
RIALU=IALU

IRZ:=RIALL)

Fig. 5. Combined functional ASM with inserted generalized operators
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zer).
3bleS al al x6*x5*%x10*x9 y29y30 1
al al RE*x5*x10*~x9 y27y28 2
g or al al X6*x5*~vx10*x9 y2%y31 3
. al al x6*x5*~x10%~x9 y27y32 4
‘SM, al a3 x6*ex5kxd y25y26 5
. al a9 x6*~x5*~xd y4lydsd 6
vhile al  al  ~x86 -- 7
a2 al x14*x13 y43 8
a2 al x14%~x13%x12 y43 9
a2 al %1 4*~x13*%~x12 - 10
a2 al ~x14 -- 11
a3 al 1 y22y23y24 12
a4 a2 1 yly2 13
a5 a7 x1*x7 v14yl5 14
ab a2 x1¥*~xT*x8 ylayl7 15
a5 a7 XKL *~xT*~x8 yl4yls 16
a5 a2 ~X1*x7 ylyls 17
a5 a2 ~x1*vxT*x8 yl4yl?7 18
a5 a4 ~RL*~exT*ex8 y3y4y5y6yTy8y9y1i0 19
a6 a2 x7 ylyl9 20
a6 a4 ~x7 y3yAy5y6y7y8y9yl0 21
a7 a6 1 yl3 22
a8 al4 1 y40 23
a9 als 1 yv40 24
om al0 al3 1 y39 25
¢ Qut l all al2 1 y38 26
al2 a7 %7 yldyls 27
al2 a2 ~xT*x8 y1l4yl7 28
al2 a7 ~xT7*~x8 yl4ayls 29
al3 a7 x11*x7 yl4yl5s 30
al3 a2 x1l*vx7*x8 yl4ayl7 31
al3 a7 x11*wx7*~x8 yidyls 32
al3 all ~x11 y34yl1iy35y36y37 33
alid a2 ®3*x7 ylyis 34
al4 a2 ®3*~xT*x8 yl6 35
ald a4 X3*oxTH*x8 ¥3y4y5y6y7y8y9y10 36
ald alg ~x3%x1 y14y33 37
ald a7 ~X3*~x1*x11%*x7 y1l4yis 38
ald a2 ~X3*exl*x1l*~x7*x%8 yldyl? 39
ald a7 ~R3*egI*RIT*~xT*~x8 yldylbs 40
al4 all ~K3*ex1hnx1l y34ylly35y36y37 41
als az x8*x7 y3y20y21 42
als a8 XBF~x T x1*x2 y4ly42 43
als ab xBH~xThx]l *~x2 yllyl2 44
alb a8 *BF~xThax1hx2 y4lyd2 45
als a2 XBF AT X ~x]l*ox2 yllyls 46
als a8 ~x8*x2 ydly4d2 47
als ab ~X8*~x2 yllyl2 48

Fig. 6. Virtual Functional FSM

Step6. Construction VHDL (Verilog) code Jor the Functional FSM (box 6 FSM2HDL
Transformers). A VHDL code for FSM in Fig. 6 is presented in Fig. 7. This FSM
is not a Control Unit, it is a virtual FSM presenting the processor behavior at the
functional level. We will use this FSM for simulation of our processor.
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pr

library ieee;

use ieee.std logic_1164.all;
use ieee.numeric std.all;
use work.my package.all;

entity FUNCMI is
generic (

AdrMem : integer ~- the length of memory address
WordMem0 : integer —- the length of M0 word
WordMeml : integer -~ the length of Ml woxd
AdrBoR : integer -~ the length of BoR address
WordBoR : integer -- the length of BoR word
yi
port (
clk ¢ in std_logic;
rst ¢ in std _logic;
s ¢ in std_logic;
Ext RdWr : in std_logic;
DMA ¢ in std_logic;
Ext_Adr : in std_logic_vector (0 to 15);
Ext out : in std_logic_vector (0 to 15);
FGI_Set ¢ in std_logic;
InpR 1 in std_logic_vector (0 to 15);
FGO_Set ¢ in std logic;
M ¢ in std_logic;
Ext in : out std_logic~vector (0 to 15);
OutR . out std_logic_vector (0 to 15);
Idle : out std_logic
)
end FUNCMI;

architecture ARC FUNCMI of FUNCMI is

type states_FUNCMI is (
sl, s2, s3, s4, s5, s6, s7, s8, s9
s10, sl1, sl12, s13, si4, sli5
|

signal current FUNCMI : states FUNCMI;

type ram0_type is array (0 to 2**AdrMem - 1) of std_logic vector (0 to WordMemQ - 1);
signal MO : ram0_type;

type raml_type is array (0 to 2**AdrMem - 1) of std_logic vector (0 to WordMeml ~ 1};
signal M1 : raml_type;

type bor_type is array (0 to 2**AdrBoR ~ 1) of std_logic_vector (0 to WordBoR -~ 1);
signal BoR : bor_type;

signal PC ¢ std_logic_vector (0 to 15);
signal IR1 H std_logic_yector (0 to 15);
signal IR2 : std_logic vector (0 to 15);
signal RALU H std:logic:vector (0 to 15);
signal cf,zf,vf : std_logic;

signal R ¢ std_logic;

signal IEN : std logic;

signal FGI : std:logic;

signal FGO ¢ std_logic;

signal RIALU H std_logic_yector (0 to 15);
signal BR : std_logic_yector {0 to 15);
signal BAC ¢ std_logic vector (0 to 3);
signal MAC ¢ std_logic_vector (0 to 15);

begin
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process {clk , rst)

variable Adr0, Adril : std_logic vector (0 to AdrMem -~ 1);
variable ALU 1 std_logic vector (0 to 15);
variable ALUl, ALUZ : std_logic vector (0 to 15);
variable ctrALU : std:logiq:vector {0 to 4);

variable ¢, z, v . ¢ std_logic;

variable IALU : std“logicﬂvector {0 to 15);
variable IALU1l, IALUZ2 std_logic vector (0 to 15);
variable ctrIALU : std_logic;

variable AdrR, AdrW : stdmlogic_vector {0 to AdrBoR - 1)

procedure proc_FUNCMI is

begin

case current FUNCMI is

when sl =>

if ( S and DMA and Ext RdWr and M ) = '1' then
Adrl := Ext_Adr;
Ml (to_integer (unsigned(Adrl))) <= Ext_Out;
current FUNCMI <= sl;
Idle <= '1"';

elsif ( 8 and DMA and Ext RdWr and not M } = '1' then
Adr0 := Ext_Adr;
MO (to_integer (unsigned (Adx0))) <= Ext_Out;
current FUNCMI <= sl;

Idle <= '1"';
elsif ( S and DMA and not Ext RdWr and M ) = '1' then
Adrl := Ext_Adr;

Ext_in <= Ml(to_integer (unsigned (Adrl))) ;
current FUNCMI <= s1;

Idle <= '1';
elsif { S and DMA and not Ext RdWr and not M ) = '1' then
Adr0 := Ext Adr;

Ext in <= Ma(to_integer(unsigned(AdrO)));
current FUNCMI <= sl1;

Idle <= '1';
elsif ( S and not DMA and R} = !1' then
Adrl := x"FFFF";

Ml (to_integer (unsigned (Adrl))) <= BC;
current FUNCMI <= s3;

elsif ( S and not DMA and not R ) = '1' then
Adx0 := PC;
IRl <= MO (to_integer (unsigned (Adr0))) ;
current FUNCMI <= s9;

elsif ( not 8 ) = 'l' then
current FUNCMI <= sl;
Idle <= '1';

else
current FUNCMI <= s1;
Idle <= '1°';

end if;

when s2 =>

if ( IEN and FGI ) = 'l' then
R <= "1';
current FUNCMI <= sl;
Idle <= '1';
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elsif ( IEN and not FGI and FGO } = '1l' then
R <= '1%;
current FUNCMI <= sl;
Idle <= '1';
elsif { IEN and not FGI and not FGO } = '1' then
current FUNCMI <= sl1;
Idie <= '1';
elsif ( not IEN ) = '1' then
current FUNCMI <= si;
Idle <= '1';
else
current FUNCMI <= s2;
end if;

when s15 =>
if ( IRL(1) and IRL1(0) ) = 'l' then
AdrR := IR1(8 to 11);
OutR <= BoR(to_integer (unsigned (AdxR)));
FGO <= '0';
current FUNCMI <= s2;

elsif ( IRL(1l) and not IR1(0) and IR1(6) and IRL(5) ) = 'l' then
Adr0 := PC;
IR2 <= M0 (to_integer (unsigned (Adx0)));
current FUNCMI <= s8;

elsif ( IRL(1l) and not IR1(0) and IRL(6) and not IRL(5) ) = '1' then
AdrR := IR1(12 to 15);
IR2 <= BoR (to_integer{unsigned(AdxzR})});
current FUNCMI <= s5;

elsif ( IR1{1l) and not IR1{0) and not IR1{6) and IRL(5) } = '1' then
Adr0 := PC;
IR2 <= MO({to_integer {unsigned(Adr0}});
current FUNCMI <= s8;

elsif {( IRL{1l) and not IR1(0) and not IR1(6) and not IR1(5) ) = 'l' then
AdrR := IRL1(12 to 15);
PC <= BoR(to_integer (unsigned(AdrR))) ;
current FUNCMI <= s2;

elsif ( not IR1(1l) and IR1I(5) ) = '1' then
Adr0 := PC;
IR2 <= MO (to_integer (unsigned (ARdr0))) ;
current FUNCMI <= s8;

elsif ( not IR1(1) and not IR1(5) ) = 'l' then
AdrR := IR1(12 to 15);
IR2 <= BoR(to_integer(unsigned(AdxR))) ;
current FUNCMI <= s5;

else
current FUNCMI <= sl5;
end if;

end case;
end proc_FUNCMI;
begin
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if (xst = '1') then
PC = x"0000";
cf = '0';
zf <= '0';
vf = 'Q";
R = 10t
FGI =0
FGO Cok= 07
IEN = '0";
c = PO
z = 07
v = QT
Ext_in <= x"0000";
OutR <= x"0000";
BR <= (others => '0');
BAC <= (others => '0’);
MAC <= (others => '0')

for i in BoR'range loop
BoR(i) <= (others => '0');
end loop;

current FUNCMI <= sl;
Idle <= '1';
elsif (clk'event and clk = 'l') then
if FGI_Set = 'l1' then
FGI <= '1"';
end if;
if FGO_Set = '1' then
FGO <= '1"';
end if;

Idle <= '0';
proc_FUNCMI;
end if;
end process;

end ARC_FUNCMI;

Fig. 7. Virtual Functional FSM

Step7. Functional Simulation (box 7 Functional Simulator). We can use Functional
FSM in VHDL from Fig. 7 for a functional simulation (not a register transfer level
simulation — it is possible to use the same test bench later when we construct a Data
Path and a Control unit corresponding to this Data Path).

To construct a test bench we should write the test as an assembly program. The
test bench for functional simulation is generated by the special program — Functional
Simulation Generator.

Step8. Extraction one or several ASMs from Combined ASM (box 9 ASM Extractor).
If we detected error in ASM during the simulation we can extract ASM with error
(Step 8, see box 8 ASM extractor), repair it (Step 9, see box 9 ASM corrector) and
return corrected ASM into combined Functional ASM (Step 10, see box 10, ASM
inserter).

In Abelite, we have special program “Check ASM equivalence”, that verifies the equ-
ivalence of two ASMs. That permits designer to check each step of ASM transformer.
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3. DATA PATH DESIGN

At this stage (Fig. 8), we use a sequence of programs for automatic design of Data
Path. Input for this stage — Combined Functional ASM (Fig. 5) constructed at the
previous stage. In our design we use the common model in which any digital system
is regarded as a composition of Control unit and Operational unit (Data Path) — see
Fig. 9. Data path contains such regular blocks as memory, registers, ALU, counters,
coders, encoders, multiplexers, demultiplexers etc. A control unit produces a sequence
of control signals that force implementation of microoperations in data path.

Very often designer includes cloud (non-regular) circuits in data path as well. In
Fig. 10 we have a fragment of data path with two registers R/, R2 and a cloud circuit.
Suppose that in the digital system there are transfers from R/ to R2 at different times
with different conditions. Designer often constructs a cloud circuit to realize some
Boolean function, and the output of this circuit is the signal for the transfer. So, this

dat
unil

MUXes and list of
direct connections

circuit defines when and under which logic conditions the transfer information from libr
RI to R2 takes place. bec
thel
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Fig. 8. Stage 2 — Data Path design
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X4 Y1
. Control Data
% - Unit N Path

P
B L

R

Extemal System

g
A

Fig. 9. Digital system as a composition of Control unit and Data path

One of the main concepts in our design methodology is the construction of “naked
data path”. Naked data path doesn’t contain any cloud circuits, only standard regular
units with their inputs and outputs. Such units can be predesigned or even taken from
libraries. We leave all check-ups of conditions to control unit. We can afford this
because we know how to design very complicated FSM with hardly any constraints on
their size, that is, the number of inputs, outputs and states (see Section V). We will
try to show that such design and its verification are very simple. Moreover, we will
formalize a design of the digital system with naked data path.

[ R ]

Cloud S
circuit

4
Re

Fig. 10. Element of Data path with a cloud circuit

Data path and the following Control unit design are convenient to illustrate by Table 1.
To fill this table, we copy each microinstruction from functional ASM (Fig. 5) into
this table. If some microinstruction appears several times in this ASM we write it
several times in Table 1. For example, microinstruction PC := PC + 1 is written in
four vertices of ASM, so it is written four times in Table 1. The order of writing
microinstructions in this table is unimportant.
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Table |

Microinstructions and microoperations for functional and structural levels

Functional ASM Structural ASM
Micro . . . Structural Minimized structural
. Functional microoperations . . . .
instr. microoperations microoperations

Y1 yl AdrW:=IR1(8-11) 4 | ctromux0:=100 | ctromux0[0] <=1 | yl

y2 |BoR[AdrW]:=RALU| 16 bor_en:=1 bor.en <=1 y2

Y2 y3 AdrR:=IR1(8-11) 4 ctromux2:=1 ctromux1[2] <=1 | vy3
y4 | ALUL:=BoR[AdR] | 16 | ctrmux1:=0011 | crumux1 [2] <=1 | y4

y5 ALU2:=IR2 16 ralu_en:=1 ctromux] [3] <=1 y5
y6 | ctrtALU:=IR1 (0-4) } 5 cfen:=1 ralu_en <=1 y6
y7 RALU:=ALU 16 vf_en:=1 cfen <=1 y7
y8 cli=c 1 zf en:=1 vien <= 1 y8
y9 vi=v 1 zf_en <=1 y9
yi0 zfi=z 1
yI1 | AdR=IR1(12-15) | 4 | CU-mux2=0 " o uxl 2] <=1 | y4
B 1 y12 | Ra=BoR[AdR] | 16 | =IO T g e =1 | y10

oy

yll
y5
ir2.en <=1 y1i0

. - ctromux1f1] <=
Y4 | yi13 IR2:=BR 16 ‘“‘B’i{:?ml ctr_mux1[3] <=

sy

ctromux0:=001

yl4 Adrl:=IR2 16 e ctromux0{2] <=1 | y12
Y5 1015 | BR=MI[Adrl] | 16 m?‘_;ff&}io bren <= | 13
Y6 y16 PC:=IR2 16 ctr.mux{:=1000 | ctromux1[0] <=1 | yl4
pc.en:=| pc.en <=1 y1i5
ctr.mux0:=001
Y7 yl4 Adrl:=IR2 16 | ctromux1:=0000 | ctromux0{2] <=1 | y12
yl17 | PC:=MI[Adrl] 16 pe.en:=1 pc_en <=1 y15
ml.rdwr:=0
v | 11| AGR=IRI(12:15) | 4 (LSimuxed | emux(2] <= 1| y4
y18 | PC:=BoR[AdrR} 16 pe_en:=l pcen <= | yls
Y9 yl Adrw:=IR1(8-11) 4 | ctromux0:=001 | ctromux0[2] <=1 | y12
y19 | BoR[AArW]:=IR2 | 16 bor_en:=1 bor_en <=1 y2
y3 AdrR:=IR1(8-11) 4 ctromux2:=1 ctr.mux2 <=1 y3
Y10 | y20 | OutR:=BoR[AdR] | 16 outr_en:=1 outr.en <=1 yl6

y21 FGO:=0 0 fgo_reset:=1 fgo.reset <=1 yl17
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ctromuxif0] <=1
y22 PC:=x“FFFE” 6 ctromux1:=1100 | ctremuxifi] <=1 | yl4
TEN o pc.en:=1 pcen <= 1 yll
Yil y;z IiN_bo g ien.reset:=1 fenreset <=1 | ylIS
y . rreset:=1 rreset <= 1 y18
y19
ctromux0[1] <=1 | y20
TR ctr.mux0:=011 | ctr-mux0[2] <=1 | yI2
Y12 yQZ AdrL=TREFR™ 16 ) ux 121001 | ctrmuxI[0] <= 1 | Y14
y2 MI[Adrl]:=pPC 16 ml_rdwr:=1 ctromux1{3] <=1 y5
mlrdwr <=1 |y2l
y27 AdrO:=Ext_Adr 16 | ctr-mux0:=000 o
Y131 V28 | MOJAMO:=Ext.Out | 16| mO.rdwr= | MOadwr <=1 1y22
via| Y29 | Adrl=ExtAde |16 cclir}lr]?xxlq:-_::(?]oo% ctmuxI[1] <= 1 | y11
y30 | MI[Adrl]:=Ext Out | 16 ml _rdwr=1 ml_rdwr <=1 | y21
yis| Y20 Adri=Excade |16 | SU-mux0=000
y31 | Extin:=MI1[Adrl] | 16 m1 _rdwr:=0
s ctr_mux0:=000
Y16 yi; FAtd.r O:I\I?[)(()t[_:?rm :2 ctromux [:=0001 | ctromux1[3] <= 1] y5
¥ SX= dare. mO_rdwr:=0
ctr_mux0:=001
Y17 yl4 Adrl:=IR2 16 | ctrmux 1:=0000 | ctromux0[2] <= 1| yi2
y33 | RALU:=MI[Adrl] | 16 ralu_en:=1 raluen <= | v6
ml_rdwr:=0
y34 IALUL:=IR2 16
vyl | AdR:=IR1(12-15) | 4 | ctr.mux2:=0 o
Y18| ¥35 | IALU2:=BoR[AdrR] | 16 |  ctrialu:=] crialu <=1 y23
y36|  CulALU:=I 0| rialuen:=] rialuen <=1 y24
y37 RIALU:=IALU 16
s - ctromux1[0f <=1 | yl4
Y19|y38 |  IR2:=RIALU 16 ““'.mz“x)lf_‘_llmo cirmux1[2] <= 1 | 'y4
tre-en:= ir2_en j= 1 y10
- ctramux1[1] <=1 | yl1
Y20|y39 |  IR2=RALU |16 C‘r‘.r‘?z"’fl'.‘_(;l O cumuxt 2] <= 1 | ya
trecn:= ien<=1 |yl0
Y21| y40 PC:=PC+1 0 pc.count:=1 pccount <=1 | y25
ctr.mux0:=010 _
. Adi0:=PC 16 | ctr.mux:=0001 | O] <= 1Y%
y42 | IR2:=MO[Ad0] | 16| ir2en=I ien et lero
mO_rdwr:=0 e - y
Y23| y43 Ri=1 0 rset:=1 rset <=1 y26
vou| Y41 Adt0:=PC 16 | SO=010 o muxort] <= 1 y20
y44 IR1:=MO[Adr0] 16 mO-;dV‘;r::O irl en <=1 y27

Stepl1. Construction of a Connection Graph from the Functional ASM designed at
the step 4 (box 11 Connection Graph Constructor). This graph and the following list
of parallel microoperations should be constructed for each length of transfers (column
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4 in Table 1). Such a graph contains the list of sources and targets for each component
of an operational unit and some metrics that will be used in the optimization of Data
Path. The connection graph as a text list for 16-bit transfers constructed by Abelite is
presented in Fig. 11.

weight : sources targets : weight
1 : ALU RALU : 1

1 : BR IR2 :

-

2 : BoR[AdrR] ALUL :
TALUZ2 :

IR2 :

QutR :

PC :

HOoORr OO

4 : Ext_Adr Adr0 :
Adrl @ 2

N

1 : Ext Out MO [AdrO] : O
M1[Adr1l] : 1

0 : IALU RIALU :

[l

5 : IR2 ALU2 :
Adrl :

BoR[AdrW] :

IALUL :

BPC :

O WO

Pt

2 : MO[AdrO} Ext in
IR1
IR2 :

b D

3 : M1l[adrl] BR
Ext in :

“pC :

RALU :

=]

3 : pC Adr0 : 2
M1[Adrl] : 1

2 : RALU BoR[AdrW] : 1

IRZ : 1
1 : RIALU IR2 : 1
1 : x"FFFE" PC : 1
1 : x"FFFP" Adrl : 1

Fig. 11. Connection Graph

Stepl2. Construction of the optimized list of parallel microoperations from the Func-
tional ASM designed at the step 4 (see box 12). Such a list contains microoperations
which should be implemented in parallel. It is important to increase the speed of the
designed system (Fig. 12 for 16-bit transfers). In this list, we include microinstructions,
containing two or more microoperations, marked by 16 in the fourth column of Table
2. We remind that if’ several microoperations are in one microinstruction, they are
implemented concurrently (at the same clock).
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We can compress the list of parallel microoperations (Fig. 13), if we remove microope-
rations corresponding to direct connections in the connection graph (microoperations
with zero target weights (right column in Fig. 11). At the next steps of the design of
Data path we will use only these two lists — the connection graph and the compressed
list of parallel microoperations. -

Y2 Iz ALUL:=BoR[AdrR]
y5 ALUZ :=IR2
y7 RALU: =ALU
Y5 : yl4 Adrl:=IR2
yl5 BR:=M1[Adrl]
Y7 : oyl4 Adrl:=IR2
yi7 PC:=M1[Adrl]
Y12 : y25 Adrl :=x"FFFF"
y26 M1[Adrl] :=EC
Y13 :oye? Adr0:=Ext_Adr
y28 MO[AdrO] :=Ext_ Out
Y14 r y29 Adrl:=Ext_Adr
y30 M1{Adrl] :=Ext_Out
Y15 : y29 Adrl:=Ext_Adr
y31 Ext_in:=Ml [Adrl]
Yi6 T oy27 Adr0:=Ext_Adr
y32 Ext_in:=M0[Adr0]
¥Yi7 T yl4 Adrl:=IR2
¥33 RALU : =M1 [Adrl]
Yig : y34 IALULl:=IR2
¥35 IALUZ :=BoR[AdrR]
v37 RIALU:=IALU
Y22 T y4l Adr0:=PC
yaz2 IR2:=MO [AdxC}
Y24 : y4l Adr0:=PC
y44 IR1:=MO [Adr0]

Fig. 12. Parallel Microoperations before considering direct connections

Stepl3. Construction of a Graph of Incompatibility from the Connection Graph and
the optimized list of parallel microoperations designed at the step 11 and 12 (box
13). Vertices of this graph are all targets of the connection graph with nonzero weights
written in the last column. We connect two vertices (targets) by edge (line) if these two
targets are together in the same microinstruction in the set of parallel microoperations.
For example, we connect adr! and pc by edge because Adrl and PC are the targets in
microinstruction Y7 in Fig. 13.




142 SAMARY BARANOV ETQ.

Y7 :oyld Adrl:=IR2

y1l7 PC:=M1{Adrl]
Yiz T y25 Adrl:=x"FFFF"

v26 M1[Adrl]:=pPC
Y14 T y29 Adrl:=Ext_ Adr

¥30 M1{Adrl] :=Ext_Out
Y15 T y29 Adrl:=Ext Adr

y31 Ext_in:=M1[Adrl}]
Y16 Toy27 Adr0:=Ext_Adr

y32 Ext_in:=MO[Adr0]
Y17 . yl4 Adrl:=IR2

y33 RALU: =M1 [Adrl]
Y22 : y4l Adr0:=PC

y42 IR2 :=MO[Adx0]

Fig. 13. Compressed list of parallel microoperations

If two vertices (targets) are connected by edge in this graph we cannot pass in-
formation to these targets through the same MUX because these targets are written
together in some set of concurrent microoperations with different sources. For example,

target adr0 cannot be acquired from the same MUX with ext_in and ir2 since adrQ is

connected with these vertices by arcs. However, adr0 can be acquired from the same
MUX with adrl, ml, ralu or pc — adr0 is not connected with them in the graph of
incompatibility.

ralu (alu, mi)

o

pc

‘bor, m1, ir2, x"fffe ")

ml &
(ext_out, pc)

Q bor
(ir2, ralu)

adri
(ext_adr, ir2, x’ffff’)

adrO
(ext_adr, pc)

ext_in
(m1, mO)
irz
(bor, br, m0, raly, riaiu)

Fig. 14. Graph of incompatibility for 16-bit transfers
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Stepl4. Construction MUXes by coloring the Graph of incompatibility and Construc-
tion the list of direct connections from the Connection graph (box14). To find the
minimal number of MUXes in our design we must color this graph with a minimal
number of colors. The targets (vertices) colored by the same colors will be received
from the same MUXes and the number of MUXes will be equal to the number of
colors.

Table 2

Coloring process

Vertices Forbidden vertices Colors
adrl ext_in, ralu, pc, ml mux0
ext.in adrl, adr0 mux [
adr0 ext_in, ir2 mux0
ralu adrl mux [

pc adr1 mux1
ml adrl mux1
ir2 adr0 mux |
bor - mux0

The coloring process is presented in Table 2. It is reasonable to order vertices in
such table according to their ranks — to the decreasing number of edges connected
with each vertex (four such edges for adrl, two edges for ext_in and adr0, one edge
for ralu, pc, m! and ir2 and zero edges for bor). We place these vertices in the column
Forbidden vertices.

We color the first vertex adrl with color mux0. Since the second vertex ext_in is
connected to adrl (ext_in has adrl in the column Forbidden vertices), we cannot color
ext_in with the same color mux0, but we can use mux0 for adrO not containing adrl
as a forbidden vertex. We cannot color ralu, pc, ml and ir2 with mux0 either because
these vertices are connected with vertex adr/. Continue until the end of the list with
color mux0 we use this color for pe.

In the next step, taking color mux! for ext_in, we go down the list and color ralu,
pe, ml and ir2 with muxl. Now all vertices are colored. The total number of MUXes
(colors) is equal to two.

Thus, we got the outputs of MUXes by coloring process. To get inputs to these
MUXes we should refer to the connection graph in Fig. 11. Let us discuss MUXO0 with
outputs adrl, adr0 and bor. We go along the last but one column targets in this figure
and search for target Adrl. The first time Adr! appears as a target with source Ext_Adr
with the target weight equal 2 (last column). So we include ext_adr as an input with
input weight equal to 2 (Fig. 15). Then we continue to descend and find Adrl with
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source IR2, its target weight is equal to 3. We put the second input to MUX0. Going
down with source Adr/ we find the last input x “ffff” (weight = I).

Now we should repeat the same for target adr0. The first appearance of Adr0 in
column targets is with input Exr_Adr, target weight 2. Since we already have such
input in MUXO0, we add the new weight 2 to the old weight 2 (the weight of input
ext.adr became equal to 4) and write adrQ over the arrow for ext_adr near adrl to
show that this source Ext_Adr sends information to Adrl and Adr0 using MUXO (Fig.
15). Coming down with target Adr0, we add new input pc with weight 2. Then we
repeat the same for output bor.

Continuing in the same way, we constructed MUX 1for 16-bit transfers and MUX2
for for 4-bit transfers. Note, that the same input can appear in the different MUXes
if such input has several targets distributed between several MUXes. For example, ir2
sends information to adrl and bor through MUXO0 and to pc — through MUX1.

MUX0 5x16 ; MUX1 11x16
ir2
4 ext_adr aMinO 1 ralu R SR 1213]
ir2 .
4 2 3M1n1 2 por e in2
adr0 adr1 ralu ext_in pC_ |
1 x"ffff" ﬂl—-»in?, out p——r———-—up- 3 m1 e |iN0
adr0 bor pe .
2 pc ~———plin2 1 ir2 g N8
4 bor . ext_in ir2 .
ralt el 014 2 mo —ee——p>| in 1 .
otr m1 ‘ ralu ext_in
Y 1 pc  ——————p!ing oI T Q ———
/!(3 1 ext_out -—-—~—-r—n-1-———-> in4 ir2 m1 pe
ir2 .
1 rialu —)’ in10
pc ,
1 e 5
adrr ‘IVIUX2 2x4 xte ralu 'ln12
3 irf(12-15) 3 N0 adrr 1 au ————p ind
) adir OUt e ir2
2 iri(8-11) ey in1 1 br  ee——e—p| in5 ;
ctr cIr

7 e

Fig. 15. Main MUXes

After constructing MUXes and the list of direct connections, it is very simple to
draw data path (Fig. 18). To do that, first, we draw the units of data path and the main
MUXes. Each input of each MUX is connected to the output of the corresponding unit
in accordance with the name of the MUX input. Each output of each MUX is connected
to the inputs of the corresponding units in accordance with the targets written at the
output of MUX. Direct connections are drawn by dotted lines in accordance with the
list of direct connections in Fig. 16 and Fig. 17. Of course, a designer shouldn’t draw
such picture, we give it here only as illustration,
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Fig. 16. Muxes and direct connections for 16-bit transfers as text file from Abelite
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MUXO0
OUTPUT :
Adr0
Adrl
BoR[AdrW]
INPUT:
Ext Adr 4 000 in0 Adr0
Adrl
IR2 4 001 inl Adrl
BoR [AdrW]
BC 2 010 in2 Adr0
RALU 1 100 in4 BoR[AdrW]
X"FFFF" 1 011 in3 Adrl
MUX1
QUTPUT :
Ext_in
IR2
M1 [Adr1]
PC
RALU
INPUT:
M1{Adrl] 3 0000 in0 Ext_in
PC
RALU
MO [Adx0) 2 0001 inl Ext_in
IR2
BoR[AdxR}] 2 0010 in2 IR2
PC
Ext_out 1 0100 indg Ml [Adri]
IR2 1 1000 in8 PC
ALU 1 0011 in3 RALU
BR 1 0101 in5 IR2
BC 1 1001 in9 ML{Adrl]
RALU 1 0110 iné IR2
RIALU 1 1010 inlQ IR2
x"FFFE" 1 1100 ini2 pC
DIRECT CONNECTIONS:
SOURCES TARGETS
BoR[AdrR] ALUL
IALU2
OutR
Ext Out MO [Adrx0]
IALU RIALU
IR2 ALU2
IALUL
MO [Adr0] IRL
M1[Adrl] BR
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MUZXes and direct connections constructed for 4-bit transfers in the same manner are
presented in Fig. 17.

MUX2
QUTPUT:
AdrR
INPUT:
IR1{12~15) 3 0 in0 AdrR
IR1{8-11) 2 1 inl AdrR
DIRECT CONNECTIONS:
SOURCES TARGETS
IR1(8-11) AdzW

Fig. 17. Muxes and direct connections for 4-bit transfers as text file from Abelite

The design of VHDL code for Data path is very simple because our naked Data
path doesn not contain “cloud” (irregular) circuits. As it seen from Table 3, Data
path contains 21 units and only 11 standard components which we can take from the
library. Thus, to construct Data path in VHDL we should only instantiate all units as
their components.

Table 3

Implementation of units by components

Units Components

u0_mux0 mux5x16.vhd
Y14 yi1

ul _muxl muxl I1x16.vhd
u2 _mux2 mux2x4.vhd
u3_bor bor.vhd
ud_alu alu.vhd
u5_m0, ub_ml raml6.vhd

u7.irl, u8.ir2, ulO_ralu, ull outr, ul 3. rialu, u2l_br | reg_16bit.vhd

u9._pc count106bit.vhd
wl2 ialu ialu.vhd
uld cf, uldzf, ul6.vf dffvhd

ul7 ien, ul8_r, ul9 fgi, u20 fgo rsff.vhd
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Fig. 18. Data path
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Before we discuss the construction of a test bench for Data path, let us look at its
figure again in Fig. 18. Even if a Processor is not very complicated, it isn’t so easy to
understand from what to start. Now we will show that it is possible to formalize and
even to automatize design of the test bench for Data path using our design methodology.

First, let us return to the main MUZXes presented in Fig. 15. From this figure for
MUZXQO, it is evident that ext_adr (in0) should be transferred only to two inputs of our
units — adr0 and adrl, ir2 (inl) — to adrl and bor, all other inputs of MUX/ must be
transferred only to one of the three possible units, reachable from MUXI. So, instead
of checking 5 x 3 = 18 transfers through MUX! we must check only 7 (the number
of units written over the inputs of MUX1). In the same way, instead of checking
11 x 5 = 55 transfers, it is sufficient to check only 15 transfers through MUX2 during
simulation of Data path.

All these transfers and some other microoperations which really should be imple-
mented in our Processor, are in microinstructions Y1, ... , Y24 in Table 1. Thus, we
must check only this microinstructions and it will be sufficient for checking our Data
path. Of course, we assume that each unit of Data path was simulated and verified
with its own test bench beforehand.

4. CONTROL UNIT DESIGN

After design of the Data Path, we can immediately pass on to the third stage of the
design process — a construction of Control unit (Structural FSM) —~ see Fig. 19.

From the Data Path Construction

[
——————————————————— ] B e e s e e s e
Control Unit 7,&; .
Construction
(Structural FSM) Structural ASM

constructor

ructural ASM

Structural FSM

FSM2HDL

Transformer
17
______________________________________________ -l
; Structural FSM in VHDL
A4 or Verilog

,________.__._._.__...__..__._..._._____.___,_..

Fig. 19. Construction of Control unit

Stepl5. Structural ASM Constructor (box15). To explain this next step let’s apply to
the process table (Table 1). Abelite implements each functional microoperation from the

Vol. 55

third «
in the
MUX
to the

I
into s

1. P(



ETQ.

“at its
asy to
e and
ology.
re for
of our
ust be
nstead
1mber
cking
luring

mple-
1S, we
- Data
>rified

of the

ply to
»m the

vol. 55 - 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 149

third column by structural microoperation (or by the set of structural microoperations)
in the fifth column of this table. We will postpone consideration of input encoding for
MUXes and will use codes from Fig. 15. We assume that a code of input is correspond
to the number of input.

Let us discuss several examples of transformation of functional microinstructions

into structural ones. Of course, Abelite makes it automatically.

1.

PC := IR2 (row Y, column 3, Table 1).

To pass information from /R2 to the input of PC through MUXI (see Fig. 15) we
must send signal ctr_mux! := 1000, because the input ir2 of MUX1 has code 1000
(in8 of MUX1I). The signal pc_en := 1 will write information from the output of
MUXI into PC. Finally we use the following microoperations at the structure level:

ctromuxl = 1000; pc_en := 1(row Yg, column 5, Table 1).

AdrW := IR1(8-11); BoR[AdrW] := RALU (row Y;, column 3, Table 1).

IR1(8-11) is connected directly with input AdrW of BoR (Fig. 17) so we do not
need any signal for this transfer. To pass information from RALU to the input of
BoR through MUX0 we must supply signal ctromux0 := 100, because input ralu
of MUXO0 has code 100 (Fig. 15 or Fig. 16). The signal bor_en := I will write
information from the output of MUXO into the register of the BoR with address
AdrW. Finally we use the following microoperations at the structure level:

ctr -mux0 := 100; bor_en := I(row Y;, column 5, Table D.

Adrl := x"FFFF”; MI[Adrl] := PC (row Y, column 3).

The content of PC should be written to the word of memory M/ with address
X“FFFF”. To pass information from the constant x“FFFF” to the address bus
Adrl of the M1 through MUX0 we must supply signal ctr_mux0 := 011, because
input x“ffff”” of MUX1I has code 011 (Fig. 15 or Fig. 16). To pass information from
PC to the input of memory M1 through MUX] we must supply signal ctr_muxl
:= 1001, because input pc of MUXI has code 100]1. The signal mlI_rdwr := I
will write information from the output of PC into the cell of the M] with address
X“FFFF”. Finally we use the following microoperations at the structure level;

ctr mux0 := 0115 ctr muxl = 1001 ml _rdwr = 1 = I(row Y;3, column 5).
AdrR :=IR1(12-15); PC:=BoR[AdrR] (row Yg, column 3).

To pass information from IRI(12-15 ) to AdrR through MUX2 we must give signal
clromux2 ;= 0, because input irl(12-15) of MUX2 has code 0. To pass information
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from BoR to PC through MUXI we must give signal ctr_muxl := 0010, because
input bor of MUXI has code 0010. The signal pc_en := I will write information
from the output of MUX! into PC. Finally we use the following microoperations
at the structure level:

ctr-mux2 = 0; ctr_mux! := 0010; pc_en ;= 1(row Yg, column 5).
5. Adr0O := PC; IRI := MO[AdrO] (row Yy4, column 3).

The content of the word in the memory MO with the address in PC should be
written into IR/. To pass information from PC to the address bus Adr0 of memory
MO through MUX0 we must supply signal ctromux0 := 010, because input pc of
MUXO has code 0/0. The signal m0O_rdwr := 0 will read information from the cell
of MO with address Adr0 equal to PC. Because memory M0 is connected directly
with the input of IR/ (see Fig. 16), no MUX is used to pass information from M0
to IR!. To write information into /R1 it is sufficient to supply signal ir/_en .= I.
Finally, we use the following microoperations at the structure level:

ctr_mux0 := 010, mO_rdwr = 0, irl_en = I(row Y,4, column 5).

In such a manner, we have filled the whole fifth column “Structural Microoperations”
of Table 1. To finish the filling of this table we remind that if some microinstruction, for
example, Ys = {y, y3} is written in the operator vertex of ASM, it means that y; = y3
= [ and other microoperations are equal to zero. Our understanding of output signals
in FSM is just like this. If y; and y; are written in the column for output signals at
some ftransition, only these signals are equal to one at this transition but other output
signals are equal to zero.

In consideration of this, let us continue to fill in Table 1. In the sixth column of
this table, we write only assignments, which assign “ones” to the signals in the fifth
column of Table 1. Doing this we present each vector signal (control signal of MUX)
as a set of separate binary components and we write assignments only for components
equal to one. Look, for example, at microinstruction ¥5 in Table 1:

Adrl :=IR2; BR := M1{Adrl].

In the fifth column, the following structural microoperations are written:

ctr_mux0 := 001; br_en = 1;ml _rdwr = 0.

We write in the column 6 only

ctromuxO(2) = 1, bor,n = 1.

In this column, we do not write ctr_mux0(0) ;= 0, ctromux0(1) := 0, and ml_rdwr ;=
0, because zeroes are assigned in these microoperations.
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The combined structural ASM is presented in Fig. 20. This ASM was constructed
from functional ASM (Fig. 5) by replacing the functional microoperations in operator
vertices, written in column 3 of Table 1 by structural microoperations from the column
last but one in this table. As graphs, these two ASMs are absolutely identical. They
have the same conditional and operator vertices and the same arcs (connections between
these vertices), only the contents of operator vertices were changed in the structural
ASM. Abelite constructs this ASM automatically.

Step 16. Synthesis FSM from Structural ASM (box 16). Abelite uses here the same
Synthesizer which we presented at the step 5.

Stepl7. Construction VHDL (Verilog) code for the structural FSM (box 17). Abelite
uses here the same ASM2HDL transformer which was used in box 6.

Fig. 20. Structural ASM
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Thus, we constructed Data path and Control unit. Our next step is to combine two
components — Control unit and Data path in one final block. The top level of our

design is presented in Fig. 21. I1
To minimize the number of output signals at all transitions of FSM (Control unit) of ve
Abelite uses the special algorithm for MUX encoding minimizing the number of “ones” Abel
in the fifth column of Table 1. That reduces the total number of output signals written ABC
in the sixth column of this table. Ir
metes
of iny
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Fig. 21. Top level of Processor
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5. LOGIC SYNTHESIS IN ABELITE

In this Section we will shortly present the results of experiments for synthesis
of very complicated combinational circuits and final state machines, implemented by
Abelite, and comparisons these results with tools from Synopsys, Mentor Graphics and
ABC tool from Berkeley.

In experiments with combinational circuits we used circuits from Intel, their para-
meters are presented in Table 4. The last column of this table contains average number
of inputs in one product.

Table 4

Parameters of combinational circuits

Examples | # functions | # inputs | # products | inputs/product
idx1at00n 78 30 3793 8.75
idxlat01n 80 30 4165 8.79
idxlat02n 77 25 2055 7.79
idxlat03n 83 28 6730 9.81
idxlati0n 80 20 4133 7.65

The parameters of very complicated FSMs used in experiments are presented in Table 5.
To understand these parameters let’s return to FSM in Fig. 6. This FSM contains 15
states, 48 lines in its table, 14 input variables, 44 output variables. Average length of
a product in one row is equal to 2.35 and average number of input variables at the
transition from one state is equal to 2.79.

Table 5

Parameters of Finite state machines

Examples | # states | # lincs | # inputs | # outputs inputs/product | inputs/state
Bigm2r 174 | 4899 63 54 6.37 2235
Exx 79 1157 24 24 5.28 14.27
Groupl5 | 422 | 10185 39 39 7.58 15.55
Huge 199 | 84993 75 70 13.00 43.97
Other 1275 | 10980 67 96 5.86 6.69
Rex 1806 | 27897 70 97 7.19 11.89
Trym 199 | 24422 71 70 10.63 38.63
Zoom 319 | 5423 64 37 5.60 17.84

Table 6 and Table 7 contain the result of experiments with Abelite and synthesizer
of Synopsys with combinational circuits and FSMs for ASIC with Library Class.
Abelite constructed combinational circuits in 2.16 times better and 115 times faster
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than Synopsys. FSMs were constructed by Abelite in 1.75 times better and 750 times
faster. These comparisons were made for five simpliest FSMs from this list because
Synopsys could not synthesize the most complicated FSMs Huge, Rex and Trim.

Table 6

Comparison with Synopsys (combinational circuits, ASIC)

Examples | Chip area (gate equivalent) Time of synthesis
Abelite Synopsys Abelite Synopsys
idxlat00 | 1514 3274 1.162 sec | 2 min 35.8 sec
idxlatO1 | 1865 3843 2.130 sec | 3 min 18.6 sec
idxlat02 | 1023 - 1772 0.519 sec 23.3 sec
idxlat03 | 2229 5472 4.446 sec | 11 min 08.6 sec
idxlatlO | 1283 2769 1.712 sec | 1 min 41.0 sec
Total 7914 17130 9.969 sec | 19 min 07.3 sec

Table 7
Comparison with Synopsys (FSMs, ASIC)
Examples | Chip area (gate equivalent) Time of synthesis
Abelite Synopsys Abelite Synopsys
Bigm2r | 10,964 16,076 16.0 sec 2h 13min 51 sec
Exx 2,713 3,938 1.9 sec 8min 46 sec
Groupl5 | 15,358 29,946 30.1 sec 6h 46min 49 sec
Huge | 55,673 ok [4min 12.4 sec ok
Other 19,874 34,645 43.6 sec 12h 15min 39 sec
Rex 49,513 Hk 6min 28.5 sec ok
Trym | 35,158 *E 3min 19.6 sec ok
Zoom | 12,683 23,343 21.9 sec 2h 08min 53 sec ~ times
Total | 61,592 107,948 Imin 53.5 sec | 23h 33min 58 sec seven
run
could

Table 8 and Table 9 contain the results of experiments with Abelite and EDA tool
Leonardo from Mentor Graphics with combinational circuits and FSMs on FPGA.
Abelite constructed combinational circuits in 1.92 times better and 450 times faster
than Leonardo. FSMs were constructed by Abelite in 2.83 times better and 400 times
faster. These comparisons were made for six simpliest FSMs from this list because
Leonardo couldn’t synthesize the most complicated FSMs Huge and Rex.

Table 10 and Table 11 contain the results of experiments with Abelite and EDA
tool ABC from Berkeley with combinational circuits and FSMs on FPGA. ABC is a
very fast synthesizer. Abelite constructed combinational circuits in 2.06 times better
for the same time. However, for the best result, ABC should be consequently run 10
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Table 8
0 times
hecalse Comparison with Leonardo (combinational circuits, FPGA)
. Examples | Chip area ((Luts)/arrival time)* Time of synthesis
Table 6 Abelite "Leonardo Abelite Leonardo
idx1at00 | 739/14.04 1409/16.15 1.853 sec 16 min 59 sec
idxtatO1 | 905/14.89 1572/15.31 2413 sec | 22 min 18 sec
idxlat02 | 492/11.50 832/14.46 1.052 sec 3 min 57 sec
idxlat03 | 1117/14.89 2288/17.45 4.326 sec | 28 min 29 sec
idxlat 10 | 626/14.04 1347/15.31 1.602 sec 6 min 10 sec
Total 3879 7448 11.246 sec | 1h 17 min 53 sec
* arrival time in nsec
Table 9
Comparison with Leonardo (FSMs, FPGA)
Examples | Chip area (Luts)/MHz Time of synthesis
Table 7 Abelite Leonardo Abelite Leonardo
Bigm2r | 3948/44.9 | 5643/39.9 7.531 sec 34min
Exx 990/46.7 | 1641/49.2 1.531 sec 2min
Groupl5 | 5933/31.7 | 14529/36.9 15.812 sec Ih 5imin
Huge |22658/25.5 ok 6min 35.984sec ek
Other | 6772/36.6 | 19986/32.0 15.531 sec th 18min
Rex 18313/31.7 wok Imin 44.829 sec o
Trym | 13970/30.1 | 50758/22.4 | 1min 17.109 sec | More thanl4hours
Zoom | 4480/38.2 | 9681/43.1 9.046 sec 37min
Total 36093 102238 | 2min 42.418 sec | More than18 hours
times. Really, ABC improved its result and decrease ratio 2.06 to 1.75 but spent almost
seven times more time. FSMs were constructed by Abelite in 1.37 times better (one
run for ABC) and in 1.24 times better (several runs for ABC). Unfortunately, ABC
couldn’t synthesize the most complicated FSM Huge from this list.
DA tool
FPGA.
s faster
0 times
yecause
d EDA
BC is a
s better
run 10
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Table 10

Comparison with ABC (combinational circuits, FPGA)

Examples Chip area (Luts) Time of synthesis
Abelite Berkeley Abelite Berkeley
1 time | 10 time 1 time 10 times

idxlat00 739 1519 | 1422 | 1.853 sec | 2.264 sec | 13.840 sec
idxlat01 905 1730 | 1492 | 2.413 sec | 2.433 sec | 17.355 sec
idxlat02 492 899 782 1.052 sec | 1.622 sec | 8.583 sec
idxlat03 | 1117 | 2482 | 2181 | 4.326 sec | 3.395 sec |23.664 sec
idxlat 10 | 626 1370 | 1311 1.602 sec | 2.173 sec | 12.939 sec

Total 3879 | 8000 | 7188 |11.246 sec|11.887 sec|76.381 sec

Table 11
Comparison with ABC (FSMs, FPGA)

Examples Chip area (Luts) Time of synthesis
Abelite Berkeley Abelite Berkeley
[ time|10 time 1 time 10 times
Bigm2r | 3948 | 5271 | 4502 16.884 sec 8.60 sec 56.53 sec
Exx 990 | 1147 | 1074 2.403 sec 1.96 sec 10.69 sec
Groupl5 | 5933 | 8061 | 6790 28.691 sec 18.54 sec 2 min 26.17 sec
Huge | 22658 | #*% ¥ |16 min 16.76 sec *E *x
Other 6772 | 8711 | 8006 27.59 sec 14.72 sec 1 min 53.37 sec
Rex 18313 [ 24967 | 23448 {04 min 38.18 sec| | min 09.84 sec|3 min 26.10 sec” o
Trym | 13969 | 20118 187617 |03 min 42.79 sec| Imin 21.30sec |4 min 50.10 sec* View[(())’
Zoom | 4480 | 6007 | 5094 17.49 sec 10.18 sec [ min 14.85 sec which
Total | 54405 | 74282 67675 The P
* Rexm and Trym were run 3 times, after that the result wasn’t shanged ble Lo,

micros
The
Concu
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The paper concentrates on the behavioral specification of Reconfigurable Logic Con-
troller programs, given initially as Petri nets and later rewritten in Hardware Description
Languages. The rule-based textual language input makes it possible to integrate the design
system with existing formal logic based computer-based theorem proovers. The Petri net
description in HDL provides the opportunity to integrate existing Petri net software with
several commercial systems. Different Petri net places encoding methods are also discus-
sed. Verilog-HDL is used for an intermediate representation of controller behavior on top
of existing commercial synthesis tools. The implementation methods using D, JK and T
flip-flops are presented.

Keywords: Logic Controller, Petri Net, Programmable Logic, FPGA, HDL, VHDL, Verilog,
Place Encoding, Modeling, Synthesis, PNSF2

1. INTRODUCTION

1.1. MOTIVATION

To describe digital systems, designers frequently adapt a concurrent and distributed
view of the modeled behavior. Petri nets [36, 37, 38, 41, 42, 55] provide a mechanism,
which is suited to representing parallelism and hierarchy in complex digital processes.
The Petri nets are used both as specification and synthesis models for Reconfigura-
ble Logic Controller designs, which are frequently embedded inside modern, reactive
microsystems [64].

The main aim of this paper is to demonstrate a practical, direct method of mapping
Concurrent Digital Systems into Programmable Logic (PL), during the design process
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of controller design. The paper gives also an overview of selected papers, related to
the hardware implementation of Petri nets. The experimental results have shown that
the presented novel approach may produce economical Programmable Logic imple-
mentations of reconfigurable logic controllers.

A Petri net can be considered as a behavioral specification of a concurrent sta-
te machine (concurrent control automaton) as well as a formal model suitable for
its rule-based description, transformed and optimized during logic design process
step-by-step. The Petri net can serve also as a direct, immediate model for HDL de-
scription. both for rapid prototyping and optimized design by means of commercial
tools, approved by electronic industry (Xilinx, Altera).

The behavioral rule-based textual descriptions of Control Interpreted Petri Nets
(CIPN) are formally transformed into structured templates in XML, which are tre-
ated as shells for standard hardware description languages, such as VHDL or Verilog.
The automatic model-driven design process is realized at first on the register transfer
level (RTL) by means of experimental dedicated CAD tools developed at University
of Zielona Gora. After local state encoding and structural logic synthesis the logic
expressions are transformed into HDL statements. All procedures make it possible to
obtain a compact and reliable implementation, considering the simplicity of design and
limited size of array structures in SoC (System-on-Chip).

1.2. BACKGROUND

In general, Programmable Logic can be re-configured by the user to perform parti-
cular combinational or registered logic functions. The design process is greatly simpli-
fied by FPGA and CPLD compilers. The effective simulation allows the Logic Control-
ler to be debugged before the device is programmed. If design change is needed, it is a
simple matter to re-edit the original specification and then re-program or exchange the
old device. FPGA can be dynamically reconfigured to perform many different logic
control programs, serving as adaptive concurrent (parallel) state machine with data
path.

While software implementation of logic controllers can be applied only to com-
paratively slow targets, hardware implementation of a Petri net is recommended for
high-speed, parallel, dependable controllers, interacting with several concurrent pro-
cesses. Other advantages of the method are reusability, fast prototyping, and testability,
which are ensured because the reconfigurable controller fully implements a structure
of discrete algorithm and its desired properties [8, 12, 53, 68].

2. LOGIC CONTROLLER -~ CASE STUDY

Logic controllers are related mainly to relatively simple embedded discrete systems,
whose behavior is defined by interaction with its environment. As synthesis tools
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become more advanced and user friendly, the entry point in the design process is
moving towards higher levels of specification. The proposed structured design is applied
in many formalisms used to specify logic controllers programs, such as interpreted
Petri net or Sequential Function Chart (SFC) UML state machine diagrams. Hardware
Description Languages (VHDL or’ Verilog) are used for synthesis, verification, and
documentation of design. The logic controller model (concurrent state machine with
data path) may be implemented explicitly in hardware description language, or from
the front-end entry (shell) from its rule-based description.

Digital embedded systems require real-time operations and concurrent processing.
Reconfigurable Application Specific Logic Controllers (ASLC) are very fast and fle-
xible dedicated devices, implemented in array-based programmable logic. A discrete
HDL model of Logic Controller (Fig. 1), which is derived from the control interpreted
Petri net is implemented as a FPGA-based control unit, which is nested inside a discrete
control system.

RTELIRZL2WI W2~

s | Logic Controlled
V] contrailer plant

Fig. 1. Logic contro] system

The industrial logic control system consists of three parts: a Logic Controller, a
Controlled Plant (mechatronic operational unit), and an environment, which involves
a human operator.

The applicability of the presented approach is demonstrated by the solution to the
discrete control problem [63]. This toy-example has been adapted by authors as an
illustration of several different design methodologies [68].

Fig. 2 depicts the controlled part of a designed simple reactive system. The con-
trolled system consists of two tankers I and 2 that go on the left (L) and right (R)
sides. The tankers start on signals Start! and Start2, respectively. When both tankers
go concurrently, they can reach points D and E. Because tanker I has higher priority,
it goes to point B, and then goes back to A, where it waits. When it waits until button
Start 1 is pressed the next time, meanwhile tanker 2 waits in point £ until tanker 7
reaches point D on its way back. Then the tanker 2 goes to B and back to emph C,
where it waits for next pressing of bottom Star2. During this process, only oe tanker
carn be located on any single track. When the full technological cycle is completed
the system waits in the initial, idle states.
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Fig. 2. Technological process

It is necessary to identify the inputs and outputs (Table 1) of Logic Controller (Fig.
1). The unique local states of the controller and their verbal descriptions are listed in

Table 2.

Description of inputs and outputs of the controller

Signal name Description

Startl | Start button for tanker 1
Start2 | Start button for tanker 2

A | Tanker 1 in left starting position
Inputs Tanker 2 in left starting position
Tanker 1 or 2 in right final position

C
B
D | Tanker 1 reaches rail switch
E

Tanker 2 reaches rail switch

R1 | Tanker 1 goes right
L1 |Tanker 1 goes left
Outputs | R2 | Tanker 2 goes right
L2 | Tanker 2 goes left

W1 | Tanker | on common track, z=0

W2 | Tanker 2 on common track, z=1

Table 1
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Table 2
Local states descriptionh
Local state Description Local state Description

pl Initial state (for tanker 1y p8 Initial state (for tanker 2)
p2 Tanker 1 goes right on private track p9 Tanker 2 goes right on private track
p3 Tanker | waits for permission pl0 Tanker 2 waits for permission
pd Tanker 1 goes right on common track pll Tanker 2 goes right on common track
p3 Tanker 1 goes left on common track pl2 Tanker 2 goes left on common track
p6 Tanker 1 goes left on private track pl3 Tanker 2 goes left on private track
p7 Common track is free pl4 Common track is occupied by tanker |

pls Common track is occupied by tanker 2

3. PETRI NET AS A BEHAVIORAL SPECIFICATION OF LOGIC CONTROLLER

3.1. PETRI NETS AND LOGIC CONTROLLERS

The sequence control problem is represented in or structural manner, showing
the various actions (y) to be taken in each total discrete step (M) and indicating the
conditions (x), which need to be satisfied before the next step. In concurrent systems
a total discrete step (macrostate) is a collection of simultaneously held partial states.
Designing the discrete controller as a digital subsystem involves the generation of a
Petri net based behavioral specification by analyzing, the properties of the controlled
object (plant) and its desired functionality (Fig. 3).

Control interpreted Petri net represents the behavior of a discrete controller as
concurrent sequences of places and transitions. Each place p is related with an action,
that is active (y = 1) when it is marked, or inactive (y = 0) if the place is empty. If the
transition label (guard, predicate) is true, the marked input places of transition become
empty and the next output places become marked. The required sequence of transition
firing is shown by directed edges (arcs), pointing in the direction of the intended flow
of tokens. In such a way interpreted Petri net encapsulates concurrent input and output
sequences that the controller should accept and produce. Safe PNs can be viewed as a
natural extension to linked Finite State Machine (ESM) specifications. A Concurrent
State Machine (CSM) allows data (inputs, outputs) to be exchanged with the external
environment, according to its current global state M. Each place of the Petri net (Fig.
3) is viewed as a local control state (Table 2). The global states M = [pl, ..., pl5]
of the controller are given implicitly by the set of all possible Petri net markings, and
they can be eventually derived from the reachability graph of the net, as distribution of
tokens by the places during the evolution of the net: M/ = Markingl, M2 = Marking2,
M3 = Marking3. The logical expressions (Startl, Start2, ..., E) from Table 1, which
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Fig. 3. Petri net model

are called guards, are associated with transitions 7/+1/2. Respectively, to represent the
controller actions, the output signals (R1, L/, ..., W2) are associated with the places
pl+pl3.

The virtual Sequential State Machines (SSM), which are included in CSM, interact
with other, by means of a shared memory (internal state register). The colors [1], [2],
[3] demonstrate the proper covering of the Petri net by three P-subnets, representing
concurrently related state machines (SM). The strict rules of SM-coloring of the Petri
net are given in the papers [16, 32].

It should be noted that the considered in the paper Coloured Control Interpreted The
Petri Net (CCIPN) is a subset of the general coloured Petri net (CPN), invented by proposi
Jensen [44] with restricted rules for allowed colouring of places, transitions and arcs possibl
[16, 76]. It makes possible to use efficiently well developed theory of CPN and CPN related
tools for formal analysis of model properties as well as animation of Logic controller by plac
behaviour during its evaluation [66]. sequent

The Petri net which is drawn according to standard CPN is presented in Fig. 4.
In the colored Petri net (Fig. 3) the marking is represented by several colored tokens.
Directed implicitly colored arcs connect the explicitly colored places and the implicitly
colored transitions. Transitions are allowed to or prevented from occurring with respect
to a particular color if the attached Boolean expression is respectively true or false.
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In the standard CPN specification the coloring of the net must be explicitly defined
(Fig. 4).

—

1¢! | 1¢2 Iﬁ

p1 ’ P8
Cdlar_p Color_p!
i7

|Tc2
Tc2

R2

12 o
| 1'¢c2

[ oolor Calor_p=with et | 2| c3; |

Fig. 4. Petri net drawn in Jensen CPN style

3.2. CONCURRENT STATE MACHINE

The Petri net is directly mapped into the Boolean equations (decision rules in
propositional logic) without explicit enumeration of all possible global states and all
possible global state changes. The specification is given in terms of local state changes,
related with Petri net transitions (Table 3). Moore type output signals are generated
by places (Table 4). The decision table format is very close to the state tables for
sequential automata used in [25, 13, 27, 72, 73].
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Table 3

Decision table for the control unit

Transition | Current local states | Conditions | Next local states

tl pl Ml p2

12 p2 D p3

3 p3, p7 D p4, pi4
4 p4 B p5

t5 ps, pl4 D pb, p7
to p6 A pl

t7 p8 M2 pY

t8 p9 E pl0
t9 p7, pl0 D pll, pl5
t10 pll B pl2
tl1 pl2, pl5 E p7, pl3
t12 pi3 C p8

Table 4
Decision table for outputs "
Each
Local state | Outputs || Local state | Output can b
v state utputs Ocai state utputs
P P the nt
p2 R1 pll R2 net cd
p4 R1 pl2 L2
p5 L1 p13 L2
po L1 P14 Wl In
P9 R2 P15 | W2 (@) (rule |
of the
‘ seque
Concurrent Logic Controller can be presented using a modular and hierarchical view of deseri
the modeled system behavior. It retains the natural partitioning of the behavior imposed logic
by the designer, depicted by colors ([1], [2], [3]). A given Petri net is transformed into Place

a hierarchical macronet, a net having structured macroplaces, which represent Petri net
subnets, particularly State Machine subnets (Fig. 5). The functionality is represented
as a set of concurrent blocks of a manageable size that communicate using few signals
(Fig. 6).
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Table 3
Fig. 5. Colored macronet: SM sub-components in hierarchical Petri net model
(1.4 (3 {2,5]
(3] ]
I ETER B3]
v l l v v} v
R1 L1 W1 W2(2) R2 L2
Table 4 Fig. 6. Distinguished processes in Logic Controller
Each color represents a sequential process and in considered approach selected color
can be related only to one process. The total number of the colored tokens indicates
the number of concurrent processes being active at any global state. Such colored Petri
net can be decomposed into several Linked State Machine (LSMs) [28].
3.3. TEXTUAL SPECIFICATION OF PETRI NETS
In {4, 7, 14, 20] the digital system is considered as an abstract reasoning system
(rule based system) implemented in hardware. The mapping between inputs and outputs
of the system is described in a formal manner by means of logic rules (represented as
) sequents) with some temporal operators, especially operator "next’ @. The rule-based
{. view of description [5], supported by means of logic deduction techniques (Gentzen natural
1mp956d logic calculus [29]), is used in Programmable Logic Controller design context [9].
ned 1nto Place oriented declarative specification is as follows:
Petri net
resented

/ signals
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Preconditions:
pl * Startl |- tl;
p2 * D |~ t2; In
pl3 * C (- t12; will n

Next markings:

t6 + pl * !ftl |- @pl;
tl + p2 * 1t2 |- @p2;
£S5+ t11 + p7 * (1t3 4+ 1t9) |- p7;

Sequents may be roughly treated as more general forms of clauses with conjunctive
antecedents and disjunctive consequents and they represent assertions [4]. In the paper
[47] the Petri Net Specification Format (PNSF) for VLSI design was introduced as a
simplified version of rule based description of Petri net using sequent language. One
of its extended improved versions is called PNSF2 (Fig. 7) [67].

.¢lock CLK

.inputs Startl Start2 A B C D E
.comb_outputs L1 L2 Rl R2 Wl W2

.part TankersControl

.places pl p2 p3 p4 p5 p6 p7 p8
.places p% pl0 pll pl2 pl3 pl4 pls
.transitions tl tZ2 t3 t4 t5 6
.transitions t7 t8 t9 £10 til ti12

.net

tl: pl * Startl |~ p2;

t2: p2 * D |- p3;

t3: p3 * p7 * D |~ pd4 * pl4;

t4: p4d * B |- p5;

th: pb * pld * D |~ p6 * p7;
té: p6 * A |~ P1;

t7: p8 * Start2 |- p9;

t8: p9 * E |- pl0;

t9: pl0 * p7 * ID |- pll * pl5;
£l0: pll * B |~ pl2;
tll: pl2 * pl5 * E |- pl3 * p7;
£l2: pl3 * C |~ p8;

.MooreQutputs
p2 |- R1;
p4 [~ RL;
p5 |- L1;
p6 |- L1;
rY |- R2;
pll |~ R2;
pl2 |- L2;
pl3 |- L2;
pld |- Wl;
plS5 |- W2;

.marking pl p7 p8
.end

Fig. 7. Petri net specification in PNSF2
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3.4. RAPID PROTOTYPING

In dealing with concurrency the designer is confronted with some problems that
will not arise in the logic synthesis of sequential systems. To keep a very strict

module TankersControl (CLK, Reset, A, B, C, D, E, Startl, Start2,

input CLK, Rese
input A, B, C,
output L1, L2,
reg pl, p2, p3,
wire tl, t2, t3

assign tl = pl
assign t2 = p2
assign t3 = p3
assign t4 = p4
assign t5 = p5
assign t6 = pé
assign t7 = p8§
assign t8 = p9Y
assign t9 = p7
assign tl10 = pl
assign tll = pl
assign tl2 = pl

assign L1 = p§

t;
D, E, Startl,

R1, R2, W1, wW2;
p4, p5, p6, p7, p8, p9,

, t4, tb5, ts6,

& Startl;

& D;

& p7 & D;

& B;

& pld & D;
& A;

& Start2;

& E;

& pl0 & ~D;
1 & B;

2 & plS & E;
3 &C;

| p6;

assign L2 = pl2 | pl3;

assign
assign
assign
assign

always

RL = p2 | pd;
R2 = p9 | pli;
Wi = pi4;
W2 = pl5;

@ (posedge CLX)

if {Reset) pl <=
always € (posedge CLKX)
if (Reset) p2 <=
always @ (posedge CLK)
if (Reset) p3 <=
always @ (posedge CLK)
if (Reset) p4 <=
always C(posedge CLK)
if (Reset) p5 <=
always @ {(posedge CLK)
if (Reset) p6 <=
always @ (posedge CLK)
if (Reset) p7 <=
always @ (posedge CLK)
if (Reset) p8 <=
always @ (posedge CLK)
if (Reset) p9 <=
always @ (posedge CILK)
if (Reset) pl0 <=
always @ (posedge CLK)
if (Reset) pll <=
always ¢ (posedge CLK)
if (Reset) pl2 <=
always @ (posedge CLK)
if (Reset) pl3 <=
always @ (posedge CLK)
if (Reset) pld <=
always @{posedge CLK)
if {Reset) pl5 <=
endmodule

1'bl;

1'b0;

1'p0C;

1'b0;

1'b0;

1'p0;

1'bl;

1'bl;

1'b0;

1'b0;

1'p0;

1'b0;

1'o0;

1'b0;

L1, LZ, R1, R2, Wi, W2);
Start2;
pl0, pll, pl2, pl3, pl4,

t7, t8, t9, tl10, tll, t12;
else pl <= t6 | {pl & ~tl};
else p2 <= ti | (p2 & ~t2);
else p3 <= t2 (p3 & ~t3);
else p4d <= t3 | (p4 & ~t4);
else p5 <= t4 | (p5 & ~t5);
else p6 <= t5 | (p6 & ~t6);
else p7 <= (t5 t11)

else p8 <= t12 | (p8 & ~t7);
else p% <= t7 | (p9 & ~t8);

else pl0 <= t8 | (pl0 & ~t9);
else pll <= t9 | (pll & ~t10);
else pl2 <= t10 | (pl2 & ~tll);
else pl3 <= t11 | (pl3 & ~tl12);
else pld <= t3 | (pld & ~t5);
else pl5 <= t9 | (pl5 & ~tll);

1'00;

| (p7 & ~t3 & ~t9);

Fig. 8. Verilog model (with encoding option in synthesis tool
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correspondence between an initial specification as Petri net and hardware description
languages, such as VHDL, the rule-based textual form is considered [6]. It was deve- by v
loped as a bridge between PN and its VHDL models. The VHDL style and template The
type, introduced by Bolton, was continued and modified by several researchers [21, (Fig.
40, 57, 77]. The structural version of rapid prototyping is presented in [23]. are 1

The one-hot-encoding of Petri net is treated as the simpliest case of more general adja
mapping. The one-hot method [2, 40, 45, 57, 62, 67, 78, 79] produces fast designs num
with a simple combinational part, especially for rapid implementations in FPGA. It -
is not assumed that all flip-flops, except one, are set to 0 since several places can be
marked simultaneously.

The concurrent one-hot encoding is a modification of a popular one-hot state as-
signment of sequential (non-concurrent) state machine, in which one flip-flop is used
for each global state. After such local state encoding of concurrent state machine, all
flip-flops related with simultaneously marked places are set to one at the same time.
The total number of flip-flops is equal to the number of places:

code (pl) = pl
code (p2) = p2

code (pl5) = pl5

The Verilog model suitable for one-hot encoding is shown in Fig. 8.

3.5. PETRI NET COLORING AND RELATION OF CONCURRENCY

It has been previously mentioned that places in a Petri net are marked sequentially
or concurrently with respect to each other. If the local state space of Petri net or Petri
macronet is explicitly given (Fig. 5), it is straightforward to construct the concurrency
graph. It can be performed by means of inspection of cliques related with vertices in
the reachability graph of macronet (Table 5).

Table 5
Global states matrix

MPI MP2 p7 MP3 MP4
Markingl 1 o 1 1 0
Marking2 0 1 0o 1 0
Marking3 1 0 0 0 1
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scription Every two simultaneously marked macroplaces M Pi, MP j (Fig. 9) are represented
as deve- by vertices (M Pi, MPj) connected by edge in the concurrency graph (GC) (Fig. 10a).
template The complement of the concurrency graph GC forms a non-concurrency graph (GN)
ers [21 (Fig. 10b). In the non-concurrency graph edges connect pairs of the macroplaces, which

) ' are not simultaneously marked. The graphs GC and GN are frequently represented as
. general adjacency matrices. The adjacency matrix of graph GC, which is supplemented with
/ designs numbers 1 on the main diagonal, is called a concurrency matrix (Table 6) [22, 57].
PGA. Tt f*%
s can be
Marking1
state as-
) is used
hine, all Marking2 Marking3
ne time. ‘
uentially
- or Petri
currency
rtices in o
a) 3] SL— 23 b) (131 Ten e 2]
Table 5 Fig. 10. Concurrency (a) and non-concurrency (b) graphs for macronet
Table 6
Concurrency matrix
MP! MP2 p7 MP3 MP4 Superposition of
MPIY 1 6 1 1 1 Markingl + Marking3
MP2) 0 6 1 0 Marking2
7 i 6 1 1 0 Markingl
MP3| 1 I 1 1 0 Markingl + Marking2
MP4| 1 0 0 0 1 Marking3
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An entry Cij in the concurrency matrix C equals 1 if places corresponding to the
row [ and the column j may hold tokens simultaneously (they belong to the same

marking of the net), otherwise it equals 0. It should be noted that the main diagonal
of the matrix only contains the numbers 1. The concurrency matrix may be used for
the several analysis or synthesis techniques, including hierarchical, sequential, paral-
lel decomposition and place encoding. The complementary matrix, which represents
relation of non-concurrency is referred as non-concurrency matrix) (Table 7).

Table 7
Non-concurrency matrix

MPI1 MP2 p7 MP3 MP4

MPIl 0 1 0 0 0
MP2l 1 0 1 0

p7 0 1 0 0 1
MP3i| 0 0 0 0 1
MP4| 0 1 1 1 0

4. CONTROLLER SYNTHESIS

4.1. CONCURRENT LOCAL STATE ASSIGNMENT

It is possible to reduce the global number of flip-flops, but usually with increasing
the complexity of the combinatorial circuits per particular flip-flop [17, 34]. Adding
additional state variables for the encoding of a particular place multiplies the number
of expressions in flip-flop excitation functions to be realized in LUT (Look-Up Table).
The basic methods [3, 6] were improved and developed by Bolton and Amroun [22],
Bilinski [30], Koztowski, et al. [47], Pardey and Bolton [57], Wegrzyn [70, 71] and
Zakrevskij [78, 79]. The codes of particular places are as follows:

code (pl) = 1Q1 * 102 * 103
code (p2) =101 * Q2 *10Q3
code (p3) = QI *1Q2 *103
code (p4) = Q1 *1Q2 * Q3
code (p5) = Q1 * Q2 * Q3
code (p6) = Q1 * Q2 *103
code (p7) =103 * 106

code (p8) = 104 *1Q5 * 106
code (p9) =104 * Q5 *1Q6
code (p10) = Q4 *1Q5 * 106
code (pl1) = Q4 *10Q5 * 06
code (p12) = Q4 * Q5 * Q6
code (pl3) = Q4 * Q5 *1Q6
code (pl4) = Q3 *106

code (p15) =103 * Q6
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Some advanced techniques of concurrent state encoding developed by Adamski, Che-

remisinova, Pottosin and Zakrevskij are presented in the book [19].

The encoded decision rules for the transitions of the control unit are presented in
Table 8. The Petri net with encoded places is presented in Fig. 11. The decision rules
describing the controller outputs according to marked places are given in Table 9.

3
ny

p14
131

3

101102103
I
t1 Start1
n
191 Q21Q3
[1]

1IQ41Q5 106

P8
12

174 Start2
12
,9 1Q4 Q5106
e\ ™

8 E
12l

Q41Q51Q6

Fig. 11. Encoded Petri net
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Table § 1
Decision table for the encoded control unit t
¢
Transition | Current states | Current states’ code | Conditions | Next states | Next states’ code )
el pl 1QI#1Q2*1Q3 " Start1 p2 101* Q2#1Q3 )
2 p2 1Q1* Q2%1Q3 D p3 QI*1Q2*1Q3 :
3 p3 * p7 | QI¥IQ2*1Q3*1Q6 D pd * pld | QI¥1Q2* Q3#1Q6 ;
t4 p4 QI*1Q2* Q3 B pS QI* Q2* Q3 ;
5 pS * pld | QI* Q2% Q3*1Q6 D p6 * p7 | QI* Q2*1Q3*1Q6
16 po Q1* Q2*1Q3 A pl 1QI*1Q2*1Q3
t7 p8 1Q4*1Q5*1Q6 Start2 P9 1Q4* Q5*10Q6
t8 po 1Q4* Q5*1Q6 E pl0 Q4*1Q5%1Q6
t9 p7 * p10 1Q3* Q4*1Q5*!1Q6 D plt * pl5 [ 1Q3* Q4*1Q5* Q6
t10 pll Q4*1Q5* Q6 B pl2 Q4% Q5* Q6
ti1 pl2 * pl5 | 1Q3* Q4* Q5* Q6 E p7 * p13 | 1Q3* Q4* Q5*1Q6
t12 pl3 Q4% Q5*1Q6 C p8 1Q4*1Q5*1Q6
Table 9
Decision table for the encoded outputs
Local state | Local state code | Outputs | Local state | Local state code | Outputs
p2 1Q1* Q2*1Q3 R1 pll Q4*1Q5* Q6 R2
p4 QI*1Q2* Q3 R1i pl2 Q4* Q5% Q6 L2
p5 QI* Q2* Q3 L1 pl3 Q4% Q5*1Q6 L2
po Q1* Q2*!1Q3 L1 P14 Q3*1Q6 Wi
P9 1Q4* Q5*1Q6 R2 P15 1Q3* Q6 W2 (z)
4.2. MAPPING OF CONCURRENT STATE MACHINE (CSM) INTO PROGRAMMABLE 1.LOGIC
The implementation of the control algorithm represented by Petri net is fixed usu-
ally at the design stage. Petri net together with related inputs and outputs is mapped
into a network of interconnected logic blocks. The direct mapping of Petri net into
an FPGA device is based on the correspondence between a transition and a simple
combinational circuit and the correspondence between a place and a clearly defined
subset of state register [6]. A recent overview of Petri net based direct implementation
of logic controllers is given in [19, 65]. The different coding styles for concurrent
Logic Controllers are summarized in [19, 59, 60, 61, 75]. The general structure for The
mapping concurrent Logic Controllers in programmable Logic was introduced in [1]. o
. . . . . . .. realiza
The modified architecture is shown in Fig. 12. Global state register is implemented The m
using JK-style flip-flops. Declarative specification for transitions encoder, excitation net). T

function for JK flip-flops (Table 10) and decoder outputs (Table 11) is as follows:
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Table 8 1l = AND(IQ1, 102, 103, Start])
12 = AND(1Q1, 02, 103, D)
112 = AND(Q4, 05, 106, C)
] J1 = OR(t2)
J2 = OR(11, t4)
K5 = OR(18, t12)
5 K6 = OR(t11)
L1 = OR(AND(QI, 02, 03), AND(QI, 02, 103))
5
Trandtions
Start1 > acoder
Start2 —
A- i« 12
B ) TI+T12
6 C- S
D———3
6 E B Qi) Qe | Qo Q Q5| Qs Glfet;{q‘za[e
| 1111 orn
I Qutpuits decoder I
Table 9 l l l l l
L1 RIL2RRWIWR
Fig. 12. Structure of the control unit (binary encoding)
Table 10
Decision table for the control unit (for Set/Reset or JK-style flip-flops)
Transition No. | Current states code | Conditions | Next states code | Set/Reset (JK)
1 1QT*1Q2%1Q3 Start1 1Q1*Q2*103 p)
2 1Q1* Q2%1Q3 D Q1#1Q2%1Q3 i1 K2
3 QI*1Q2*1Q3*!1Q6 D QI*1Q2* Q3*1Q6 I3
OGIC 4 QI*1Q2* Q3 B QI* Q2% Q3 2
5 Q1* Q2* Q3*1Q6 D Q1* Q2*1Q3*!1Q6 K3
d usu- 6 Q1* Q2#10Q3 A 1Q1#1Q2*!1Q3 Kl K2
1apped 7 1Q4*1Q5*1Q6 Start2 1Q4* Q5*1Q6 J5
.t into 8 1Q4* Q5*1Q6 E Q4*+1Q5%1Q6 J4 K5
7 | 9 1Q3*% Q4*1Q5*1Q6 D 1Q3* Q4*1Q5*% Q6 J6
SLMpIe 10 Q4*1Q5* Q6 B Q4* Q5* Q6 15
efined 11 1Q3* Q4* Q5% Q6 E Q3% Q4* Q5%1Q6 K6
itation 12 Q4* Q5*1Q6 C 1Q4*1Q5*1Q6 K4 K5
urrent
e for ) . . . . L.,
. The direct implementation of concurrent controllers in FPGA is similar to the
in [1]. . p . :
realizations of logic controllers based on FSM presented in the books [13, 25, 26, 27].
nented ) g p
L. The main essential difference is concurrent state assignment (place encoding of Petri
itation g p g

VS:

net). The logic controller contains a concurrent local states register, serving also as
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Table 11

Encoded outputs table

Outputs Local state code
R1 QU Q2%1Q3 + QI*1Q2* Q3
R2 | 1Q4* Q5%1Q6 + Q4*1Q5* Q6
L1 QI* Q2% Q3 + QI* Q2*1Q3
L2 Q4* Q5* Q6 + Q4* Q5*1Q6
Wil Q3*1Q6
W2 1Q3* Q6

a global state register. The combination of the code words of individual local states
produces a unique configuration encoding. The superposition of codes of any two
concurrent local states can share logic variables, but must be represented by words
(ternary Boolean vectors), with non-overlapping, complete independent parts. Local
states, which can never be concurrent, may also share a part of logic variables, but
they must have a common overlapping part, with different values of logic variables.

When a Petri net is used to model a Concurrent State Machine (CSM), places
represent its local states. A maximal subset of simultaneously marked places determines
the global state of the controller. Transitions describe the local state changes, mostly
forced by the external inputs. For simplicity, it will be considered that the CSM is
implemented as a sequential circuit with a common internal clock. The controller,
whose output depends on both internal state and external inputs, is modeled as a Mealy
State Machine. The Moore type output by definition is implemented by a combinational
cell as a function of state variables. On the other hand, the Moore type-output may
be produced in advance in a registered output cell, because it must be stable for the
entire clock period. Registered outputs can be eventually used for local state encoding
{71, 75}.

The local state encoding (place encoding) guarantees that all enabled transitions
can fire independently, in any allowed order, not necessary exactly with the same edge
of the clock.

An undesirable situation in interpreted Petri net occurs when two (or more) transi-
tions, such as £3 and #9, attempt to simultaneously unmark the same shared input place
p7 (Fig. 3). It is considered that the behavior of the net is deterministic since such
possible conflict is previously eliminated by the consistent labeling of transitions by
guards D and /D, respectively.

On the other hand, the global state register can be implemented using T-style
flip-flops. The specification for the excitation function for T flip-flops (Table 12) is as
follows (for avoiding of ambiguity, T input is denoted as QT):

rule
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OTI = OR(t2, 16)
QT2 = OR(t, 12, 14, 16)

OT6 = OR(9, i11)

Table 12

Decision table for the control unit (for T-style flip-flops)

Transition No. | Current states code | Conditions | Next states code Q changes (T)
1 1Q1#1Q2*1Q3 Startl 1Q1*Q2*1Q3 QT2
2 1Q1* Q2*1Q3 D QI*1Q2*1Q3 QT1 QT2
3 QI*1Q2*1Q3*!1Q6 D QI*1Q2* Q3*1Q6 QT3
4 QI*1Q2* Q3 B QI+ Q2* Q3 QT2
5 QI* Q2* Q3*1Q6 D QI* Q2*1Q3*1Q6 QT3
6 QI* Q2*1Q3 A 1Q1#1Q2%1Q3 QT1 QT2
7 1Q4*1Q5*%1Q6 Start2 1Q4* Q5*1Q6 QTs
8 1Q4* Q5*!1Q6 E Q4*1Q5*1Q6 QT4 QT35
9 1Q3% Q4*1Q5*1Q6 D 1Q3* Q4*1Q5* Q6 QTo6
10 Q4*1Q5* Q6 B Q4* Q5% Q6 QT5
I 1Q3* Q4% Q5% Q6 E 1Q3* Q4* Q5*!1Q6 QTo6
12 Q4* Q5*1Q6 C 1Q4*#1Q5*1Q6 QT4 QTS5

4.3. HDL MODELING AND SYNTHESIS OF ENCODED PETRI NET

The encoded Petri net model is converted into Verilog conserving the initial
rule-based specification. It provides a path to commercial simulation and synthesis
tools. The model with the specification of excitation functions for JK flip-flops is pre-
sented in Fig. 13. Because of the fact that in the considered FPGA devices there are D
flip-flops, therefore the specification of global state register (with necessary conversion
JK into D) is modeled as always process. Fig. 14 shows differences between models
based on JK and T flip-flips: excitation function for T flip-flop and process with the
specification of global state register (with necessary conversion T into D).

The Verilog models were simulated in the professional environment Mentor Gra-
phics ModelSim v.6.4a. The considered controller was implemented as a simple exam-
ple into an FPGA device using the standard Xilinx ISE 10.1.3 CAD/CAE tool. The
results of the implementations are shown in Table 13. In addition, the set of benchmarks
considering five different styles of place encoding [75] is under development.
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module TankersControl Coded JK {(CLK, Reset, A, B, C, D, K, Startl, Start2,
- - Li, L2, R1, R2, Wi, W2);

input CLK, Reset;

input A, B, C, D, E, Startl, Start2;

output L1, L2, R1, R2, W1, W2;

wire [1:121 t;
reg [1:6] Q;

assign t[1] = ~0{1] & ~Q{2] & ~Q[3] & Start 1;
assign t{2] = ~Q[1} & Q2] & ~Q[3] & D;
assign t{3] = Q1] & ~Q(2] & ~Q{3] & ~Q[6] & D;
assign t{4] = Q1] & ~Q[21 & QI[3} & B;
assign t([5] = Q[1] &« Q2] & Q3] & ~Ql6] & D;
assign t[6] = Q[1] & QI[2] & ~QI3) & A
assign t[7] = ~Q[4] & ~Q[5] & ~Q[6] & Start 2;
assign t[8] = ~Q[4] & Q[5] & ~Q[6] & E;
assign t[9] = ~Q[3] & OQ[4] & ~Q[5] & ~Q[6] & ~D;
assign t(10] = Q[4] & ~Q[5] & Ql6] & B;
assign t[{11] = ~Q[3] & Q4] & QI[S5] & Q6] & E;
assign t{l12] = Q4] & QI[5] & ~QI[6] & C;
wire [1:6] J, K;
assign J[1] = t[2];
assign J[2] = t[1] | t[4];
assign J[3] = t[3];
assign J[4] = t[8];
assign J(5] = t[7] | t[101;
assign J[6] = t[9];
assign K[1] = t[6];
assign K[2] = t{2] | t[6];
assign K(3] = t{5}];
assign K{4] = t[12];
assign K[5] = t[8] | t{l2};
assign K[6] = t{111;
integer i;
always @ {posedge CLK)

if {Reset) Q <= 6'LO000OD;

else for (i = 1; 1 <= 6; i = i+1)

Qli] <= (~Q[i] & JIiD1) | (QIi] & ~K[i]);
assign L1 = Q[1] &« Q2] & Qf3] | Q11 & Q21 & ~QI3];
assign 12 = Qf4] & Q5] & QI6] | Q41 & Q5] & ~piol:
assign Rl = ~Q[1] & Qf2] & ~Q[31 | ol1] & ~Q{21 & QI31;
assign R2 = ~Q[41 & Q[5] & ~Q[6} | Q{4] & ~Q[S) & Qf61;
assign Wl = Q[3] & ~Q[6];
assign W2 = ~Q[3] & Q[6];

//only for testing purpose (removing during opimization)
wire [1:15)] p;

e LI D o) & 0l
assign pl{2] = ~Q[1l] & QI[2] & ~QI[3];
assign p{3] = Q[1] & ~Q[2] & ~Q[3];
assign p(4] = Q[1] & ~Qf2] & QI[3];
assign p[5] = Q1] & Qf2] & Q[3];
assign p(6] = Q[1] & QIf2] & ~Q[3]
assign p[7] = ~Q[3] & ~Q[6];

assign p[8] = ~Q[(4] & ~Q[5] & ~Q[6];
assign p[2] = ~Q{4] & QIS5] & ~Q[6];
assign p[l0} = Q4] * ~Q[5] * ~Q[6]
assign p[ll] = Q[4] & ~Q[5] & QI[6];
assign p[l2] = Q[4] & Q5] & QI[6]
assign p(l3] = QI[4] & QI5] & ~Q{6];
assign pll4] = Q[3] & ~Q[6];

assign p{15] = ~Q[3] & Q[6];

endmodule

Fig. 13. Verilog model with place encoding (for JK-type flip_flop)
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module TankersControl;CodedAT (CLK, Reset, A, B, C, D, E, Startl, Start2,
L1, L2, Rl, R2, Wi, W2);:

wire [l:8] QT;

assign QT{1] = t{2] | t[6];

assign QT{2] = €f{1] | ©{2] | tl4] | t[6];
assign QT3] = ti{3] | t{5]; -

assign QT{4] = t[8] | t[12};

assign QT{5] = t{7} | t[8] | t[10] | tiiz};
assign QT(6] = t{9] | t{ll];

integer i;
always @ (posedge CLK)
if (Reset) Q = 6'b000000;
else for (i = 1; i <= 6; i = i+1)
Qlil = (1Q[i] & QTIi])) 1 (Q[i] & !QT[i]);

endmodule

Fig. 14. A part of Verilog model with place encoding (for T-type flip-flop)

Table 13
Synthesis summary (Xilinx FPGA — XC35200pq208-5)

Model Slices # | FF # | LUT4 #
TankersControl I8 15 19
TankersControl_Coded_JK 9 6 18
TankersControl_Coded.T 9 6 18

5. RELATED WORKS

The paper is concentrated on behavioral specification of Reconfigurable Logic
Controller programs, mapped from Petri nets into HDL [11, 40, 54, 57, 69, 77].
The work introduced at the University of Zielona Géra was extended at several uni-
versities abroad [2, 5]. The result of collaboration with the University of Bristol, UK,
is reported for example in papers [31, 47, 57, 58]. Some parts of the work have been
realized at The University of Minho, Braga, Portugal [15, 40, 74], Fern University
in Hagen [43], the Technical University of Ilmenau, Germany [39] and Academy of
Science of Byelorussia [18].
The current research is especially related to Petri net-based structured state assign-
ment for Concurrent State Machines, different kinds of Petri net decompositions, the
symbolic exploration of Petri net state space, etc. [11, 24, 46, 48, 49, 52, 66, 69].

The formats PNSF [47], PNSF2 [67], PNSF3 [66] support the structured, hierar-
chical designs with Petri nets and FPGAs. The CONPAR specification format [40] is
consistent with the previously introduced rule-based specification languages and was
also created mainly as a bridge between the textual logic description of Petri nets and
their VHDL models. Transition rules in PARIS and CONPAR are treated as production
rules (if-then’ non procedural statements). Petri nets can be also specified in the newer




178 MARIAN ADAMSKI, MAREK WEGRZYN ETQ.

textual formats — PNSF3 (Petri Net Specification Format v.3) and CCPNML (Concur-
rent Control PNML) [33]. PNSF3 represents interpreted, synchronous, hierarchical and
colored Petri nets, and it is specified in the XML language.

The book [51] makes the connection between digital electronic design with Pro-
grammable Logic Devices (PLDs) and Programmable Logic Controllers (PLCs). The
design of Petri net based controllers is summarized in [19, 35, 65]. Several aspects rela-
ted to hardware design with Petri net can be found in books [36, 79]. The methodology
for digital design of concurrent (parallel) controllers from Sequential Function Charts
(SFC) and related Petri nets has been in development for several years and is presented
in papers [8, 15, 68]. Hierarchical specification mechanism is introduced by means of
macroplaces to allow the encapsulation of subnets as macronodes, which decreases the
size of the specification, improves its readability and introduces modularity [10, 19].
Reconfigurable architectures for controllers based on Petri nets are described also in
[56].

6. CONCLUSIONS

The paper concentrates on the behavioral specification of RLC programs, given
initially as Petri nets and later rewritten in Hardware Description Languages. Some
engineering notations like Sequential Function Chart (IEC 61131-3), as well as those
mainly used by computer scientists, like Petri nets are integrated into a unified design
methodology. By formally verifying the structural properties of Petri net the behavioral
properties of control program such as reversibility, liveness and safeness are tested.
Hardware description languages, such as VHDL or Verilog, are used for an intermediate
representation of controller behavior on top of existing commercial synthesis tools.
The rule-based textual language input makes it possible to integrate the design system
with existing formal logic based computer-based theorem proovers. The Petri net de-
scription in HDL that is devoted to provide the opportunity to integrate existing Petri
net software with several commercial systems.

The more advanced research, among other topic, would concentrate on:

e Unified Design of Concurrent Logic Controllers with Data Path {26];

e Effective structured state assignment and decomposition techniques devoted to the
mapping of Petri net-based controllers into embedded modern microsystems as
SoPCs (System-on-Programmable-Chips).

e [Extensive application of formal methods for the analysis and synthesis of Concur-
rent State Machines, which are implemented in dynamically reconfigurable arrays.
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Sensible application of programmable structures to the realization of digital systems
cannot take place without computer aided design systems. It is particularly important when
the design is intended for novel programmable structures containing LUT-based cells and
embedded memory blocks, since traditional methods for technology mapping are oriented
towards gate structures and based on minimization and factorization of Boolean functions.

This article focuses on finite state machine synthesis including logic optimization tech-
niques, the technology mapping techniques, and the techniques that provide the resulting
circuits with concurrent error detection capability. 1t is shown that a considerably more
effective methed of synthesis intended for CPLD and FPGA structures is based on the
decomposition scheme.

Keywords: decomposition, state encoding, sequential circuit, finite state machine, FPGA,
embedded memory block, logic cell, multi-graph

1. INTRODUCTION

In today’s technologies, the density of elements is reaching hundreds of millions of
transistors per digital circuit, and 100 millions of gates per circuit.! Similar densities
characterize programmable structures — up to millions of logic gates. This, along the
possibility of reprogramming and reconfiguration, gives unprecedented possibilities of

* This paper was supported by Ministry of Science and Higher Education financial grants: SINGA-
PUR/31/2006, N517 003 32/0583.
' According to the Altera company, FPGA Stratix devices have from 4 up to 43 million of elements
when converting these into the number of logic gates.
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implementing digital circuits using such structures. However, sensible application of
programmable structures to the realization of digital systems cannot take place without
computer aided design systems.

For a typical digital system, the design process consists of compilation, translation,
synthesis, logic optimization and technology mapping. Although the final result of that
process is a structure built of standard cells, logic cells, macroblocks and similar com-
ponents, the characteristics of the system (the silicon area, speed, power etc.) depend
considerably on the logic model of the digital system obtained from the translation of
the specification in hardware description language. Therefore, the synthesis and logic
optimization (taking place between compilation technology mapping) has a significant
impact on the quality of the implementation.

This turns out to be especially important in the case of user programmable devices:
CPLDs (Complex Programmable Logic Devices) and FPGAs (Field Programmable Ga-
te Arrays). However, many full custom and semi-custom circuits are also characterized
by a great susceptibility to “logic transformations”. A tendency towards using logic
synthesis not only to minimize logic resources required to implement the circuit, but
also to solve other typical design problems, such as signal delay reduction or power
consumption reduction, can be observed [IP99], [YSLO53].
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The impact of advanced procedures of logic synthesis on the quality of imple-
mentation of digital circuits is particularly significant when the design is intended for
programmable structures (Fig. 1) containing LUT-based cells (LE — Logic Elements)
and embedded memory blocks, such as EABs (Embedded Array Blocks).

This is caused by the problems with the traditional methods for technology map-
ping, oriented towards gate structures and based on minimization and factorization
of Boolean functions {DeM94]. These methods transform sum-of-product Boolean
expressions into multilevel forms of strongly factorized expressions, which only then
are realized in LUT cells. This approach is ineflicient in the case when the implemen-
tation is based on logic cells designed to implement arbitrary logic functions.

For these reasons, a considerably more effective method of synthesis intended for
CPLD and FPGA structures is based on the decomposition of Boolean functions.
In this process a Boolean function is synthesized into a multilevel structure compo-
sed of logic blocks of the LUT type, specified by truth tables. The effectiveness of
the functional decomposition was confirmed in many publications on the synthesis
of combinational circuits [BLO3], [CMSH96], [HK04], [HSB02], [Kan04], [LuS95],
[LPPI6], [PMG99], [RILO1], [SchO1], [SSPOL]. A relatively small number of articles
and papers describe the application of functional decomposition to the synthesis of
sequential circuits [JCO1], [JSCO1], [JS00]. The reason for this is the computational
complexity of functional decomposition procedures. Therefore, an effective application
of functional decomposition in synthesis of finite state machines for implementation
with user programmable devices requires a new design methodology that should be
focused on;

e developing new algorithms for serial decomposition into subfunctions (tables) that
fit embedded memory blocks,

e developing new methods for encoding internal states of sequential machines, su-
itable for implementation using programmable structures with embedded memory
blocks.

The remainder of the paper is organized as follows: In Section 2 we summari-
ze various techniques for sequential logic synthesis. This section contains two-level
synthesis methods and multilevel synthesis methods from the literature. In Section 3,
we illustrate ROM-based FSM synthesis methods which are especially efficient for to-
day’s programmable structures, particularly for FPGA devices with embedded memory
blocks. In the next section we present self-testability and fault tolerance techniques for
finite state machines implemented in considered programmable structures. Finally, in
Section 5 we present our conclusions.

2. SYNTHESIS OF SEQUENTIAL MACHINES

In modern logic synthesis, regardless of the implementation technology (program-
mable devices, Gate Array or Standard Cell structures), the problem of finite state
machine synthesis (in particular — the problem of internal state encoding) is an issue
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of significant practical importance. The internal state encoding affects both the struc-
ture of the FSM realization (i.e., connections between the combinational block and the
memory block) and the complexity of the combinational block.

Many methods for structural synthesis of FSMs have been reported in the literature,
Their diversity is a consequence of different assumptions taken to simplify calculations,
as well as different types of intended target components. Thus, different methods of
FSM synthesis have been developed for PLA structures [DBSV85], [DeM86], [VSV90],
for ROM memories [Bor04], [RSL05], and for PLD modules [CKO3].

Methods of state encoding that assume an FSM implementation with a PLA struc-
ture (including the case when PLA matrices are used as macrocells of ASIC circuits)
are especially significant. For such a structure, the state (excitation) and output func-
tions are treated as Boolean expressions with possible shared products (terms). In
this case, the solution for state encoding is a binary representation of internal states
of the FSM which results in the smallest total number of product terms in Boolean
expressions (which represent all of its state and output functions). In the case of sequ-
ential machines, when solving this minimisation problem (common in combinational
circuit synthesis) we have an additional degree of freedom in the form of selection of
state encoding. However, due to its computational complexity, this optimization task
is reduced to searching for internal state encodings that result in minimal usage of the
PLA area.

A distinctive feature of traditional methods of FSM synthesis is the application of
logical minimization before the process of state encoding. This minimization is possible
when the inputs and outputs of the combinational part of the sequential circuit is repre-
sented with multi-valued symbolic variables. Unfortunately, such methods are limited
to two-level structures. For other implementation styles different methods are needed.
The research in this area goes into two directions: one concerns the implementation
with multilevel gate structures, while the other embraces implementations with cellular
FPGA and CPLD structures.

In the first case, like for two-level structures, the starting point of the synthesis
process is a structure in which the combinational circuit is connected to the inputs of
a register operating as state memory (Fig. 2a), whereas in the other case, the combi-
national circuit is connected to the outputs of such a register (Fig. 2b).

Until recently, mainly the first model (Fig. 2a) was used in synthesis of sequential
machines. The optimization of the selection of state encoding was done for two-level
or multilevel gate structures and was aimed at the reduction of hardware resources
(silicon area).

The second model (Fig. 2b) was used in microprogrammed control circuits, with the
combinational circuit implemented with ROM memory [AB06]. In the microprogram-
med version of the sequential circuit, the fixed ROM memory was a separate element
— separated from the rest of the circuit. The advantage of this structure was an ability
to program the microcode memory, which was the only possible way to reconfigure
the circuit at that time. These advantages made the capacity of the memory to be a
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non-critical factor, although the reduction of this capacity was a common optimization
criterion. A typical approach was to construct the circuit with a special memory ad-
dressing unit called microprogram sequencer, connected to the microprogram memory
through the Address Register (AR). The main function of the sequencer is to determine
the address of the microinstruction to be executed. This address is transferred to the
address register and is used to read the next microinstruction from ROM.

Microprogrammed control has been a very popular alternative implementation tech-
nique for control units. However, as systems have become more complex and new
programmable technologies have appeared, the concept of classical microprogram-
ming has become less attractive for control unit implementations. But the main idea
of Microprogrammed Control Units, i.e. implementation of combinational part of the
sequential circuit with a ROM, has gained new motivation after the appearance of
programmable logic devices [BWO6], [BT08]. In particular, the growing interest in
ROM-based synthesis of finite state machines has been caused by the inclusion of
embedded memory blocks in modern FPGAs.

In this situation, the main research work in the field of FSM synthesis can be
classified into three distinctive areas, corresponding to three implementation styles for
the combinational part of the sequential circuit:

e implementation with a two-level gate (cell) structure,
e implementation with a multilevel gate (cell) structure,
e implementation with a ROM.

combinational
. -1
inputs 3= B outputs
m s
inputs R outputs
current state puls — ¥ outp
p G
0
T w
current state pef E
p|R ‘,

a) b)

| Im—An—omm |

Fig. 2. Two models of a sequential circuit; a) classical, b) with microprogramming capability

Dwo-level synthesis
The two-level synthesis of finite state machines is based on symbolic minimization;
its essence lies in the representation of the logic circuit with multi-valued variables.
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In the symbolic (multi-valued) description, the binary realization is obtained only after
the minimization of the multi-valued function, and the minimal multi-valued coverage
determines the relations of minimal-length binary input codes.

The symbolic minimization was introduced by De Micheli in [DBSV85], where
it was applied to encoding of multi-valued inputs symbols (the input encoding). In
[DeM86] a heuristic algorithm is described, which can also consider the limitation
resulting from the encoding of the output symbols. In [CY92], the problem of the
symbolic minimization was reduced to graph coloring. The distinctive feature of this
approach is the concurrent introduction of input and output limitations, which makes
it possible to solve the tasks of input and output encoding. A similar approach was
also introduced in [SB93], where an algorithm for input and output encoding of linear
complexity is presented (the complexity of the algorithms described earlier is at least
on®)).

One of the most important benefits of symbolic minimization is its applicability to
the internal state encoding of FSMs implemented with PLA structures. The essence
of this approach lies in that logic minimization is done before state encoding. This
minimization is possible when the symbolic representation of the combinational part
of a sequential circuit is used.

In this case, a “symbolic coverage” is a set of basic elements called “symbolic
implicants”. A symbolic implicant consists of n > 2 component fields. Each field
corresponds to a multi-valued variable, whose values are sequences of characters. In
sequential circuits, the symbolic implicants have four fields (n = 4) that correspond to
input, current state, next state and output. A symbolic implicant is represented by a
quadruple < x,s,s’,y >, where the first two fields (x, 5) are the inputs of the symbolic
implicant, while the other two (s’, y) are its outputs.

Since only internal state encoding is considered, fields x and y have a binary
representation and only fields s and s” have a symbolic representation — of the current
state and the next state, respectively.

The essence of symbolic minimization lies in grouping together those states, which
— in response to a given input — have the same next state and the same output. Thus, if
the symbolic coverage is an implicant (x, s, 8(x, s), A(x, §)), where s represents a single
state, the minimal multi-valued coverage can contain these symbolic implicants where
s represents a set of states.

In [DNO91], Devadas and Newton presented an exact algorithm for minimization
of the number of terms and the realization of FSM combinational part with a PLA
structure.

An exact algorithm for symbolic minimization with simultaneous input and output
encoding was described in [ADN92]. This algorithm is executed in two stages: first, a
set of generalized prime implicants is determined, and then the coverage of the matrix
of encoding limitations is found.

In [SVBSV94], simultaneous input and output encoding is considered and it is
shown that the problem is NP-hard. A polynomial-complexity algorithm for determi-
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ning the existence of a solution that satisfies a given set of input and output limitations,
and exact and heuristic algorithms for determining the minimum number of the code
bits, for an encoding that satisfies all the limitations are also presented.

Coudert et al. [Cou98], [CS96] solve the problem of encoding for synchronous and
asynchronous finite state machines. Their method is based on the theory of dichotomy
and yields a safe solution for asynchronous machines and a minimal solution for
synchronous ones.

The symbolic minimization was implemented in NOVA [VSV90] which is a part
of the SIS package [SSL92].

In monograph [TKBSV98] new algorithms for symbolic minimization are presen-
ted, including those for the generation of generalized prime implicants, finding mini-
mum symbolic coverage for given encoding limitations and finding the minimum-length
codes. A distinctive feature of the presented algorithms is the application of BDD
(Binary Decision Diagrams) and their modifications for the description of finite state
machines.

Multilevel synthesis

The problem of internal state encoding for finite state machines whose combina-
tional part is implemented as a multilevel structure was first discussed and solved by
Devadas et al. [DMNSV88]. The main objective of the synthesis is the reduction of
the area of the combinational circuit (when compared to the two-level implementa-
tion). The proposed algorithm for internal state encoding maximizes the the number
of common cubes in the encoded network and minimizes the number of literals in the
FSM combinational part. After encoding of internal states, a multilevel Boolean opti-
mization is carried out. This approach was further examined in [ADN92], [DHLNO91],
and [WKAS89].

Unfortunately, an FSM synthesis considering only the multilevel realization of
the combinational part is not efficient enough; the classic decomposition problem,
formulated back in middle of the 20" century has been revisited increasingly more
frequently to solve this synthesis problem.

The problem of finite state machine decomposition was first formulated by Hart-
manis and Stearns in [HS66]. Their solution was based on the theory of partitions; in
particular, the introduction of the closed partition allowed for the formulation of the
conditions of existence of parallel and serial decompositions of finite state machines.

A good application of decomposition to FSM synthesis was presented in [DN89].
In this paper, Devadas and Newton proposed a method of FSM synthesis targeting the
optimization of the area and performance of the final circuit. This method is based on
factorization of finite state machines.

The idea of the factorization of a finite state machine is to separate some of the
FSM components and implement them as separate sequential machines — factors. In
[DN89] algorithms for finding factors for a given FSM transition graph are given;
in addition the concept of accurate factorization is introduced — the one yielding the
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smallest number of states and transitions. Methods for internal state encoding aimed

at two- and multilevel realizations of FSMs are also shown. Argume

In monograph [DeM94] several methods for multilevel synthesis are presented — devices
both for combinational and sequential circuits. Most of these methods were imple- ROM-t
mented in Mustang [DMNSV88], JEDI {LN89] and other parts of the SIS package - requi

[SSL.92]. in the
Recent years have brought a noticeable progress in methods for finite state machine require;
synthesis targeting CPLD and FPGA devices. ‘ also ex:
In [CKO5] and [CKKO06] a method of FSM internal state encoding is presented Thus, tl
which considers the number of macrocell terms of the PAL structure. This method is Cle.
based on assigning binary representations that differ on a single bit position to certain newer |
pairs of states. Additionally, the most common next states are assigned codes containing there w

more bits corresponding to disabled output states. availabl
One of the most common concepts leading to a reduction of realization comple- Inc
xity of FSMs implemented with PLD structures is the application of output flip-flops inastru

available in PLD macrocells as FSM memory components. This method is applicable of RQN
to Moore sequential machines with output vectors identical to their corresponding modific
internal states. A method for synthesis of such machines intended for PAL structures The
with registers was shown in [Sol97]. A distinctive feature of the proposed algorithm decomp
is the use of unspecified values of output variables for solving the problem of internal j‘;”‘?h an
state encoding. If this approach does not make it possible to encode all of the FSM in [Bor

internal states, then a minimal number of additional memory elements is used. This F he
method yields efficient results when applied to the synthesis of complex finite state position
machines with a large number of outputs. A similar idea is presented in [For95]. address

In [SLBGY4] a method for FSM synthesis, including state encoding and subsequent tion of
optimization for implementation with FPGA structures is presented. In this approach ROM r
Multi-ROBDD diagrams are used to describe a sequential machine. In [RSLS06], lmple_m‘
Rawski et al. present a method for FSM synthesis targeting FPGA architectures with combin
LUT structures. Their approach relies on symbolic functional decomposition. Encoding
algorithms based on cover algebra presented in [BLO3] facilitate the search for efficient
decompositions.

3. ROM-BASED SYNTHESIS

Although the methods discussed above can be effectively used for synthesis of FSM
implemented with gates and flip-flops, they are not efficient for today’s programmable
structures, particularly for FPGA devices with embedded memory blocks. Such im-
plementations would benefit from a structure with a separate memory block which is
common in microprogrammable circuits. However, an advanced apparatus for design
of address modifier is required to support the synthesis based directly on the FSM
transition table.
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A limited size of embedded memory blocks available in FPGA devices is the main
argument behind the application of this structure. For example, Altera FLEX family
devices have 2048-bit EAB memory blocks. In [RSLO5] it is demonstrated that the
ROM-based implementation of an example sequential circuit — the tbk benchmark
- requires 16,384 bits of memory; this considerably exceeds the resources available
in the FLEX 10K device. An alternative implementation of this circuit with LUTs
requires 895 logic cells (a result from the Altera Quartus II ver. 6.0 spl system); this
also exceeds the resources available in the FLEX 10K device, as it has only 576 cells.
Thus, the tbk implementation with this device must rely on the a new FSM architecture.

Clearly, a considerably larger number and size of embedded memory blocks in the
newer programmable Stratix and Cyclone devices do not eliminate this problem, as
there will always be FSMs whose implementation requires more memory than it is
available in the state-of-the-art programmable devices.

In case when efficient memory utilization is essential, the FSM can be implemented
in a structure that includes an address register and ROM memory, in which the reduction
of ROM memory size is obtained by the introduction of an additional block for address
modification (Fig. 3b).

The address modifier can be synthesized with advanced algorithms of functional
decomposition, applied until recently exclusively to synthesis of combinational circuits.
Such an approach to address modifier synthesis was proposed in [RSLO5] (and extended
in [Bor04], [Bor08]).

The implementation of an FSM shown in Fig. 3b can be seen as a serial decom-
position of the memory block included in the structure of fig. 3a into two blocks: an
address modifier and a memory block of smaller capacity than required for the realiza-
tion of the structure of Fig. 3a. As a result, sequential circuits requiring large-capacity
ROM memories (and thus not implementable in the architecture of Fig. 3a) can be
implemented using a memory block with a smaller number of inputs and an additional
combinational logic block — the address modifier.

inputs
i 7
in?s T
" i’ 4 ADDRESS
l REGISTER ] , MODI IEFz
,], address i -
2) b) | REGISTER |
ROM gy wemip
7 — ROM
outputs ¢
. :
outputs

Fig. 3. FSM implementation: a) using ROM memory, b) with the addition of an address modifier
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Assuming an FSM implementation with an FPGA device, the advantage of the
proposed architecture is that the address modifier can be mapped into a network of
LUT cells or into a PAL matrix, while the memory block can be mapped into the
built-in EAB matrices. The application of this concept (without the optimization of
the state encoding) to the synthesis of the earlier discussed benchmark tbk results in
a design composed of 333 logic cells and a 4096-bit embedded memory block, which
fits entirely in the limited resources of the FLEX structure.

The promising results of other design experiments reported in [Bor04], [RSLO3)
confirm the effectiveness of the architecture of Fig. 3b and indicate the need for further
research. The results of the subsequent studies in this area are presented in [BFL07]
and [Bor08].

Different strategies of decomposition

The idea of FSM synthesis presented above lies in the decomposition of the com-
binational section of the FSM into two modules: an address modifier and a ROM
memory. In general, it is possible to view the address modifier and the memory as
separate combinational blocks and implement them independently, applying different
strategies for decomposition of these two components. In particular, an alternating
application of serial and parallel decomposition has been shown to be an effective
strategy to design a structure with both logic cells and EMBs.

To illustrate this approach, consider the earlier discussed benchmark tbk. In the
first stage, thk is decomposed into two blocks: the address modifier and ROM memory
of 4096 bits. This decomposition results in the address modifier represented in the
form of the truth table with 7 inputs and 5 outputs and the memory with the word
length of 8 with a specified contents. Subsequently each of these two components is
decomposed into a network of embedded memory blocks and logic cells. It is assumed
that the EMB block has a built-in register and it can also be configured as a typical
combinational structure.

Fig. 4a shows an implementation with a programmable device that has EMBs
of 2048 bits. Two EMBs, configured to have the word length of 4 and operating in
parallel, are needed to store the content of the ROM memory. The address modifier is
implemented with a single EMB block configured to have the word length of 8. Some
inputs and outputs of this block remain unused.

Fig. 4b shows another possible implementation of benchmark bk, obtained under
assumption that the programmable device has two types of EMBs with capacity of
512 bits and 4096 bits. Then, it is possible to implement ROM memory using a
single 4096-bit EMB, configured to the word length of 8. For the address modifier,
the parallel decomposition is applied which results in five single-output functions. The
serial decomposition of these functions into logic cells results in the following solution:
first function — one cell, second function — seven cells, third function — five cells, fourth
function — six cells, fifth function — five cells. Finally, combining the second, third,
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fourth and fifth function results in one block implemented with the EMB of 512 bits
with the word length of 4, and the second (first function) with a single logic cell.

XZ X3 X‘S Xf X5 XS XZ X3 X4 Xl XS XG
] //
MzK
T
94
9 ¢
0 0
4 g
i d
q2 q4
C
&
q G
M2K M2K M4K

Vi ¥e ¥ Yi¥e ¥s
a) b)
Fig. 4. tbk benchmark implementation; in programmable device a) with M2K built in memories,
b) with M512 and M4K built in memories

4. SELF-TESTABILITY AND FAULT TOLERANCE FOR FSMS IMPLEMENTED
USING PROGRAMMABLE STRUCTURES

As technology advances, digital circuits are becoming increasingly more susceptible
to faults — both permanent faults (static faults and dynamic faults, including delay
faults), which result primarily from imperfections in the manufacturing process, and
soft faults (transient faults) induced primarily by various types of radiation.

To detect permanent faults various test procedures are applied. For circuits im-
plemented with FPGAs, the concept of application-dependent testing has been propo-
sed [Kras97] (this test strategy is also referred to as configuration-dependent testing
[Qudd99] or application-oriented test [Reno03]). The idea is to thoroughly exercise only
that particular configuration of the FPGA which represents the user-defined application

(and not all possible configurations of a programmable device, as it is done by the
FPGA manufacturer).
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The implementation of application-dependent testing of FPGAs can be based on
externally provided test patterns, as proposed in [Qudd99, Reno03], or on the built-in
self-test (BIST) techniques. The idea of BIST-based application-dependent testing is to
exercise the device in a number of self-test sessions. During each session, a selected part
of an FPGA (configured to implement a user-defined function) is examined using the
remaining portions of the device, temporarily reconfigured into modules that generate
test patterns and analyze responses of the module under test. This strategy does not
involve any circuitry overhead or performance penalty.

In [Kras97], a technique for application-dependent self-testing of FPGAs, based
on the concept of C-exhaustive testing (combinationally-exhaustive testing), has been
proposed. The key part of this technique is the self-test procedure for a sequential
subcircuit that implements an FSM. In [KrasO4a] it was shown how this basic self-test
procedure can be applied to specific implementations of FSMs that include an address
modifier and exploit embedded memory blocks available in FPGAs (the configuration
shown in Fig. 3b). In addition, design guidelines to make such a circuit more suitable
for self-testability were formulated.

The solutions presented in [KrasO4a] provide only a “high-level” test strategy for
the considered class of FSM implementations. Enhancements at the logic level were
subsequently developed, relying on the observation that an appropriate extension of the
memory (ROM) specification produced by the FSM synthesis procedure {specification
of the contents of those memory words which are left undefined by the conventional
FSM synthesis) can significantly improve the testability characteristics of the circuit
(its susceptibility to randomly generated test patterns). In [Kras05a] algorithms for such
testability-oriented optimization of an FSM implemented using embedded memory of
an FPGA are presented. It has been demonstrated that as a result of such an optimiza-
tion, the circuit becomes significantly more easier to test: for the largest of examined
circuits, the self-test session required to achieve an acceptable level of fault detection
for the optimized design, obtained using the proposed procedure, is almost 10° times
shorter than for the non-optimized design. The proposed optimization is essentially
cost-free.

A thorough testing of permanent faults resulting from the manufacturing process
is not sufficient to guarantee reliable operation of a digital circuit. Error failure rates
caused by soft (transient) faults that occur during the normal circuit operation will
soon become unacceptable even for mainstream commercial applications [Cohe99].
Therefore, there is an increasing interest in designing digital systems to make them
fault-tolerant, i.e. to protect them against such soft faults. SRAM-based FPGAs are
particularly vulnerable to soft faults, as single event upsets (SEUs) induced by external
radiation affect both functional memory (flip-flops, embedded memory blocks) and
configuration memory of an FPGA.

There are different ways to make a digital circuit fault tolerant. Some techniques
intended to achieve this goal are based on the concept of error masking and rely on
massive hardware redundancy; therefore, they are very expensive and can be afforded
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only for critical applications. Alternative techniques are based on an on-line detection of

errors and appropriate “recovery” actions. The key part of such techniques is effective

concurrent error detection (CED).

Most techniques for concurrent error detection in sequential circuits (implementing
FSMs) assume that at some stage of design the circuit is represented by a network
of gates and flip-flips (or equivalent Boolean formulas) and that such a representation
is mapped onto standard cells [AIDM06, BMSS00, DaTo98, ZeSM99]. Concurrent
error detection techniques have also been proposed for alternative implementations of
sequential circuits, in particular for:

- sequential circuits operating as microprogrammed control units [IyKi95, Wong83],

~ sequential circuits implemented with PLAs [BoNT93].

Concurrent error detection techniques for FSMs implemented with programmable
logic components have only recently become a subject of extensive studies. CED tech-
niques intended for FSM implementations based on LUTs and flip-flops, available in
programmable logic cells of FPGA devices have been proposed in [LOKS06, LeSi99].

A different group of CED techniques have been developed for sequential circuits im-
plemented with memories embedded in FPGAs. The technique presented in [KrasO4b]
applies to the simplest FSM structure shown in Fig. 3a. For the FSM structure in
which the combinational logic is divided into two parts: memory (ROM) and address
modifier (as shown in Fig. 3b), two techniques have been proposed:

- the solution presented in [Kras06] is applicable when the ROM is implemented
with embedded memory blocks and the address modifier is implemented with
LUT-based programmable logic components;

- the solution presented in [Kras08] is applicable when both the ROM and the address
modifier are implemented with embedded memory blocks.

The concurrent error detection schemes applicable to FSMs implemented with
memories embedded in programmable devices have been proven to detect each per-
manent or transient fault associated with a single input or output of any component of
the circuit that results in its incorrect state or output. The experimental results show
that the circuitry overhead associated with concurrent error detection is quite low. For
the set of benchmark circuits examined in [Kras08], the overhead calculated under
pessimistic assumptions is in the range of 20.7% to 63.8%, with an average value of
32.2%. This compares favourably with the solutions applicable to conventional FSM
designs based on gates and flip-flops for which an overhead exceeding 100% is qu-
ite typical. The overhead can be further reduced at the expense of the efficiency of
fault detection — a design trade-off is possible [Kras05b]. These results indicate that
memory-based structures of FSMs, obtained using dedicated synthesis tools, intended
for an implementation in FPGAs with embedded memory blocks, are much more
suitable for concurrent error detection, and thereby for applications in highly reliable
Systems, than conventional designs based on gates and flip-flops.
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5. CONCLUSION

In modern digital circuit design, the problem of finite state machine synthesis is
an issue of significant practical importance. The concept of FSM provides an excellent
model for designing of complex Control Units. Many methods for structural synthesis
of FSMs have been reported in the literature. Their diversity is a consequence of
different styles of implementation. There is a large variety of logic building blocks that
can be exploited in modern technologies. The standard cell libraries contains various
types of gates; a lot of complex gates can also be generated in (semi-)custom CMOS
design; and the field programmable logic families include different types of (C)PLDs
and FPGAs.

This article summarizes various techniques for sequential logic synthesis, including
logic optimization techniques, the technology mapping techniques, and the techniques
that provide the resulting circuits with concurrent error detection capability. These
techniques vary considerably in terms of quality and efficiency, and different techniques
may be suitable for different types of design and/or different optimization objectives.
We hope our systematic classification and review of these techniques will help the
reader to choose the best combination of these techniques for a given application, and
to develop new techniques to overcome the limitations in the existing technologies.

For FPLD technology, sequential logic synthesis is a very important step in design
automation. However, the opportunities created by modern microelectronic technology
are not fully exploited because of weaknesses in traditional logic design methods.
Commercially available tools are immature and do not allow the designer to take
advantage of all the architectural features available in modern programmable structures.

We believe that high-quality logic synthesis tools will play an increasingly more
important role in FPLD design systems and their integration with the tools used for
other steps in the design process may be a key to success in digital designing.
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The methods of hardware amount decrease are proposed oriented on implementation
ol compositional microprogram control unit with PAL macrocells and embedded memory
blocks of CPLD — based SoC. First method is based on introduction of additional microin-
structions. Second method is based on expansion of the format of microinstructions. In both

cases amount of EMBs is minimal one. The examples of application of proposed methods
are given.

Keywords: compositional microprogram control unit, flow-chart of algorithm, CPLD, mi-
croinstruction

I. INTRODUCTION

The progress in microelectronics has resulted in appearance of integrated circuits
of the “system-on-a-chip” (SoC) type [1]. The functional power of SoC is enough to
implement a complex digital system using single chip [2]. The modern SoC can com-
prise the programmable array logic (PAL) macrocells based on CPLD conception [3,
4] and embedded memory blocks (EMB). The PAL macrocells are used to implement
an arbitrary logic of digital system and EMBs implement the tables, such as control
memory [5]. One of the most important blocks of any digital system is control unit
(CU) that coordinates the cooperation of all system blocks [6, 7, 8]. The minimiza-
tion of number of PAL macrocells in the circuit of CU is an actual problem and its
solution permits to decrease the chip area occupied by this circuit [4]. It is important
because the disengaged resources can be used to increase the power of the system.
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The characteristics of both control algorithm to be implemented and logic elements in
use should be taken into account to minimize hardware amount in the circuit of CU
[9]. In this article we propose some methods of this task solution oriented on both
linear control algorithms [9] and CPLD-based SoC. The peculiarities of CPLD are
wide fan-in and very limited number of intermediate terms in its macrocells [3, 4].
Therefore, one of the ways of hardware optimization here is the decreasing of number
of terms in the disjunctional normal forms (DNF) of implemented Boolean functions
[10, 11]. The peculiarity of linear control algorithms is existence of long sequences
of unconditional transitions between the microinstructions. In this case the model of
compositional microprogram unit (CMCU) perfectly fits to implement such transitions
[12]. In this article we propose the method of optimization of PAL macrocells in the
circuit of CMCU, when interpreted control algorithm is represented as linear flow-chart
of algorithm [13].

2. BACKGROUND OF CMCU

Let a control algorithm be represented as flow-chart of algorithm (FCA) I' = I
(B, E), where B = {by,bg} U E{UE, is set of the nodes, £ = {{(b;,b,) | b;, b, € B} is set
of the edges. The set B includes an initial node by, a final node by, the operational nodes
b, € E; and the conditional nodes b, € E,. The node b, € E; contains set Y(b,) C Y,
where ¥ = {y,...,yn} is set of microoperations of data path of digital system [7, §].
The node b, € E, contains single element of the set of logic conditions X = {xy,...,x.}.
The FCA T is named as linear FCA (LFCA), if number of its operational nodes M is
not less than 75% from total number of the nodes [9], where M =| Ey |.

Let C = {aj,..., a,} be a partition of the set £; and «, € C be an operational
linear chain (OLC) of LFCA I'. The OLC a, € C is a sequence of operational nodes
(bgise .. bgrg), such that an edge (b, byi1) € E exists for each pair of its adjacent
nodes (i = 1,...,F,~ 1) [12]. An OLC «, € C can have an arbitrary number of inputs
and only one output O, € O(I'), where O(I') is set of the outputs of OLC «a, € C. Let
node b, € E; correspond to microinstruction MI, with address A(b,) and let A(b,)
have bits.

R = |log,M| (D

Let us execute the natural addressing of microinstructions [6, 12] to satisfy the
following condition:

A(bgH[) = A(bg,) +1, (2)

where i = 1,...,Fg-1; g = 1,...,G. In this case LFCA I" can be interpreted by CMCU U
(Fig. 1).
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Fig. 1. Structural diagram of the CMCU

The CMCU U operates in the following manner. If pulse Start = 1, then an address
of the first microinstruction (MI) of microprogram MP(I') corresponding to LFCA T is
loaded into counter of microinstruction address CT. In the same time the flip-flop TF
is set up and Feich = 1. It permits the fetching of the MIs from control memory CM. If
CT contains an address A(by), where b, ¢ O(I"), then signal Yo is formed together with
microoperations Y(b,) C Y. If yy = 1, then pulse Clock causes increment of content
of CT and it corresponds to mode (2). If yy = 0, then transition address is formed

by combinational circuit CC that implements the system of excitation functions of the
flip-flops of CT

D = O(T, X), 3

where T = {T'y,...,T} is the set of address variables, | @ |= R. If CT contains an address
Alb,) and <b,,bg) € E, then variable ye is formed together with microoperations
Yn € Y(by). If yg = 1, then flip-flop TF is reset, ye = 0 and operation of CMCU U is
terminated.

In case of CPLD-based SoC the circuit CC is implemented using PAL macro-
cells and control memory CM is implemented using EMBs. The positive feature of
Uy is minimal number of the outputs of the circuit CC in comparison with other
known structures of CMCU [12]. Tt gives a potential possibility of optimization of the
cireuit CC in comparison to other models of CMCU. But CC and CT form Moore
finite-state-machine (FSM) [1] of microinstruction addressing. Tt is well-known that
as a rule Moore FSM has more transitions, than equivalent Mealy FSM [1]. Each
transition corresponds to one term of the system (3). The minimization of this number
can be reached due to partition of the set C by the classes of pseudoequivalent OLC
(POLC) that correspond to pseudoequivalent states of Moore FSM [14].

The OLC a;, « j € C are named POLC, if their outputs are connected with the input
of the same node of LFCA T [9]. Let ¢’ c C and let ag € C',if (O, bg) ¢ E. Let us
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form the partition I1¢ = {B1,...,B;} of the set C’, such that B, is the class of POLC (;
= 1,...,.I). Let us encode the classes B; € Il¢ by binary codes K(B;) with

Ry = Jlog.1] 4) §; Let us

bits and let us use the variables 7, € T = {ry,..., Tr1} for such encoding. One of the ways
of hardware optimization of the circuit of U} is usage of address transformer AT [5]

that forms code of B; € Il on the base of address A(b,), where b, = Oy, @, € B;. But In this
this approach drawback is a need of some chip resources to implement circuit of AT. of outp
It has sense, if total number of macrocells in both CC and AT is lower, than number Let
of macrocells in circuit CC of CMCU U,. In this article we propose the methods of that sat
optimization of the circuit CC based on modification of microinstruction format of Ay =11

CMCU U,. Let us

3. MAIN IDEAS OF PROPOSED METHODS

bits anc
The main idea of proposed methods is the usage of redundant resources of EMBs the clas
to implement the transformation of the addresses A(b,) into the codes K(B;). The
microinstruction format of CMCU U is shown in Fig. 2, a.
bits anc
a) | Yo FY b)| 0 FB c)| 0 | FY | FB the CM

Fig. 2. Microinstruction format of CMCU U, (a) and proposed modifications (b, ¢)

The field FY contains the microoperations Y(b,) and variable yz, where b, € Ej.
We propose two approaches of microinstruction format modifications, when field FB
is in use. The field FB contains the code K(B;), where B; € Tl¢.

In first case an additional node O, is inserted as a last component of OLC «a, € B,.
This node corresponds to MI with format (Fig. 2, b). In second case each node b, = O,
corresponds to MI with format (Fig. 2, ¢). The first bit of those formats corresponds
to variable yo. There are two new structures of CMCU (U,, U3) and both use format
(Fig. 2, a) with yp = 1. The CMCU U, uses also format (Fig. 2, b) with yo = 0. The
CMCU Ujs uses also format (Fig. 2, ¢) with yo = 0. Let us discuss these modifications
in details.

The control memory of CMCU U(I") has

A[? = 2R -M (5)

. In CMC
free cells, here U(I';) means that LFCA I'; is interpreted by CMCU U;. We propose

to insert Ar additional MI with format F1 (Fig. 2, b) into microprogram MP(I'). Let
Gy be amount of OLC a, € C’ for the classes B; € I1¢ such that condition holds.
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1Bl > 1 (6)

Let us discuss a case, when condition holds.

G, > A (N

In this case we propose to combine the modification of OLC @, € C’" and transformation
of output address.

Let us represent partition Ils as A; U A,, where set A, contains the classes B;
that satisfy to (6) and let /; =|A|| is as nearer to Ay as it is possible. It is clear that
A =TlcAMol= 1, =1 - 1,.

Let us encode each class B; € Ay by binary code C(B;) with

Ry = Jlog, )| (8)
bits and let us use the variables z, € Z = {z,,....zgs} for such encoding. Let us encode
the classes B; € A, by binary codes K(B;) with

Ry = |log,h| 9

bits and let us use the variables 7, € T = {ry,..., Tg3} for such encoding. In this case
the CMCU U, (Fig. 3) is proposed to interpret the LECA T,

| S
ZLﬁ 4

X " Yo

T ) T . Y

Yb

I - > .
Clock A A-Ij | & [R [T |Feteh

Start

] Start g

Fig. 3. Structural diagram of CMCU U,

In CMCU U, an address of transition is formed by functions

O =0Z,1,X,yp), (10)
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where variable yp points out the source of the code of the class B; € Il¢. Let us point
out that variable yp can be formed by any block of CMCU (CC, AT, CM). In case
under discussion block AT forms both variable yp and variables 7, € 7:

T = T(T), (11)

yp = yp(T). (12)

Let us point out that amount of inputs of PAL macrocells increased in CMCU U, in
comparison with CMCU U,. But it does not affect the hardware amount because of
wide fan-in of CPLD [3, 4].

The drawback of CMCU U, is an appearance of idle cycles of data-path, when
microinstruction with format F1 is executed. It leads to increase of the time of control
algorithm interpretation. If such increase is undesirable, then microinstruction format
F2 (Fig. 2, c¢) can be used to optimize the hardware amount.

The information in the field F'Y can be encoded using different strategies: one-hot
encoding of microoperations, maximal encoding of the collections of microoperations,
encoding of the fields of compatible microoperations [0, 12]. Let us discuss the one-hot
case, when bit capacity of the field FY is determined as

m, =N+ 1. (13)

If yp = O (format F2), then transition address is formed by functions

@ = (1, X), (14)

where |®|= R). Such approach permits to minimize hardware amount for circuit CC
without decrease of performance of digital system.

The drawback of F2 is the increase of bit capacity of MI by R; bits that can lead to
increase of the amount of EMBs in CM in comparison to CMCU U, . If such increase
is undesirable, then the following approach is proposed.

Let output word of EMB have f; bits and let number of these words be not lower,
than M. In this case

ny = [1N +2)/tu(] (15)

EMBEs is enough to implement the control memory of CMCU. In this case

Ay =nyty —N =2 (16)

bits of the word can be used to represent the field FB. If condition
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holds, then free bits of EMB word can be used to keep the field FB. Otherwise the
collections of microoperations Y(b,) should be analyzed, where by=0Ogand @, € C'.
Let their microoperations form the set Y' C ¥, where [Y|= Ny. It means that

Ay=N+1-N, (18)

bits of the field FY are not in use, when microinstructions M1, are executed (b, = O,,
o, € C). If condition

A+ Ay > R (19)

holds, then field FB can be represented by A,, free bits of EMB word and by (Ry —~A,)
bits of the field FY. If condition (19) is violated, then A,, + Ay bits of K (B;) are
represented by EMB word and

Ry =Ry - A, — A, (20)
bits are formed by AT. In this case 7 = 7! U 7%, where [7'|= A + Ay and [7?] = Ry, In
the most common case we propose CMCU Us (Fig. 4) to interpret the LFCA T.

. b

X CC D p CT j T j‘ CM =Y

| Clook & 4 AT | ;(’L__y Y5, /R [TF [Feton
St | - Start |

* T s

Fig. 4. Structural diagram of CMCU U,

In this article we propose the methods of design of both CMCU U, and Us. In both
cases the proposed methods are illustrated using LFCA 'y with Ey = {by,...,b»;}. Let set
of OLC be formed, such that C = {ay,...,ar } wherea; = (b, b)), ay = (b3, by, bs),
@3 = (b, b7), a4 = (bg,bo,b10),as = (bi1,b12), 6 = biz, b4, bis), a7 = (big, b17),
@ = (big), a9 = (brg, by0), 1o = (ba1, b,y = (ba,....ba7). Let Il = {B1,....Bs},

whete By = {a), B, = {aa,a3), By = {ay,as), By = las, a7, a3}, Bs = {ag, i}, it is
clear that oy, ¢ C.

4. SYNTHESIS OF CMCU U,

We propose the following method of synthesis of CMCU U,:
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Construction of the set C of LFCAT. Th
Construction of the partition Ilc, and sets AjA;. reCO}‘f‘»‘
Modification of OLC a, € C’. vy (if
Natural addressing of microinstructions. sense
Encoding of the classes B; € Ay U A,. symbc

Construction of the content of control memory.
Construction of the table of transitions of CMCU.
Construction of the table of address transformer AT.
Implementation of the logic circuit of CMCU.

A Al S

In the example under discussion we have M = 27, R = 5, Ap = 32-27 =5, Gy =9,
Therefore, only Ar =5 OLC can be modified. It is clear that set A, includes class B,
and one of the classes By, B3, Bs. Let Ay = {By, B4}, Ay = {B, B3,Bs}, I} = 2, Ry=],
Z ={z1}, I, =3, R3s = 2, v = {11, 72}. Let us modify the OLC ay, a3, a¢, @7, a3 € B;,
where B; € Aj, in the following manner: a; = (b3, by, bs, 02), az = (bg, b7, 03),
e = <b13,b13,b15,06>, a7 = <b16,b17,07>, g = <b18»08>- The application of the
methods from [12] leads to addresses of microinstructions of CMCU U,(I"y) (Fig. 5

T 2T,
T\ 000 001 010 011 100 101 110 111

00| by | bs | O3 Dbqq bis O7 | b | b2

01, b2 | Oz | bg | b12| Og | big| bar | bos

10| bz | bg | bg | b1z big| Os by | b

11 bs | by | bio| b1a| biz | b1g | baz | bar

Fig. 5. Addresses of microinstructions of CMCU U,(I"))

Let us encode the classes B; € A; U A; in the following manner: K(B;) = 00, This s;
C(By) =0, K(B3) =01, C(By) = 1, K(Bs) = 10. The content of CM should be formed columt
in the following manner: has H
e if (b, by) € E, then variable yg is written in the cell with address A(by);
e cell with address A(b,) contains microoperations y, € Y(b,);

o if OLC a, € B; was modified, then yp = 1 for all microinstructions corresponding
to nodes b, € Ey, from this OLC;
s the cells corresponding to additional nodes contain code C(B;) and yg = 0, where

B; € Ay
Let set ¥ of LFCA T’y include N = 5 microoperations and let these microoperations
be distributed as the following: Y (b)) = Y(bg) = Y(byy) = {y1, »2}; Y(by) = Y(b11) =
Y(bag) = {ysh; Y(b3) = Y(b12) = Y(bps) = {ya}; Y(bs) = Y(b13) = Y(b24) = {y1, ys); V(b5
= Y(b14) = Y(b23) = {y2. yah; Y(be) = Y(bi5) = Y(bp) = {y1,y3, 5} Y(b7) = Y(bis) =
Y(ba1) = {y2, 33} Y(bs) = Y(b17) = Y(bao) = {y2,¥5}; Y(bo) = Y(b1g) = Y(b19) = {ys!

Nt
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The first 8 cells of control memory of CMCU U,(T'y) are shown in the Table 1. The
record “yi/z,” means that this bit of the output word represents either microoperation
y; (if yo = 1), or variable z; (if yg = 0). For MIs with format F1 only field FB has
sense and other bits are ignored and they can have arbitrary values. It is shown by
symbol “*” in the Table 1. '

Table 1
Fragment of control memory of CMCU U,(I'))

Address |y FY/FB Remarks
YEYEYIYE Wz | y2 | vs | va|ys | ve | bo/O,] B
00000 I i 11070 [0,0]| b |B
00001 0/ 0 {(0/1]0]0]0O by | B
00010 1 0 |[0j0|1]0]0O by B,
00011 1 i 0|0{0{11!0 by | B,
00100 1 0 110j1[0]0 bs | B,
00101 0] 0 O N N 0O, | B,
00110 1 1 071101110 bs | By
00111 1 0 Li1{ol0|0 b, | B,

Let system of formulae of transitions [13] be formed for
bq & O(Fl)

node by and nodes

bo had bl;

by — x1b3 VvV x5 X2b4 V X1 X5 bg;

bs,b7 —> )C3bg V X3 )C4b9 V X3 X4 b]l;

b0, b1y = xoxi3 V % x3b16 V 5 K3 big;
bi5.b17,b1g — x3b14 V X3 x5b19 V X3 Es boy;
b0, boa — xsbog V X6 bay; by — bp.

2D

This system is the base to form the table of transitions of CMCU U,, that has the
columns B;, K(B;), C(B,), by, A(By), yp, Xu, @y, h. In case of CMCU U,(I'y) this table
has Hy(I';) = 14 lines and the first 6 lines are represented by the Table 2.

Table 2
Fragment of the table of transitions of CMCU Uy)(T'))

B | K(B) | C(B) | by | Ab) |vn | X, D, |A
Bi| 00 — [ b3 [00010] 1 | x Dy |1
b4 00011 1 XiXo D4D5 2
b |00110] 1 | %%, | DaDs |3
Byl — 0 | bg [0100T) O] x3 | DoDsl4d
b() 01010 0 .)E}X4 D21)4 5
by {01100 0 | 5%, | DaDs | 6
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The yp = O corresponds to classes B; € A; and yp = 1 corresponds to classes
B; € A,. This table is the base to form the system (10). One can form from the table 1,
for example, the following DNF: D3 = 3, 772X %2 V ypZi¥3%4. Let us point out that
table of transitions of CMCU U (I"y) has H{{I'; 1) = 28 lines. It means that the amount
of terms in the system (10) is 2 times lower, than the amount of terms in the system (3).

The address transformer AT forms variables 7, € v and yp as functions of the
addresses of the outputs of OLC «, € B;, where B; € A,. The table of AT includes
the columns b,, A(b,), Bi, K(B;), 7, yp, q. In case of CMCU U, (I') this table has
H%:.(['y) = 5 lines (Table 3).

Table 3

Table of address transformer of CMCU U,(T'y)

b, | A, | B[ KB | |y
by 100001 | B} 00 |-
bip 01011 B3| 01
b2 | 01101 B3| O1
by | 11000 | Bs| 10
by | 11010 Bs| 10

— o
—_ = ] —
nlrlwlin|—|<

This table is the base to form the systems (11)-(12). After minimization we can get
from Table 3 the following DNFs: 7| = T1T273T5 , Ty = T} T2T3T4T5 \4 T1T2T3T4T5.
It is clear that variable yp can be expressed using equations for 7, € 7. In our case we
have: yp =7 V1 V T'1 T2T3T4T5.

The implementation of the circuit of CMCU U, is reduced to implementation of the
systems (10)-(12) using CPLD and implementation of control memory using EMBs:
These methods are well-known [3, 4] and they are out the scope of our article.

Let us point out that additional Mls correspond to idle cycles of data path of digital
system with CMCU U,. To work it out, it is enough to ban the synchronization of data
path, if MI with format F1 is read out the CM. Let it correspond to some variable
ye = 1. If condition

A, >l (22)

holds, then free bit of EMB can be used to keep yc. If condition (22) is violated, then
variable yc can be formed as

yc = Joyp- (23)

As a preliminary conclusion, we can point out that the proposed modification of micro-
instruction format permits to decrease the number of PAL macrocells in the circuit CC
in comparison to equivalent CMCU U;. The number of PAL macrocells in the circuit
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AT can be lower, than in other models of CMCU [12]. But this hardware optimization
is connected with decrease of performance of digital system. Let us point out that
block AT can be eliminated, if condition

Ar < Gy 24)
holds and variable yp, is formed either by CC or CM.

5. SYNTHESIS OF CMCU U;

The proposed method of synthesis of CMCU Us(I") includes the following steps.
Construction of the set C of LFCA T".

Construction of partition I1-.

Encoding of the classes B; € 1.

Calculation of the values of parameters A,,, Ay, Ry.

Natural addressing of microinstructions.

Construction of content of control memory.

Construction of the table of transitions of CMCU.

Construction of the table of address transformer AT.

9. Implementation of the logic circuit of CMCU.

In case of CMCU Us(I')) we have I = 5, R, =3, 1 = {t1, 72,73}, Let us encode the
classes B; € [l in a trivial way: K(B;) = 000,..., K(Bs) = 100.

An analysis of the collections ¥ (by), where b, € O('}), shows that ¥ =Y and
only bit yz of the field FY can be used to keep the variables 7, € 7. Let number of
outputs ty = 4 for EMBs in use, therefore, expression (15) gives us n; = 2. It means
that two EMBs form the control memory of CMCU U;(I'y), Thus, according to (16),
we can get A, = 1. Condition (19) is violated because Ay =1, A, +Ay =2 <R, =3,
It means that circuit of CMCU U;(I"y) should include AT and Ry = 1. Let AT form
variable 7, € v* and let variables Ty, T3 €T kept in CM.

The application of the methods from [12] gives the following addresses of microin-

structions: A(by) = 00000, A(b;) = 00001,..., A(by7) = 11010.

The content of control memory is formed in the following manner:

o if b, € O("), then field FB of microinstruction M1, contains (R; — R4) junior bits
of the code K(B;), where by = 04, ay € By, field FY contains nicrooperations

Yn € Y(by);

* ifb, ¢ O), then yo = |, FY = Y(b,), FB = @;
The first 8 cells of control memory of CMCU Us(T'y) are shown in the Table 4.

B A e i S
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Table 4

Fragment of control memory of CMCU Us(I'y)

Address | yp FY FB | Remarks
T\ TsT4Ts Yilya |y yaiys|yele| T3 |by| B
00000 111130100, 0 * b B
00001 001011100, 0 |0 b B
00010 110[0|01 1[0 0 | * |bs| By
00011 1110} 0|0] 1} O | * |byy By
00100 010[1|0]1]|0O| O |1 ibs| By
00101 1o L|jo | O | * |bs| By
00110 0|01 |1{0|0O] O |1 |b| B2
00111 1{O]|Li0|O(L] O | * |bg| B

The table of transitions of CMCU U5 includes the following columns: B;, K(8;),
by, A(by), Xu, ®p, h. This table is constructed on the base of the system of formulae
of transitions for nodes b, € O(I'). Let us point out that transition from initial node by
is executed using pulse Starr. If this transition is conditional one, then additional node
b, € E, should be inserted into LFCA T'. In the same time the edge (b, b;) should be
included into set E. This step is named as transformation of initial LFCA [6]. Such
transformation should be executed for CMCU U, — Us, but in case of LFCA T} this
step is eliminated. Another peculiarity of CMCU is execution of transition (b, bg),
using yg = 1. Because of it the table of transitions reflects only transitions for the
outputs of OLC a, € C’. To form this table the outputs of OLC @, € C” should be
replaced by classes B; € I, where @, € B;. In case of CMCU Us(T'y) this table has
H;(I"y) = 14 lines. The first 6 lines of this table are shown in the Table 5.

Table 5

Fragment of the table of transitions of CMCU Us(I'y)

B; |[K(B)| b, | Aby) | Xy (08
by | 00010 | x| Dy
By | 000 | by |00011 |x1x0 | DuDs
be | 00100 | £, %, Dy
by |00 | x3 | D3DyDs
By | 001 | by | 01000 | T3x4 D,
by 01010 | B384 | DDy

N BN —

This table is the base to form the system (14). For example, we can form from the
Table 4 the expression D3 = F|T2T3x 1% V T1T273x3. As in case of CMCU U,(I'y), the
number of the terms in system 14 is twice less, than in case of CMCU U;(I'y).
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The table of address transformer AT has the columns by, A(by), B, K(B)), T, m.
Here the column 7, includes the variables 7, € 77, that are equal to 1 in the code
K(B;) from the m-th line of the table. In case of CMCU Us(I') v = {13, 13}, 72 = {7y}

and table of AT has HzT:: (I'1) = 2 lines (Table 6).

Table 6
Table of address transformer of CMCU Ux(T"})
bc[ A(bq) B[ K(B,) T m
bz() 10011 BS 100 Ty
1)22 10101 Bs 100 T 2
This table is the base to form the system
% = 7X(D). (25)

For example, from the table 5 we can get 7, = T\ToT3T4Ts vV T\ ToT5T4Ts.

The implementation of the circuit of CMCU Us is reduced to implementation of the
systems (14) and (25) using PAL macrocells and implementation of CM using EMBs.
This step is out the scope of this article. If some bits of the field FY are used as
variables 7, € !, then corresponding microoperations should be formed , if yy = 1.
This dependence is expressed by formula

Yn:YOFYb’nJ (n::l)'~"N)5 (26>

where FY[y,] is a bit of the field FY corresponding to y, € ¥ U {y£}. If such approach
is used, then time of cycle of CMCU Us is increased on the propagation time of one
PAL macrocell in comparison to the time of cycle of equivalent CMCU U,.

6. CONCLUSION

The proposed methods of modification of microinstruction format permit to decre-
ase the number of PAL macrocells in the addressing circuit of CMCU. This effect is
achieved due to the decrease of amount of terms in the system of excitation functions
of the flip-flops of the counter of microinstruction addressing. The optimization is
based on existence of free cells or free bits of embedded memory blocks that are used
o implement the control memory of CMCU. In this case an address transformer can
be used to form either the part of the code of the class of pseudoequivalent OLC or
some codes of these classes. In both cases the hardware amount in the circuit of AT is
lower than for known models of CMCU [6, 12]. If some conditions satisfy, then block
AT is eliminated from CMCU. The volume of CM is the same for CMCU U, — Us.

If additional microinstructions (format F 1) are in use, then performance of resulted
digital system is decreased due to idle cycles of data path. If additional field FB is used
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(format F2), then the number of cycles for both CMCU U, and Uj are the same, but
time of cycle of CMCU U; can be more than in case of CMCU Uj. Thus, hardware
amount and time characteristics of CMCU depend on both control algorithm to be
implemented and parameters of elements in use.

Our research showed that the best solution permits up to 18-26% decrease of
hardware amount in comparison with CMCU U;. Here term “the best” means “the
best for given conditions”. In this article we have discussed only case of field FY
organization with one-hot encoding of microoperations. The proposed methods should
be modified if some other strategy is used for field FY. The practical sense has such
strategies as maximal encoding of the collections of microoperations and encoding of
the fields of compatible mircrooperations [12].
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The paper focuses on the structural decomposition of control units. Bight methods of
compositional microprogram control units are described and compared. Proposed solutions
can be divided into two main groups. The first one deals with CMCUs with mutual memory,
where the internal code of the controller is recognized by the microinstruction address. The
second group of presented methods is based on control units with sharing codes, where the
microinstruction address is formed as a concatenation of codes generated by the counter and
by the register. The aim of all proposed solutions is to reduce the number of logic blocks
of the destination programmable device.

Keywords: Control Units, Microprogrammed Controllers, Compositional Microprogram
Control Units, Programmable Devices, Field Programmable Gate Arrays

1. INTRODUCTION

A control unit (CU) is one of the most important part of any digital system
[1,2,3,4,5]. It can be found in almost all devices that contain microelectronics; such
as computers (central processor unit, CPU), cellular phones, cars and even remote
controllers. The control unit is responsible for managing all modules of the designed
system — it sends adequate microinstructions that should be executed [6].

Most of control units that are available on the market are created as a single-level
finite-state-machine (FSM). This means that the control unit is formed as a simple Mo-
ore or Mealy automaton [7,8]. Such a solution was good for small systems. But the size
of devices grows very fast, and now complex digital systems can be implemented using
one digital board such as system-on-a-chip (SoC) or system-on-a-programmable-chip
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(SoPC). Especially SoPC systems, where logic functions are realized using program-
mable logic devices (PLDs), complex programmable logic devices (CPLDs) or field
programmable gate arrays (FPGAs) are very popular nowadays. Such devices compacts
all elements of the design on a single chip that contains built-in logic and dedicated
memory blocks [9,10]. Therefore, traditional methods of control units prototyping evo-
lve. One of effective methods of the CU realization is an application of the model of
the compositional microprogram control unit (CMCU).

The compositional microprogram control unit is a multi-level device, where the
control unit is decomposed into two main units [11,12,13]. The first is responsible
for addressing of microinstructions that are kept in the control memory. It is a simple
finite-state-machine. The role of the second part is to hold and generate adequate
microinstructions. Such a solution may lead to minimization of the number of logic
elements that are used for implementation of the CU. Therefore, wider areas of the
target device can be accessed by other modules of the designed system. The CMCU
memory can be implemented using either logic elements or dedicated memory blocks
of a chip [9,14,15].

2. CURRENT STATE OF THE ART

A digital system may be represented by a composition of the control unit (CU) and
operational unit (OU) also known as a data-path [1,6,16]. The idea of such a defined
digital system is illustrated in the Fig. 1.

[ l l Function lData

X cu Y o ou
¢ O ¢Results

Fig. 1. The model of the digital system

A

Based on the set of input values (I) and set of logic conditions (X), the CU sends
proper microoperations (Y) to the OU. Additionally, a set of output values (O) is
generated. The set of inputs (I) and set of outputs (O) are used for communication
with the environment of the digital system [17,18].

The operational unit executes microoperations (Y) by processing proper input (Data)
and generating results (Results). Additionally the OU generates logic conditions (X)
for the control unit.
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2.1. SINGLE-LEVEL CONTROL UNITS (FINITE STATE MACHINES)

The most popular realization of control units nowadays is an finite state machine
(FSM) also known as the finite state automaton [3,12,16,19,20,21,22]. The FSM is a
model of behavior that consists of the set of states, set of transitions between states
and set of actions (microoperations). Formally the FSM can be described as a 6-tuple
vector:

M =<8X7Y, f hso>, (D

where:

s S =1{50,50..., 5¢} 1s non-empty finite set of states;

o X ={x0,x1,..., xz} is finite set of inputs;

o Y ={yo,y1,..., yy} is finite set of outputs;

o f:85XX — §is the transition function, this function determines the next state
sy € S depending on the current state s,, € S and on the value of input x; € X;

e h:S5xX — Y is the output function, this function determines the current output
ya € Y, based on the current state (in case of Moore automaton) or depending on
the current state and the current input (in case of Mealy automaton);

o 59 €S is the initial state of automaton.

Figure 2 shows the typical realization of the finite state machine [12,16]. There
are two main units in the FSM. The combinational circuit CC generates proper output
values (microinstruction) and indicates excitation functions for the register RG which
is in charge of holding internal state s,, € S of an FSM.

B Y
X CC D
e — s RG
Q

Fig. 2. The model of the finite state machine

The FSM can be realized as Moore or Mealy automaton. If the control unit is descri-

bed as Moore FSM, then outputs depend on the current state of the automaton [8].
Microinstruction is represented as:

Y= f(sm) 2)

where ¥, means the value of the output and s, € S represents the current state of the
FSM. The main advantage of such a realization is simplification of the behaviour of the
control unit. States are clearly tied with the action generating proper microinstruction
while inputs (conditions) influence only transitions between states.
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The second way of implementation of the FSM is Mealy automaton [7}. The value of
outputs depends not only on the current state but also on input signals:

The main benefit offered by Mealy FSM is the reduction of the number of internal
states of the automaton in comparison with Moore FSM. Both Moore and Mealy
automata are classified as single-level control units.

The optimization of the FSM is one of the most popular tasks nowadays. There are
many ideas focused on improving the prototyping process and encoding of internal
states of the automaton [23,24,25,26,27,28,29,30,31]. Above researches benefited in
appearance of computer-aided design systems, like Sequential Circuit Synthesis, SIS
[32]. It contains algorithms for state assignments (NOVA, JEDI) and state minimization

(STAMINA).

The next subsection deals with microprogram control units where outputs of the con-

Y = fsm, X),

where X is a set of input values (conditions).’

troller are organized in microinstructions.

2.2. MICROPROGRAM CONTROL UNITS

The idea of microprogramming was introduced by M. V. Wilkes in 1951 as an
intermediate level to execute computer program instructions [33,18,19,34,35,36,37,38].
Microprograms were organized as a sequence of microinstructions and stored in the
special control memory (CM). The algorithm for the MCU is usually specified by the
flow-chart (FC) description [11,16]. Such a flow-chart algorithm consists of four main
types of vertices (start, end, operational vertex, conditional vertex) that are interpreted

by the control unit,

X

_._._.._»

SQ

 I—

RAMI

Q

v

CM

— Y

Fig. 3. The model of the microprogram control unit (MCU)

Typical structure of the MCU is presented in the Fig. 3. There are three main blocks
that consist of the MCU: a sequencer SQ, a register of the microinstruction address
RAMI and the control memory CM [11,16]. The sequencer is the combinational circuit

that forms the excitation function for the RAMI:

D= f(X,T).
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Here X is a set of logic conditions of the system and T is a feedback function
generated by the control memory. Based on this function, the RAMI generates the
proper microinstruction address A. The control memory CM holds microprogram that
is further executed by the operational part of the system. There are different methods
of microinstructions addressing [39,3], however in most cases the CM also keeps
addresses of next microinstructions that should be executed. The feedback function 7'
is analysed by the sequencer which based on the condition from the set X selects the
proper address A.

There are many designing ways of the MCU [11,40]. One of the most popular is
to perform the sequencer as the multiplexer, and the RAMI as the counter [11]. Then
the structure of the MCU may be interpreted as the system shown in the Fig. 4.

X l

# COUNTER

v A

CM

cl | L]

X Y

MUX

Fig. 4. The model of the microprogram control unit with counter

In the MCU presented in the Fig. 4, the CM generates two feedback functions — 7" for
the counter and C for the multiplexer. Such a realization is especially fruitful in case of
long segments (chains) of microinstructions [17]. Then the chain of microinstructions
that are not separated by the condition may be replaced by one state (block).
The main advantage of the microprogram control unit is simplicity of its structure.
Outputs of the controller are organized in microinstructions and they can be easi-
ly replaced. Additionally, the control memory may be implemented using dedicated
memory blocks of the FPGA reducing the area of used logic elements.
Apart from its benefits, the MCU has some disadvantages. The control memory holds
not only microoperations but also information for calculation of the address of the next
microinstruction. Very often the size of the control memory exceeds the size of the
dedicated memory block of an FPGA. To eliminate these disadvantages, the control
unit may be decomposed.

The control unit may be decomposed in two ways. The first one is functional
ccomposition. Here the controller is decomposed basing on its internal functions and
states. The second method is structural decomposition where the task of the decompo-

d




220 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETQ. Vol. 55
sition is reached thanks to the modification of the structure of the control unit. Such a
method leads to the compositional microprogram control unit.
, The a
3. FUNCTIONAL DECOMPOSITION OF CONTROL UNITS separa
into tv
Functional decomposition is the process that splits the complex function into the Yo is t
smaller sub-functions [41,11,42,43,44,45,46]. Such a realization is often used as a part has se
of logic synthesis of designs implemented with programmable devices. Functional de- functic
composition is widely expanded especially by academic organizations [32,47,48,49,50].
This paper focuses on the decomposition of control units implemented on the FPGA.
Optimization of SPLDs and CPL.Ds can be found in [51,52,53,42,54,55,43,56,57].
In the FPGA, the limited number of inputs and only one output of LUT elements
make functional decomposition very effective [46,11,29,58,59]. The idea of functional
decomposition is widely used either by commercial (Xilinx, Altera, Synplicity, etc.)
and non-commercial organisations (Universities). It should be pointed out that the
best results are achieved by non-commercial projects such as DEMAIN (Technical
University of Warsaw) or SIS (University of Berkeley).
Functional decomposition may be realized as serial decomposition or parallel de-
composition. In the first one, the set X of input variables is split into two subsets U
and V [3].
|
G
|2
H
Y=F(X)
Fig. 5. The idea of serial functional decomposition
The set V forms inputs for the function G which generates the set of outputs Z = G(V).
Of course the method has sense only if the number of outputs of the function G is ‘
fewer than the number of its inputs. Furthermore, outputs Z generated by G and the S?”ﬂl a
set U form inputs for the function H (Fig. 5). Finally, function F is represented as Joins ?0
follows: step eith
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F=HUGWV)). (5)

The aim of parallel decomposition is to decompose the initial function F into two
separate sub-functions G and H [11]. The main idea is to split the set of outputs Y
into two subsets Yz and Yy. Here Y is the set of outputs of the function F. Similarly
Y is the set of outputs of the function G and Yy — the set of outputs of H. The method
has sense if cither one of functions G or H has fewer input variables than the initial
function F. The idea of parallel decomposition is illustrated in the Fig. 6.

|

@

Yo

®
I<<i = \,/::x:><

Fig. 6. The idea of parallel functional decomposition

Serial and parallel decompositions are very often combined. Balanced decomposition
joins both methods [11,60,61]. The whole process may be divided into steps. In each
step either serial or parallel decomposition is performed. The process is repeated until
the satisfactory result is reached [11].
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Presented methods of decomposition are fruitful for combinational blocks of the
system. However they can also be used in decomposition of control units [11,29,62,63].
The controller may be realized as the sequential circuit shown in the Fig. 7. The
main idea is to use the control memory to hold microinstructions. Such a memory is
implemented with dedicated memory blocks of the FPGA, which reduces the logic
resources of the device.

X
n

Register

n+p

Control Memory

m

% Q
In th
Fig. 7. The control unit realized as the sequential circuit block of
o ) ) . ] ) using th
Each microinstruction of the control unit presented in the Fig. 7 consists of two decompc
fields. The first one holds the code Q of internal states of the automaton, while the control 1
second contains output variables from the set Y. The next state of the controller is The |

determined by input variables X and by the current state of the control unit. The width effective,
of the address of the control memory may be calculated as |A| = n+ p, where n means
the number of the input variables and p represents the number of bits that are used
for encoding internal states of the controller [11]. The volume of the control memory
depends on the width of its address. Each additional bit doubles the volume of the
memory. Thus, very often such a volume exceeds the volume of dedicated memory
blocks of the FPGA. The solution to this problem may be functional decomposition of
the control unit (Fig. 8).
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X
ﬂn p
UMA
@W <n+p

Register
ﬂw
Control Memory

G

Y

Fig. 8. Functional decomposition of the control unit

In the system shown in the Fig. 8 the control memory is decomposed into two parts:
block of the address modification (CAM) and smaller memory that may be realized
using the dedicated memory block of the FPGA. There are many variants of such a
decomposition [29,62,63]. The main aim of all methods is to decrease the size of the
control memory using the minimum number of logic blocks of the FPGA.

The main benefit of the functional decomposition of the control unit is very high
effectiveness. The memory may be decomposed in such a way that dedicated memory
blocks of the FPGA are used to the maximum. In the other words the minimum number
of logic blocks are used to realize the circuit of the address modification. On the another
hand, only a part of a microinstruction is held in the memory after the decomposition.

4. STRUCTURAL DECOMPOSITION OF CONTROL UNITS —
COMPOSITIONAL MICROPROGRAM CONTROL UNITS

The structural decomposition of control units lead to the new microcontrollers

structures, known as Compositional Microprogram Control Units (CMCUs). Any flow-
ch

art of algorithm can be interpreted as the compositional microprogram control
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unit {13]. In the CMCU the control unit is decomposed into two main parts. The first
is responsible for addressing microinstructions that are kept in the control memory.
The role of the second part is to hold and generate adequate microinstructions.

Let’s introduce some definitions that will be needed later in order to describe the
CMCU more formally.

4.1. MAIN DEFINITIONS

Let the control algorithm [1] of a digital system [6,16,40] be represented as the
flow-chart I' [12] with a set of operational vertices B = {by,...,bx} and a set of edges
E. Each vertex b; € B contains microoperations Y(b;) € Y, where ¥ = {y,....,yn}
is the set of microoperations. Each conditional vertex of the flow-chart contains one
element from the set of logic conditions X = {xi,..., xz}.

Defininition 1. The operational linear chain (OLC) of the flow-chart [ is a finite
sequence of operational vertices ttg = (bgi,. .., bgrg) such that for any pair of adjacent
components of the vector «, there is an edge (b1, byir1) € E, where i is the number
of the component in the vector ¢, (i=1,...,Fg-1).

Defininition 2. The vertex b, € B is called as an input of the OLC «, if there is the
edge (b;,b,) € B, where b, is either initial or conditional vertex of the flow-chart I' or
operational vertex that does not belong to the OLC «,.

Defininition 3. The vertex b, € B is named as an output of the OLC «, if there is
the edge {b,, b;), where b, is either conditional or final vertex of the flow-chart I' or
operational vertex that does not belong to the OLC a,.

Defininition 4. The parameter M, is equal to the number of vertices in the longest
OLC a, of the ﬂow—chart I

Defininition 5. The minimum number of bits required to encode the variable M| is
represented as R and it is equal to: Ry =(logo M.

Defininition 6. The parameter M, is equal to the number of all operational chains
presented in the flow-chart I'.

Defininition 7. The minimum number of bits required to encode the variable M, is
represented as R; and it is equal to: Ry =\log, M,|.

Defininition 8. The parameter M; is equal to the number of all operational vertices
in the flow-chart I'. This parameter also indicates the total number of microinstructions
of the CMCU.
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Defininition 9. The minimum number of bits required to encode the variable Ms; is
represented as Ry and it is equal to: Ry =)log, M5[.

4.2. THE CMCU WITH BASE STRUCTURE

Let D? be a set of operational vertices that are included in the chain Ry = a,. Then
let C ={a1,...,a5} be a set of OLCs of the flow-chart I" satisfied to the condition:

D¥N DY =g + 7:8 9 € {1,...,G});
B=D'uD*uU..uUDC; (6)
DY +QB(g=1,..,6).

Let natural addressing of microinstructions is executed for each OLC a, € C:

Albginr) = Aby) + 160 = 1,..., ), )

where A(bg) is an address of microinstruction corresponding to the vertex b, € B.
In this case flow-chart I' can be interpreted by CMCU Upgs with mutual memory

(Fig. 9).
v Vo
T o A
X — CT B oM
- cc v
D
B RG Q

Fig. 9. The compositional microprogram control unit with base structure

There are four main modules in the CMCU Ugs: the combinational circuit CC,
the register RG, the counter CT and the control memory CM. The combinational
circuit and the register represent the simplified FSM of microinstructions addressing
St. Furthermore, the counter and the control memory form the microprogram control
unit S,. The RG keeps a code K (an) of the current state s,, € S of the CMCU, where
8= {s1,...,95} is a set of internal states. The register has Tlog, M, flip-flops and their
outputs ¢, € Q are used to encode states s,, € S, here Q =1{q1,..-.qr2}, 10Ol = Ry. The
transition from the state s, € S to the state s, € S is executed by switching the register
from the code K (a,,) to the code K (a,). Such a switching is determined by the excitation
function Q, € Q. The CT keeps the address A(b,) of the microinstruction ¥ (b,) that is
executed by a data-path [13]. Variables a, € A are used for the representation of the
addresses A(by). Microinstructions are kept in the CM having 2%! words. Each word
(microinstruction) has N+2 bits in a case of one-hot encoding of microoperations
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[64,65]. One of additional bits is used to keep an variable yy to organize the mode
of addressing (7). The second bit keeps a variable yg to terminate the fetching of
microinstructions from the control memory.

The presented CMCU Ugg operates in the following manner: at the beginning the
register is set to the value that corresponds to the initial state of the FSM. Similarly,
the counter is set to the address of the first microinstruction. If transitions are executed
inside the OLC «, € C, then yp = 0 which causes the increment of the CT and forbids
changing the state of the CMCU. When the output of the OLC «, € C is reached
then yp = 1 and the combinational circuit forms the excitation function for the register
setting it into the proper state [66,67,68]. Similarly the counter is set with the proper
value as well:

D = f(Q,X), ()

T = f(Q, X). )
Here X means the set of conditions, Q is the set of internal variables used to encode
the current state of the CMCU, D is a set of variables that form an excitation function
for the register D = {d|,...,dgy} and T is a set of variablesthat form an excitation
function for the counter T = {f1,...,lz2}.

Functions (8) and (9) form a code K(s,,) of the state of the transition in the register
and an address of the input of the next OLC a, € C. If the CT contains the address of
the microinstruction Y (by) such as (b,,b,) € E, then yx = 1. In this case the operation
of the CMCU UBS is finished {69,70,71].

The main benefit of the realization of the controlier as the compositional micro-

program control unit Ups is a possibility of implementation of the circuit CM using
dedicated memory blocks [72]. Other blocks of the prototyping system Upg are im-
plemented with the logic blocks (flip-flops and LUT elements) of the FPGA [3,73,74].
Such an idea lead to reduction of the number of logic blocks in comparison with the
realization of the controller as a traditional finite state machine and thus, the designer
can allocate wider area of the FPGA for another blocks of the prototyping system.
The effectiveness of the CMCU is especially high if the controller interprets the linear
flow-chart. Such flow-chart contains 75% of operational vertices or includes long linear
chains (segments) of operational vertices.
The second advantage of the CMCU is the possibility of selecting the implementation
method of the control memory. The designer can decide if the circuit CM should be
realized with logic blocks or with dedicated memory blocks. It is important especially
incase of designs, which consumes large area of the memory. Then the whole CMCU
is implemented with logic blocks of the FPGA.

In opposition to functional decomposition, structural decomposition of a control
unit permits to apply the idea of partial reconfiguration [14,75,76]. In this case, only
a part of the controller (the control memory) can be replaced while the rest of the
system remains untouched.
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4.3. WITH THE CMCU MUTUAL MEMORY
The structure of the CMCU Uy with mutual memory is presented in the Fig. 10.

There are three main blocks in the CMCU Umm: the combinational circuit CC, the
counter CT and the control memory CM [77].

| yo

X T A
CM

cC > ¢ >

Fig. 10. The structure of the CMCU with mutual memory

Distinct from the CMCU Upgg with base structure, in the CMCU Uy, the combina-
tional circuit generates the excitation function only for the counter:

T = f(Q,X). (10)

where X means the set of conditional vertices and A means the code that is determined
by the counter. Such a code is also the address of the microinstruction that is kept in
the control memory. The number of logic functions is decreased in comparison with
the CMCU Upgg, because the circuit CC doesn’t generate the excitation function for the
register. Thus the number of logic blocks of the destination programmable device is
reduced [40,78,79,80].

In the CMCU Uy, transitions between internal states of the controller are perfor-

med in the different way than it is in the CMCU with base structure. Here the address
generated by the counter is used to recognize the proper state of the control unit.
The controller operates as follows: at the beginning, the counter is set to the value that
corresponds to the initial state of the FSM which is equal to the address of the first
microinstruction. If transitions are executed inside the a, € C, then yp = 0. It causes
the incrementation of the CT and forbids changing the current state of the control
unit. When the output of the @y € C is reached, yp = 1 and the circuit CC forms
the excitation function for the counter (10). This function forms the code K(s,) of the
state of transition and the address of the input of the next OLC a, € C as well. If the
controller reaches an address of the microinstruction ¥ (by) such as (b, bg) € E, then
Yk = 1. In this case, operation of the CMCU U, is finished.

4.4. THE CMCU WITH FUNCTION DECODER

The microprogram control unit with function decoder U Fp is an extended structure
of the CMCU with mutual memory [78,81]. In comparison to the controller Uy, there
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is additional circuit (function decoder, FD) introduced. Figure 11 illustrates the CMCU
with function decoder.

Yo

z T >
cc FD cT M

)4
v

v

Fig. 11. The structure of the CMCU with function decoder

The main idea of the method is to reduce the number of logic blocks of the destination
FPGA due to the usage of additional block (function decoder) which may be imple-
mented using dedicated memories. Therefore, fewer LUT elements are used during the
realization of the control unit in comparison with the CMCU with mutual memory.
In the CMCU Upgp variables that form excitation function for the counter are
encoded with the minimum number of bits. To solve this task all inputs of operational
linear chains ought to be encoded. Now the circuit CC generates the function Z:

Z = f(X, A). (1)

Function Z contains encoded addresses E({) of all inputs in the set of OLCs. They are
further decoded by the circuit FD which indicates the proper code for the counter:

T = f(Z). (12)

The number of bits that are required to encode all inputs can be calculated as
Rz = llogogMy[, where M, = |I| is equal to the number of all inputs in the set of
OLCs.

Presented solution permits to reduce the number of outputs generated by the circuit CC.
Additional block of the function decoder is implemented with dedicated memories of
FPGAs. Therefore, the number of logic elements that are needed to implement whole
controller is reduced.

4.5. THE CMCU WITH OUTPUTS IDENTIFICATION

The structure of the CMCU Uy, with outputs identification is illustrated by the
Fig. 12. The main idea is to use the part of the address A for the identification of the
internal states of the control unit. Now the set of variables O (Q C A) represents the
code of the current state of the controller [80,82].
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l :

X —b T A
cc [—® CT Bl oM

I a

Fig. 12. The structure of the CMCU with outputs identification

In the CMCU Uy, the set of feedback variables A that are used for the identification of
the current state of the controller is reduced to the minimum. Outputs of the operational
linear chains may be recognized using Ry, bits thanks to the special encoding of

microinstructions [83,84,85,86,87]. Therefore, the combinational circuit generates the
function T" for the counter [83,88]:

T = f(X, Q). (13)
4.6. THE CMCU WITH OUTPUTS IDENTIFICATION AND FUNCTION DECODER
The CMCU Upp with outputs identification and function decoder (Fig. 13) is

a conjunction of two structures presented in previous sections. There is a special

addressing of microinstructions used in the CMCU Uop. Moreover, maximal encoding
of the set of variables A is performed as well.

l "
X —»]

CC I @ — cT oM

Fig. 13. The structure of the CMCU with outputs identification and function decoder

To improve the reduction of LUT elements of the implementation of CMCUs U

and Uy,, both methods may be combined. Now the combinational circuit generates the
excitation function Z for the circuit FD:

Z=fX, 0. (14)

where X means the set of input variables of the CMCU (conditional vertices) and

0 € As a feedback function generated by the counter. The function decoder generates
Proper addresses of microinstructions:
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r=f(Z). (15)

where T means the set of variables that form the excitation function for the counter.

4.7. COMPOSITIONAL MICROPROGRAM CONTROL UNITS WITH SHARING CODES

In a CMCU with sharing codes the microinstruction address is determined by both
codes generated by the counter and by the register. The aim of such a method is the
reduction of logic blocks of the FPGA. Figure 14 shows the CMCU Ug¢ with sharing
codes [89,90,91,92]. The main idea is to use both codes generated by the counter and by
the register to form the microinstruction address. Therefore, the number of variables
that are used for encoding of the excitation functions for the counter is reduced in
comparison to the CMCU Ugg.

v v,
T A J
X —p EEEE— CT
cC CM

LA

—pY

Fig. 14. The structure of the CMCU with sharing codes

In the CMCU with sharing codes the microinstruction address A(b,) is represented as
a concatenation [39]:

A(br) = K(ag)  K(by). (16)

Here K(a,) is a code of the OLC « € C with R, =]log;M;[ bits, where M, defines
the number of OLCs in the initial flow-chart I'; K(b,) is a code of a component of the
OLC a4 € C corresponding to the vertex b, € B. Code K(b;) has R;= 1log,M/[ bits,
where M; is equal to the maximum amount of components in the OLC a, € C. Sign
(*) in (15) is used for concatenation operation.

In the CMCU Ugc¢ the combinational circuit CC generates excitation functions for
the counter CT and for the register RG:

I'= f(X,0), amn

D= f(X.,0), (18)
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The RG is in charge of holding the code of the current OLC. Additionally it generates
an upper part of the microinstruction address. The CT keeps only the number of the
active component (block) in the current OLC. Therefore it determines the lower part
of the microinstruction address.

4.8. THE CMCU WITH SHARING CODES AND FUNCTION DECODER

The CMCU Usp with sharing codes and function decoder is shown in the Fig. 15.
The main idea is to reduce the number of outputs of the combinational circuit thanks
to the encoding of the excitation functions for the counter and the register. Therefore,
the number of logic blocks required for implementation of the CMCU is reduced. The
additional block — function decoder — decodes and sends proper values for the counter
and for the register. Function decoder can be implemented with dedicated memory

blocks.
Y J V,
X — i B CT A

cc » FD —»| CM
L RG Q

Fig. 15. The CMCU with sharing codes and function decoder

—p Y

In the CMCU Usyp, the set of variables that form the excitation function T for the
counter and the set of variables that form the excitation function D for the register
are encoded. Similarly to the CMCUs Upyp and Uor shown in the previous section,
all inputs of the set of OLCs are encoded. The combinational circuit generates the
excitation function Z for the function decoder:

Z=[X0), (19)

Function Z contains encoded addresses Q of all inputs / in the set of OLCs. They are

further decoded by the circuit FD which indicates the proper code for the counter and
for the register:

= [, (20)

D = f(2), 2D
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4.9. THE CMCU WITH ADDRESS CONVERTER

The method of sharing codes makes sense only if the size of codes generated by
the register RG and by the counter CT is equal to the width of the microinstruction
address [13]. Then the following condition is fulfilled:

Ry +Ry; =R5. (22)

In most cases the total number of bits generated by the register and by the counter
exceeds the width of the microinstruction address. The condition (22) is violated be-
cause R; + Ry > R3 and the volume of the control memory grows drastically. The
minimum volume of the memory can be calculated as:

Sem = (N +2) %28, (23)

where Scy means the total volume of the control memory, N+2 counts the total number
of microoperations kept in the control memory (N is the number of microoperations
while two additional bits are formed by vy and yg), and R3 defines the minimum
width of the address. It is clear that each additional bit in the microinstruction address
doubles the total volume of the memory.

To solve such a problem the CMCU with address converter can be used. The
method is based on the application of the additional block (address converter) in the
CMCU structure (Fig. 16). Such an approach has sense only if the condition (22) is
violated and the total quantity of codes generated by the register and by the counter is
greater than the width of the address of the control memory.

Y Y
A
> > o | ca D cm
| cc > Ly
D
» RG Q

Fig. 16. The structure of the CMCU with address converter

Let K(a,) be the state code of the register and K(b,) the state code of the counter.
According to the (14), the microinstruction address A(b,) is calculated as the concate-
nation of these codes:

A(by) = K(ag) * K(b,).
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In the CMCU U¢, the address generated by the register and by the counter is converted
by the address converter.
Now the circuit CC forms the system of functions:

T = f(X,0), (24)

D= f(X,0Q), (25)

and the circuit CA converts generated addresses, forming the new function V:

V=V(QX), (26)

Here V = {v,,...,vg3} is the set of addresses of the control memory.

Presented solution permits to combine the positive features of the traditional CMCU

with base structure (Ugs) and with sharing codes (Ugc) such as:

» minimal number of inputs and outputs of the combinational circuit CC (compared
with the Ugc);

e minimal width of an address of the control memory (in comparison with the Ugc).

It is clear that application of a given method makes sense only if the implementation

of the CMCU with additional address converter requires fewer memory blocks of the

destination FPGA than CMCUSs based on the standard structure Usc.

4.10. THE CMCU WITH ADDRESS CONVERTER AND FUNCTION DECODER

This section presents the last method of synthesis of the CMCU with sharing
codes that is proposed in the paper — the CMCU Ucp with address converter and
function decoder. Such a controller combines two ideas presented in previous sections.
Application of the address converter permits to minimize the volume of control mermory
if the condition (22) is violated, while the additional function decoder reduces required
logic elements for implementation of the CMCU.

The CMCU U¢p with address converter and function decoder is shown in the
Fig. 17. Excitation functions 7' for the counter and D for the register are encoded
with the minimum number of bits. Now the combinational circuit CC generates the
excitation function Z for the function decoder:

Z=fX,0), 27)
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| cc » FD —» CA MLy
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Fig. 17. The CMCU with address converter and function decoder

Function Z contains encoded addresses Q of all inputs / in the set of OLCs. They are
further decoded by the circuit FD which indicates the proper code for the counter and
for the register:

T=f2), (28)
D = f(2), (29)

Finally the address indicated by the counter and by the register is converted via the
circuit CA:

V = f(T, D), (30)

5. RESULTS OF EXPERIMENTS

This section presents results that were achieved during the logic synthesis and
implementation of CMCUs. All synthesis methods were verified with over 70 bench-
marks. Additionally, there was an FSM model prepared for each test. The automaton
was created according to the rules presented in [93,94]. It should be pointed out that
all FSMs were prepared in such a way, that during implementation, all microoperations
were realized with dedicated memory blocks of the FPGA.

The prototyping process for each benchmark was similar. Based on the flow-chart
description (.fc file), the controller was structurally decomposed with all 8 synthesis
methods presented in the article. Additionally, there was an equivalent FSMproduced.
Achieved Verilog codes were finally synthesised and implemented with the Xilinx XST
tool.

Table 1 presents average results of the CMCU implementation designed with the
particular synthesis method in comparison to the FSM and to the traditional CMCU
with mutual memory. As the destination, the FPGA XC2VP30 (Xilinx Virtex-II Pro
family) was selected. The device contains 27392 Flip-Flops, 27392 LUTs (13696 Slices)
and 136 dedicated memory blocks (Block-RAMs). The device was selected because
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of its structure (it can be partially reconfigured) and its availability at University of
Zielona Goéra.

Table 1

Average results of experiments

FPGA Designing method
resources FSM MM FD Of OD SC SD CA D
Slices  100% 91% 73% 76% 60% 57% 5% 53% 50%
Comparison FF 100% 100% 105% 102% 108% 120% 127% 122% 125%
to the FSM LUTs  100% 91% 71% 78% 60% 57% 50% 54% 49%
BRAMs 100% 100% 136% 102% 126% 279% 320% 151% 186%
Comparison  Slices  110% 100% 82% 84% 68% 62% 57% 60% 57%
to the CMCU FF 100% 100% 105% 102% 108% 120% 127% 122% 125%
with mutwal — LUTs  110% 100% 81% 86% 68% 63% 57% 62% 57%
memory BRAMs 100% 100% 136% 102% 126% 279% 320% 151% 186%

The meaning of abbreviations:

¢ FSM - realization of the controller as the FSM;

¢ MM - realization of the controller as the CMCU with mutual memorys;

o FD - realization of the controller as the CMCU with function decoder;

* OI - realization of the controller as the CMCU with outputs identification;

¢ OD - realization of the controller as the CMCU with outputs identification and

function decoder;

SC ~ realization of the controller as the CMCU with sharing codes;

* SD - realization of the controller as the CMCU with sharing codes and function
decoder;

» CA - realization of the controller as the CMCU with address converter;

¢ CD - realization of the controller as the CMCU with address converter and function
decoder.

6. CONCLUSIONS

The detailed analysis of results of investigations shows, that the number of logic

blocks that are required for implementation of the controller in the FPGA is strongly
tied with the number of microinstructions that are held in the control memory.

In case of relatively small devices where the control memory may be implemented

with one dedicated memory block, the realization of the controller as the CMCU Usp
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with sharing codes and function decoder gives the best results. Firstly, it requires
average the fewest number of logic blocks among all presented methods. Furthermore,
the control memory is implemented with one dedicated memory block, thus there is
no need for application of the address converter. Obviously application of the function
decoder is optional — its usage reduces the number of logic blocks but increases the
number of dedicated memories.

According to the (21), if the total number of bits generated by the register and
counter exceeds the width of the microinstruction address, the CMCU Uqp with address
converter and function decoder ought to be selected. It should be pointed out that
results gained during realization of the controller as the CMCU Ugp are similar to
the values achieved for the CMCU Uc¢p. The number of required logic blocks for
implementation of both controllers are almost the same. However, in case of control
units that contain memories that ought to be decomposed (their volume exceeds the
volume of one dedicated memory block), the CMCU with address converter requires on
average by 46% fewer dedicated memory blocks than the CMCU with sharing codes.
These results prove the effectiveness of application of the address converter in case of
CMCUs, where the address indicated by the counter and by the register is wider than
the minimum number of bits needed for microinstructions addressing.

The CMCU Ugp, with address converter and function decoder consumes the fewest
number of logic blocks of the destination FPGA in case of controllers where the
control memory is decomposed (which means that more than one BRAM is used).
Such a realization requires only 49% LUTS in comparison to the FSM and 57% in
comparison to the CMCU with mutual memory. It means that the proposed synthesis
method with address converter and function decoder reduces the number of logic
blocks that are used for implementation of the controller over two times in comparison
to the traditional automaton. On the other hand, there are more dedicated memory
blocks required for realization of the control unit. The number of dedicated memory
blocks increases on average by 86%, therefore the CMCU Ucp is the best solution
for implementation of the controller in FPGAs that contain enough dedicated memory
blocks. Finally, among controllers that produce more than 150 microinstructions, the
CMCU Upp with outputs identification and function decoder gives the best results. In
this case, such arealization on average requires the fewest dedicated memory blocks
and usually the fewest logic blocks as well.

The criteria of all experiments were to reduce the number of logic blocks that
are required for the controller implementation. The detailed analysis of the results of
experiments showed that selection of the proper synthesis method may be tied with the
structure of the CMCU. There are three typical situations when the proper synthesis
algorithm can be proposed:

o In case of relatively small systems (where the number of microinstructions does
not exceed 150 and the control memory can be implemented with one dedicated
memory block), the CMCU with sharing codes and function decoder seems 0
be the best solution. However, it should be pointed out that such a realization
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consumes at least two dedicated memory blocks of the FPGA. Therefore, if a
number of available dedicated memory blocks is limited, the method with outputs
identification should be used.

In case of controllers where the volume of the control memory exceeds the volu-
me of one dedicated memory block and the total number of microinstructions is
fewer than 150, the CMCU with address converter and function decoder gives the
bestresults.

In case of controllers where the total number of microinstructions exceeds 150, the
CMCU with outputs identification and function decoder ought to be selected.
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New architectures of FPGA devices combine different type of logic elements like
look-up tables. flip-flops and memory blocks. But standard synthesis methods utilize only
look-up tables and flip-flops and it makes that device utilization is not optimal one. Me-
thods of synthesis and implementation of Mealy finite state machines into FPGAs there are
presented in this article. Synthesis methods are based on the architectural decomposition
of logic circuit of FSM and multiple encoding of some its parameters. Architectures of
such designed structures are based on existence of decoders as second-level circuits. There
is also proposed hardware implementation into FPGAs of developed multi-level structures.
The hardware implementation is based on an implementation with use of look-up tables and
memory blocks together. The combinational circuit and the register are implemented with
use of logic blocks, like in standard realizations. While, decoders are implemented with
use of memory blocks. Such realization leads to balanced and rational usage of hardware
resources of modern FPGA devices.

i
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Keywords: control unit, decomposition, FSM, FPGA, synthesis

I. INTRODUCTION

The silicon product development grows very fast. This rapid evolution has resulted
inappearance of very large scale integration (VLSI) chips and circuits. It makes possibi-
lity to implement a complex digital system in a single chip as a System-on-Programma-
ble-Chip (SoPC) [21], [28]. Such digital system can be also represented as a data path
and a control unit [7], [23]. The representation with this decomposition gives oppor-
tunity for reuse of early designed components or for use of intellectual property cores
(Ip Cores), that are available on the silicon market, for data processing. It means, that
only a control unit has to be designed from the beginning.
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Finite state machines (FSMs) [4], [23] are still one of the most popular ways of
realization of an algorithm of a control unit. Because a control unit is a part of almost
any digital system, optimization of a synthesis process of its digital circuit is a very
important subject of many works. ,

Nowadays, FPGA devices are one of the most popular for realization of whole
digital devices as SoPC. It creates new needs of fit a control unit into available hardware
resources after implementation of a data patch. Because new FPGAs have different kind
of logic elements, like look-up tables (LUTS), registers, and embedded memory blocks,
it makes that not only reduction of hardware resources required for implementation of
a finite state machine is a goal but also possibility to balanced usage of different types
of resources.

The methods of synthesis proposed in this article are based on the structural de-
composition of FSM logic circuit and multiple encoding of some parameters of FSM
divided into subsets based on a current state or a currently executed microinstruction
[17], [19]. This encoding allows to decrease a number of logic functions implemen-
ted by the combinational circuit of an FSM. Internal parameters are decoded in the
second level circuit based on the multiple code and the code of a current state or the
code of a currently executed microinstruction. Because this system is regular it can
be implemented with embedded memory blocks. It leads to decreasing a number of
LUTS required for implementation of a logic circuit of an FSM and balanced usage of
different resources of an FPGA device.

2. MAIN DEFINITIONS

2.1. FINITE STATE MACHINE DEFINITION

A finite state machine is a mathematical model of behavior composed of a finite
set of input symbols, a finite nonempty set of states, a finite set of output symbols,
transitions and actions [1], [4]. This model can be represented as six tuple:

S=(XY,A ay,0,w) N

where:

» X is a finite set of input Boolean variables, X = {x1,...,x.};

e Y is a finite set of output Boolean variables, called microoperations (nO),
Y=1{y,....on};
A is a finite, nonempty set of states, A = {ay,...,au};
ay is the initial state of the FSM, a; € A;
§ is a transition function, defined as a function of a state and affirmation or negation
of some input variables:

§:AXX > A; @

?
.
§
§
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e (w is an output function, and in case of Mealy model it is defined as a function of
a state and affirmation or negation of some input variables:

\ WIAXX Y 3)
In case of Moore model it is defined only as a function of a state:

w:A->Y. 4)
2.2. DIRECT STRUCTURAL TABLE DEFINITION

Such defined a Mealy FSM can be set up by a direct structural table (DST) [4].
DST is a one-dimensional state transition table extended with some additional columns,
and it has following columns: a,,, K(a,,), a,, K (as), Xy, Yy, Dy, h. Here a,, is a current
state of an FSM, a,, € A;K(a,,) is a binary code of the state a,, with R = [ log, M
bits, the internal Boolean variables ¢, € Q = {q1,....qr} are used to encode states a,,;
as is the next state, a; € A; K(ay), is a code of the state as; Xy 18 a condition of
transition {a,,, ay), it consists of conjunction of affirmation or negation of some logic
elements from the set X; Y, is the microinstruction (ul) which is formed during the
transition (@, a,), ¥, CY;®y, is the set of memory excitation functions that are equal
to 1 to switch an FSM from K(a,,) to K(a,), ®, C D = {D1,....,Dg} as a rule D type
flip-flops are used to form a memory — there are considered only D type flip-flops
because typical FPGAs are build only from such flip-flops; £ is a number of the DST
line, h = 1,....H.

2.3. SINGLE-LEVEL STRUCTURE
The DST table is used as the base to form the system of functions:
Y =Y(Q, X), 4)

O = O(Q, X). (6)
This system corresponds to functions (3) and (2) and it describes a single-level circuit
of Mealy FSM (Fig. 1). This structure is called P Mealy FSM. Here the circuit P
implements system of functions (5), (6) and it is implemented with the use of LUTs
in FPGA technology. The number of required LUTs strongly depends on complexity
of these systems and possibility of its functional decomposition [25] and there is no
possibility to correctly estimate this value. The register RG represents the memory of
ESM and it is build from R D type flip-flops. The RTL schematic of this single-level
Sttucture for FPGA technology is presented in Figure 2. One of the drawbacks of
the structure P is a big number of LUTS required for implementation of combinational
circuit P, It is caused also by big number of logic functions implemented by this circuit:

n,(P) =N +R. N
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X Y
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Fig. 1. Structural diagram of P Mealy FSM
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Fig. 2. RTL schematic of P Mealy FSM
2.4. BASE DOUBLE-LEVEL STRUCTURE

One of the known methods of decreasing the number of required LUTs is applica-
tion of analytical methods of a functional decomposition [24], [27]. This decomposition
operates on Boolean functions obtained during the synthesis process and it is prefor-
med in its final phase of synthesis. These algorithms do not affect the total number of
functions realized by a combinational circuit of an FSM.

In other ways, the decreasing of number of required LUTs can be achieved by
reduction of the number of implemented logic functions. This reduction can be made
by application of structural decomposition [4], [6] of logic circuit of an FSM. The
structural decomposition follows on a system level and it is applied in early stage
during the synthesis process. It refers to the process by which a complex circuit is
broken down into parts that are easier to implement. In case of finite state machine
it splits the combinational circuit into several circuits which together have the same
function but each of them has different nature. The system after decomposition has
a multi-level nature because data is processed serially and passed from one circuil
to next one. It means that the both decomposition methods should not be treated as
competitive ones and, what more, they can be applied together in the synthesis process.

Let the DST contain 7 different microinstructions Y, € Y. Encode microinstructions
with maximal encoding method by assigning to each set ¥, the binary code K(¥}) with
Ny = [log,T7 bits (r = 1,...,T). Use variables z, € Z = {2152, } for representation of
these codes. In this case a Mealy FSM can be implemented as double-level circuit (Fig.
3) named as PY Mealy FSM [7]. The register RG is exactly the same as in single-level
structure. The circuit Y implements the system of functions:
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Y

Xy 4
_@—»RG

o — |

Fig. 3. Structural diagram of PY Mealy FSM

Y =¥@) | )

and transforms the code K(Y,), represented by variables z,, into the microinstruction Y, /s
built from microoperations y,. Because system (8) has a regular structure this circuit
can be effectively implemented using embedded memory blocks. Now the circuit P
implements systems (6) and:

Z=2Q.%), ©)

it is implemented with use of LUTS like for single-level structure. The RTL schematic
of double-level PY structure for FPGA technology is presented in Figure 4.
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Fig. 4. RTL schematic of PY Mealy FSM

This structure permits to reduce the number of Boolean function to:

n,(PY) = Ny +R. 10)

B‘Ul this number is still relatively big and it makes such a structure need still relatively
bxg number of LUTS for implementation of the circuit P. It makes that application of
this siructure in a process of an FPGA implementation is not grateful. Additionaly the
US‘ag.c of embedded memory blocks of FPGAs is not effective because of application of
}]{;zi)(l‘lllal.cn?()ding 11.1¢thod. Howcyer it does not disqualify structural decomposition.
¢ application of different encoding method gives prospective results.
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3. STRUCTRURAL DECOMPOSITION WITH MULTIPLE ENCODING

The double-level structure and method of its synthesis, presented in previous sec-
tion, can be adopted into an FPGA technology. It required application of special me-
thods of encoding [10], [11] and modification of a logic circuit structure. Proposed
methods are based on a multiple encoding [15] of some parameters of a state machine,
The structure of logic circuits depends on which parameter is multiple encoded and
which parameter is used as a partial code.

A multiple encoding can be applied for some parameters of a state machine, like
microinstructions or internal states [14]. The set of these parameters is partitioned
into several subsets. Then parameters are encoded separately in each subset. The same
codes are used for different subsets. The partition into subsets is made base on other
parameter, like a current state or a currently exccuted microinstruction. The logic circuit
of such designed state machine required special structure. Type of blocks and their
connections depend on which parameter is multiple encoded and which parameter is
used as a partitioning set. Generally, such circuit is realized in a double-level structure
with a combinational circuit on a first level and a decoder on a second level,

3.1. MULTIPLE ENCODING OF MICROIMSTRUCTIONS

The method with a maximal encoding of microinstructions can be modified by ap-
plying the multiple encoding for a set of microinstructions [8], [13], [14]. Let partition
a set of all microinstructions T = {¥{,...,Y7} into subsets based on a current state a,,.
It Jeads to existence of M subsets Y{(a,) € Y and a microinstruction ¥, € Y{a,,) if it
is executed during any transition from the state a,,. Let

Ty = T(am)| (11)

and

To = max (Ty,...., Tw). (12)

Let encode each microinstruction Y; € Y(a,,) by a binary code K, (¥;) with bits.

N; = [log,To] (13)

Because Y(a,) CY(To<T) then N, <N,. But for typical control algorithm
Y(a,) ¢ Y and Ty < 7 and in this case also N, < N; and this condition has
to be satisfied for benefits from application of this method [14]. Let use variables
W, € ¥ = {Y,...,.¢n,} for representation of codes K, (Y;). In this case the code of
a microinstruction K(Y,) is represented by concatenation of the multiple code of the
microinstruction K,,{Y;) and the code of the current state K{(a,,):

K(Yy) = Ki(Y1) * K(ap). (14

R
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G A digital circuitof an FSM with such encoding can be implemented as a double-level

structure PYqo (Fig. 5). The RTL schematic of this structure for FPGA technology is
ous Sec presented in Figure 6. This structure permits to decrease the number of outputs of the
bcbizil me circuit P in comparison to the structure PY. Here the circuit P implements the system
roposed (6) and the system '
nachine.

X ¥
ded and Lp b
P Y H»

. . (4}
ine, like RG
rtitioned
"he same o
on other . ; )
ic circuit Fig. 5. Structural diagram of PY, Mealy FSM
and their ‘

ameter is

p i(r Y
structure E:X}__L P
00K Y
| o = ST - |
=t
CLK
| .
ar o
ed by ap-
partition R
state ay,.
(a,,) if it Fig. 6. RTL schematic of PY, Mealy FSM
.
(11) § ¥ =YX, Q. (15)
% It has to implement
§ : n,(PYq) =R + N, (16)

logic functions. The circuit Y implements a decoding system

| |
©F | Y =Y(¥,Q), (17)
aleorithm | where the variables from the set ¥ are used to detect a adequate microinstruction for
jit%on has current state that is identified by variables from the set Q.
variables The entering point for synthesis process with structural decomposition is a format-
ard

ted DST and it consists of the following steps:

a multiple encoding of microinstructions,

a formation of the transformed direct structural table,
a formation of the system of Boolean functions,

a formation of the decoder table,

e code of
yde of the

9
]
L 4
L 4

(14)




250 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

e an implementation of the logic circuit of the FSM.

The multiple encoding of microinstructions is based on binary encoding of micro-
instructions Y, in each subset T(a,,). It means that if one microinstruction ¥, belongs
to several subsets T(a,,) it also receives several codes K, (¥;).

The formation of the transformed divect structural table is base for formation of
systems (6) and (15). It is created from the original DST by replacing the column
¥, by the column W, The column ¥, contains variables ¢, € ¥ (n = 1,...,Ny), that
are equal to 1 in the code K, (Y;) of the microinstruction Y; from the A-th line of the
original DST.

The formation of the system of Boolean functions is base for obtaining systems (6)
and (15). The system (6) is defined as:

o ) \
D, = h\:/l((/rh A [(h)a (18)

where r = 1,...,R ; C,, is a Boolean variable equal to 1 iff the A-th line of a DST
contains the function D, in the column Oy;

by, = Aﬁ; A X, (19)

where A’,ﬁt is a conjunction of internal variables @, € Q corresponding to the code
K(a,,) of the state a,, € A from the h-th line of the DST

4 ]l — R [I?W
Am - /\1 Qr ’ (20)

where [,,, € {0, 1} is a value of the r-th bit of the code K (a,,): Q? = @r and Q,l. =0,
[5]. Based on the similar way system (15) is defined as:

H
Wn == IzYI(Cnh A Fh)a (21)

where n = 1,...,Ny ; C,, is a Boolean variable equal to 1 iff the h-th line of the
transformed DST contains the function i, in the column ¥y,
The formation of the decoder table. This step forms the table that describes behavior
of the circuit Y based on the system (16). This table has four columns:
e K(a,) is a binary code of the current state d,,;
e K, (Y,) is a binary code of the microinstruction ¥; from the subset Y(a,,);
e Y is a binary representation of the microinstruction Yy, y, = 1, iff y, € Y, and y, =0
Ty, ¢ ¥, n=1,.N;
® [y is a number of the line, #y = 1,...,2%: T
The implementation of the logic circuit of the FSM in FPGA. The combinational
circuit P, represented by systems (18) and (21), is implemented by LUTS, and the
register RG is implemented by D flip-flops. The decoder Y is implemented using an
embedded memory blocks (Fig. 6) with 22 words of N bits and the content of
the memory is described by the decoder table where the concatenation of a binary

%
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R
code of a current state and a binary code of a microinstruction (13) is an address
of micro and the binary representation of a microinstruction is a value of word. There can be

assigned any (don’t care) values for addresses omitted in decoder tables because such
concatenations of both codes are never used. Memory blocks in popular FPGAs are
synchronous ones [2], [30]. The clock signal for memory blocks is the same as for the

Y, belongs

‘mation of

e column register but memory blocks are lriggéd by opposite edge (in .this case falling gdge).
NS, that It cause that dgla is r§ady o @ad after one .c?/cle and there is no need (o walt. one
line of the clock cyc.le until data is stgble [17]. They additionally work also as an output regm@r.

Such registers are needed in each digital system with Mealy’s outputs to stabilize its
ystems (6) operation [7], [21]. Other input signals of memory blocks are connected to logic 1 or

logic 0, according to specification [30], (o satisfy read-only mode.

(18) 3.2. MULTIPLE ENCODING OF INTERNAL STATES

of a DST The synthesis method with multiple encoding of internal states [9], [11], [19]
applics multiple encoding for the set of internal states. In this case, current states [13],
[15] or microinstructions [14] can be treated as a partitioning set,

(19)

o the code 3.2.1. CURRENT STATES AS A PARTITIONING SET
In first approach, let partition the set of internal states a; € A = {ay,...a,,} into

20) subsets based on a current state a,, € A. It leads to existence of M subsets Ala,) C A
and an internal state a; € A(a,,) if it is the state of transition from the state an. Let

1d Q;l = Qr
§ M, = |A(ay)] (22)
.
% and
21)
=
line of the % M{ = max(M?{,... ML), (23)

s behavior Let encode each internal state a, € Ala,,) by a binary code K,,(a;) with bits,
Ry = [log,M{ (24)
m);

dy =0 In a theoretical case A(a,,) C A (M{ <M)= R, <R.Butina typical state machine
¢ anG y, =

Ala,) ¢ A and M(’)“ < M and of course R, < R. This condition has to be satisfied
or benefits from application of this method. Let use variables 7, € T = TR,
or representation of K (as) codes. In this case the code of internal state K(ay) is
epresented by concatenation of the multiple code of the internal state K,,(a,) and the
¢ode of the current state K {an):

mbinational
Ts, and the
ed using an
. content of

of a binaty K(as) = Km(as) * K(am)‘ (25)
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A digital circuit of a FSM with such encoding can be implemented as the double-leve]
structure PAY (Fig.7). The RTL schematic of this structure for FPGA technology is
presented in Figure 8. Here the circuit P implements the system (9) and the system

. , Y
....—:P
g T

f"co-‘?’»RG

9

Fig. 7. Structural diagram of PAY Mealy FSM

yee
p Y
X 1 7 BRAMS
wrs DOR Y
ab ° o _O;NLLK DO"—G
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BRAMS
CLK AR RG
i £ BGK PO L2t o e
il —t GRD
ar
GRD
Q
RST

Fig. 8. RTL schematic of PAY Mealy FSM

T = T(X, O, (26)
and it implements

ny(PAY) = Ry + Ny. 27
Boolean functions. The circuit Y implements a decoding of microinstructions system
(8). There is additional circuit CC that decodes internal states and generates a excitation
functions;

O = (T, Q), (28)

where the variables from the set T are used to detect a next state for current state that
is identified be variables from the set Q.

The starting point for synthesis with structural decomposition is the formated DST
and it consists of the following steps:
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e, !
| ¢ an encoding of microinstructions,
ouble-leve] B - .. .. ‘,
hnology i« o a multiple encoding of internal stares,
;e tgy s ¢ a formation of the transformed direct structural table,
syste . . . . .
ysiem o 2 formation of the system of Boolean functions,
o a formation of the microoperation decoder table,
¢ a formation of the internal state code converter table,
o an implementation of the logic circuit of the FSM,

The encoding of microinstructions is based on a (rivial way of a binary encoding.
Let us encode each microinstruction ¥, € Y by a binary code K(Y;) with N, bits.

The multiple encoding of internal states is based on assigning a binary code K,,(a;)
(o internal states a, in each subset A(ay,).

The formation of the transformed direct structural table is base for formation of
systems (9) and (26). It is created from the original DST by replacing the column
¥, by the column Z;, and columns K(a,) and @, with columns K, (as) and Ty. The
column K,,(a;) contains the multiple code of the internal state. The column T, contains
variables 7, € T, r = 1,...,Ry, that are equal to 1 in the code K, (a,) from the same line
of the DST.

] ~ The jormation of the system of Boolean functions is base for obtaining systems (9)
and (26). The system (9) is defined as:

H
in = hyl (Con AN F ) (29)

and the system (26) is defined as:

H
Tr = hyl(crk A Fy), (30)

where n = 1,..,Ny; r = 1,.,R;; C,;, is a Boolean variable equal to 1 if the A-th line
of the transformed DST contains the function Z, in the column Z,; C,;, is a Boolean
variable equal to 1 if the A-th line of the transformed DST contains the function 7, in
the column T},

The formation of the microoperation decoder table. This step forms the table that
describes behavior of the Y circuit. This table has three columns:

(26)

o S R A A
s B e S
A - e

@7 ¢ K(¥,) is a binary code of the microinstruction Y

* Yis a binary representation of the microinstruction Yoy, =1iffy,eY,and y, =0
ity,¢Y, n=1,.,N:

1 is a number of the line, ¢ = 1,..,7T.

ctions gysten
g a excitation

The formation of the internal state code converter table. This step forms the table
that describe behavior of the circuit CC. This table has four columns:

K(a,) is a binary code of the current state s

Kn(ay) is a binary code of the internal state as from the subset A(a,,);

b is a binary representation of excitation functions that switches the memory of
the FSM from K(a,,) to K(as), in case of D type flip-flops D, = QF, r = 1,....R;

(28)

]
T
rent state tha .

L i
G e e i 5

ormated DST
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e g is a number of the line, mg = 1,..., Zﬁf:lM,ﬁ\;.

The implementation of the logic circuit of the FSM. The combinational circuit P
is implemented with LUTs and the register RG with D type flip-flops (Fig. 8). The
decoder Y is implemented using embedded memory blocks as for the structure PY. The
internal state converter CC is also implemented with embedded memory blocks with
2R wwords of R bits and the content of the memory is described by the internal state
code converter table where the concatenation of the binary code of the current state and
the binary code of the internal state (25) is an address and the binary representation
of excitation functions is a value of the word. There can be assigned any (don’t care)
values for addresses omitted in the table because such concatenations of both codes are
never used. Becouse memory block is trigged by opposite edge of clock the next state
is latched in the register RG exactly after the same numer of cycles like for single-level
structure [19].

3.2.2. MICROINSTRUCTIONS AS A PARTITIONING SET

In second approach, let partition the set of internal states a; € A = {d1,...,a,} Into
subsets based on currently executed microinstruction ¥, € ¥. It means that there is also
required application of the maximal encoding of microinstructions because a usage of
microinstructions codes only makes sense — set of microoperations create too long
vector, It leads to existence of T subsets A(Y,) € A and the internal state a, € A(Y,) if
it is the state of transition when the microinstruction Y, is executed. Let

M} =AY 31)

and

My = max(M{,..., M¥). (32)

Let encode each internal state a; € A (¥;) by a binary code K,(a,) with bits,

Ry = [log, MY (33)

In theory A(Y;) € A and (Mg < M) = R, < R, but for implementation of typical
algorithms A(Y;) ¢ A and Mg < M and it leads to R, < R. This condition has to
be satisfied for the benefits of application of this method. Let use variables 7, € T =
{7T1,...,Tr,} for representation of codes K;(A,). In this case the code of the internal state
K (ay) is represented by concatenation of the multiple code of the internal state K, (a;)
and the code of the currently executed microinstruction Y;:

K(as) = Ki(a,) = K(Yy). (34

A digital circuit of a FSM with this encoding can be implemented as a double-level
structure PYY (Fig. 9) [14]. The RTL schematic of this structure for FPGA technology
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is presented in Figure 10. Here the circuit P implements systems (9) and (26) and it
realizes

PR e B e
Xy |z

Tl_;
CC 1% RG

0

Fig. 9. Structural diagram of PYY Mealy FSM

X P vee
e 3 I [
r...l o f e 2 BRAMS
¥ee  ¢C
: BRAMs

CLK £ooR RG

L ::}L‘u« o] D Q
«ig —b
an
o
Q

RST

{

Fig. 10. RTL schematic of PYY Mealy FSM

no(PYY) = R, + Ny (35)

logic functions. The circuit Y implements a decoding of microinstruction system (8).
There is also the circuit CC that decodes internal states and generates an excilation
function system:

® = OT,Z), (36)

where the variables from the set T are used to detect a next state for currently execute

microinstruction that is identified by its code represented by variables from the set Z.
The starting point for synthesis with structural decomposition is the formatted DST

and it consists from following steps:

* an encoding of microinstructions,

a multiple encoding of internal stares,

a formation of the transformed direct structural table,

a formation of the system of Boolean functions,

a formation of the microoperation decoder table,

8
L]
@
L]
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a formation of the internal state code converter table,

an implementation of the logic circuit of the FSM.

The encoding of microinstructions. This step is exactly the same as for the previous
method of synthesis. _

The multiple encoding of internal states is based on assigning a binary code K; (a;)
to internal states «, in each subset A(Y;).

The formation of the transformed direct structural table is base for formation
of systems (9) and (26). It is created from the original DST by replacing the co-
lumn Y;, by the column 7, and columns K(a,) and @), with columns K, (as) and Ty,
The column K;(ay) contains the multiple code of the internal state for the microinstruction
Y,. The column T}, contains variables 7, €T, r = 1,...,R,, that are equal to 1 in the code
Ki(as). C

The formation of the system of Boolean functions is base for obtaining systems (9)
and (26). These systems are defined as (29) and (30).

The formation of the microoperation decoder table. This step is exactly the same
as for the previous synthesis method.

The formation of the internal state code converter table. This step forms the table
that describes behavior of the circuit CC. This table has four columns:

e K(Y,) is a binary code of the microinstruction Y;;
e K,(a,) is a binary code of the internal state a; from the subset A(Y});
e @ is a binary representation of excitation functions that switches the memory of a -

FSM from K(a,) to K(ay), in case of D type flip-flops D, = O;, r = 1,..,R;

e 15 is a number of the line, tp = 1,..., Z;{ZIM[Y.
The implementation of the logic circuit of the FSM. The idea of implementation

is similar to implementation of a logic circuit where current states are used as the . In th

partitioning set. The only difference is a size and an addressing method of a memory {Cimpler
block implementing the circuit CC (Fig. 10). There are 2R words of R bits and the
content of the memory is described by the internal state code converter table where

the concatenation of the binary code of the microinstruction and the binary code of Boolean

the internal state (34) is an address. system (.

and it ge

3.3. MULTIPLE ENCODING OF MICROINSTRUCTIONS AND INTERNAL STATES The s

Because internal states can be used as a partitioning set also for the multiple and it co

encoding of microinstructions and the multiple encoding of internal states this two en- * & mul
codings can be applied together in one method of synthesis [15]. It leads to existence of * 4 1}1ul
the structure PAY, (Fig. 11). The RTL schematic of this structure for FPGA technology | * t‘or :
is presented in Figure 12. The partitioning and the encoding of microinstructions are E : fl {or 5
exactly the same as for the method with the multiple encoding of microinstructions and § . (‘1 Ior 2
the partitioning and the encoding of internal states are also exactly the same as for the a i(?m
method with the multiple encoding of internal states with current states as partitioning * an im
set. It means that the code of the microinstruction K(¥;) is represented as (14) and the Stmé :‘Z‘; e, U

code of the internal state K(ay) is represented as (25).
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Hig. 11. Structural diagram of PAY, Mealy FSM
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Fig. 12. RTL schematice of PAY, Mealty FSM
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In this structure the combinational circuit P implements systems (15) and (26) and

it implements

YZP(PAY()) =Ry + N,

(37)

Boolean functions in total. The circuit Y implements a decoding of microinstruction

system (17) and the circuit CC implements the decoding system of intarnal state (28)

ATES ’g
%
he multiple i .
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partitioning
(14) and the

and it generates the excitation functions,

The starting point for synthesis with structural decomposition is the formatted DST

and it consists of the following steps:

a multiple encoding of microinstructions,
a multiple encoding of internal stares,

a formation of the transformed direct structural table,
a formation of the system of Boolean functions,

a formation of the decoder table,

a formation of the internal state code converter table,

an implementation of the logic circuit of the FSM.

The multiple encoding of microin
Structure PY,,.

structions. This step is exactly the same as for

the
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The multiple encoding of internal states. This step is exactly the same as for the
structure PAY.

The formation of the transformed direct structural table is base for formation of
systems (15) and (26). It is created from the original DST by replacing the column Y,
by the column YW, and columns K(«;) and @, with columns K,,(a,) and T),.

The formation of the system of Boolean functions is base for obtaining systems (15)
and (26). These systems are defined as, respectively, (21) and (30).

The formation of the decoder table. This step is exactly the same as for the structure
PY,.

The formation of the internal state code converter table. This step is exactly the
same as for the structure PAY.

The implementation of the logic circuit of the FSM. The idea of implementation
is the same as for previous methods with the multiple encoding. Based on the same
rules of clocking of memory blocks there can be drawn the RTL schematic for FPGA
architecture (Fig. 12).

3.4. MULTIPLE SHARED ENCODING OF MICROINSTRUCTIONS AND INTERNAL STATES
WITH COMMON MEMORY

Shared multiple encoding of microinstruction and internal states is a further impro-
vement of the multiple encoding of theses parameters [16]. In this approach systems
(15) and (26) are replaced by one system

Y =YX, O), (38)

which is used for encoding of microinstructions and internal states, represented by
identifiers, and it is implemented by the combinational circuit P.

Becouse now, deocoder Y and CC have exactly the same input signals they can be
replaced by one decoder YCC. It leads to existence of a new structure PAY g¢ (Fig. 13).
The RTL schematic of this structure for FPGA technology is presented in Figure 14.

X

< = LY Y Y,
cC % RG
@)

Fig. 13. Structural diagram of PAYsc Mealy FSM
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RST

Fig. 14. RTL schematic of PAY s¢ Mealy FSM

Create the identifier /! that represents the pair (a;, ¥;) where a;, is an internal state
and ¥, is a microinstruction executed during the transition to this state. All identifiers
create a set of identifiers /. The set of identifiers should be partitioned into subsets
base on a current state «,, € A in order to make suitable encoding of identifiers, It
leads to existence of M subsets I(a,,) C I and identifier I! € I(a,,) if there is transition
from the state a,, to the state a; and the microinstruction Y, is executed during this
transition. Now, '

U, = H(am) (39)
and

Uy = max(Uy, ..., Uy). 40)

And each identifier 7! € I(a,,) can be encoded by a binary code K, (/") with bits,

R3 =[log, Uy 41)

Now, the combinational circuit P implements only

ny(PAY s¢) = R3 (42)

logic functions. In this case, the decoder YCC is used for decoding of both microope-
rations and internal states and it implements systems:

Y =Y(Q,W), (43)
D =D(Q, V). 44

Both codes, of microinstructions and of internal states, are represented by concatenation
of the multiple code of the identifier K(I') and the code of the current state K (ctp):

i e
R A

K(Yt) = Km([D * K(am)’ (45)
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“K(ay) = K, (ID) = K(ay). (46)

The starting point for the synthesis with structural decomposition into the structure
PAYsc is the formatted DST and it consists of the following steps:

e a multiple encoding of identifiers,

e a formation of the transformed direct structural table,
e a formation of the system of Boolean functions,

e a formation of the common decoder table,

s an implementation of the logic circuit of the FSM.

The multiple encoding of identifiers. In application of this method of synthesis the
simple binary encoding can be used.

The formation of the transformed direct structural table is base for formation of
the system (38). It is created from the original DST by replacing columns a;, K(a,),
Y, and @, by columns [}, K,,(I%) and ;. The column ¥, contains variables ¢, € ¥
that are equal to 1 in the code K,,(I")from the h-th line of the transformed DST.

The formation of the system of Boolean functions is base for obtaining the system
(38). This system is defined as (21).

The formation of the common decoder table. This table describes the behavior of
the circuit YCC. It includes columns:

o K(a,) is a binary code of the current state «,,;

e K,(I!) is a binary code of identifiers I! from the subset I(a,,) ;

e Y is a binary representation of the microinstruction ¥;, vy, =l iff y, € Yy and y, =0
ify, ¢Y,,n=1,..N;

@ is a binary representation of excitation functions that switches the memory of
the FSM from K(a,,) to K(ay), in case of D type flip-flops D, = Q7, r = 1,...,R;

e my is a number of the line,

The implementation of the logic circuit of the FSM. The idea of the implementation
is the same as for previous methods with the multiple encoding. The decoding memory,
built up of memroy blocks, is trigged by opposit edge of clock signal like in previous
cases. It leads to existance of RTL schematic presented in Figure 14.

4. AUTOMATA SYNTHESIS SYSTEM

There was designed a prototype of system for structural synthesis of FSMs with use
of proposed methods of synthesis. In order to apply these synthesis methods the design
flow for FPGAs have to be modified (Fig.15). This system is named the Automata
Synthesis (AaS) [17], [18], [19]. In case of future implementation of discussed methods
in commercial synthesis systems the design flow does not have to be modified and
proposed method of structural synthesis can be included in the synthesis step.

In the proposed design flow the entry point for the structural synthesis step is the
behavioral description of an FSM in the KISS2 format [32]. The output of the logic
synthesis step is the structural description of FSM. It is represented by the set of files in
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Verilog. Then these files can be the entry point for further synthesis and implementation
into selected FPGA device with use of comercial tools. The set of these files consists
of one top-level module (Fig.16) — it describes connections between blocks of the logic
circuit — and group of files that describe particular blocks. The combinational circuit
is described as a set of Boolean equations using continue assignments (Fig.17). The
register is described as R-bit D type flip-flop with asynchronous reset (Fig.18) using
typical synthesis template [22], [31]. Decoders (circuits Y, CC and YCC - depends
on structure) are described using case statement (Fig.19). The address is placed as a
selector of the case statement and the content of the memory is described by choices
of the case statement [29]. Because it should by synthesized as synchronous ROM
memory this statement is placed in always block. To ensure that such described module
is synthesized as a memory block it is required o set a value of special synthesis
altribute bram_map to “YES” [31]. This is synthesis attribute of Xilinx devices and
it is ignored in case of synthesis into other vendors FPGA devices. But each vendor
supplies similar attributes or directives, for example, the attribute romstyle specify the
type of memory block to be used in Altera devices [3]

Structural
Synthesis $|
{AS System)

Structural
Deseription
{Verilog)

Netlist
(EDIF,
NGC)

Specification Synthesis—jis|

(KiSS2)

Implementatiorges|
BitStream

Device Library

Fig. 15. The design flow for FPGAs with use of the AS System

module dk14 (clk,
input clk, res;
input [1:3] x;
output [1:5]
wire [1 d;
wire

res, x, y);

wire
wire

dk14

[1
[1
[1

RG

dk14 p

dki4 v

dk1l4 CC
endmodule

Fig. 16. The top-level module of the Mealy FSM dki4 with the structure PAY,
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module dkl4_P (x, Q, psi, tau);
input [1:3] x;
input [1:3] 0O;
output [1:2] psi;
output [1:3] tau;

assign psill] = x[1] & x[2] & ~x[3] & Q[1] & ~QI[2] & ~QI[3]
P xI1] & x[2] [ [ & ~Q[2] & Q[3]
(...)7

assign psi[2] = x[1] & ®[2] & x[3] & Q[1l] & ~QI[2] & ~Q[3]

S
2
b
ot
°a}
O
=

[ x[1] & x[2] & x[3] & Q[1] & ~Q[2] & Q3]
(o0 );
assign taull] = x[1] & ~x[2] & x[3] & Q1] & QI[2] & ~Q[3]
| ~x[1] & x[2] & ~x[3] & Q1] & Q2] & ~QI[3};
asgign taul[2] = x[1] & %[2] & %x[3] & Q[1l] & Q[2] & ~Q{3]
| x[1] & x[2] & ®{3] & ~Q[1l] & ~Q[2] & QI[3]
(o5
assign taul[3] = x[1] & ~x[2] & ~x[3] & ~Q[1] & ~Q[2] & QI[3]
| ®[1] & ~x[2] & ~x[3] & Q[1] & ~Q[2] & ~QI[3]
(o003

endmodule

Fig. 17. The part of the combinational circuit module of the Mealy FSM dk14 with the structure PAY,

The example set of files is shown in figures 16, 17, 18 and 19. These files are
generated for the Mealy FSM dk14 from the library LGSynth9/] [32] synthesized into
the structure PAY, by the AeS System.

module dkld_RG (clk, res, D, Q);
input clk, res;
input [(1:3] D;
output [1:3] Q;
reg [1:3] Q;

always ((posedge clk or posedge res)

begin
if (res)
Q <= 3'b0;
else
Q <= D;
end
endmodule

Fig. 18. The register module of Mealy FSM dkl14 with the PAY, structure
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module dkl4 Y (clk, psi, Q, y);:
input clk;
input [1:2] psi;
input [1:3] Q;
output [1:5] y;
reg [1:5] y;

// synthesis attribute bram map of dki14 Y is yes
always @ (negedge clk)
case ({Q,psi})

5'b00000: y = 5'b00010;
5'b00001: y = 5'b01010;
5'000010: y = 5'b01000;
5'b00100: y = 5'b01001;
(...)2
default: v = 5'b00000;
endcase
endmodule

Fig. 19. The part of the microoperations decoder module of the Mealy FSM dk14
with the structure PAY,

The Automata Synthesis System in version 1.6.2. [18] is able to perform the logic

synthesis into following structures:

®
L4
L4

P — standard single-level structure,

PY - standard double-level structure with maximal encoding of microinstructions,
PY, — double-level structure with multiple encoding of microinstructions,

PAY — double-level structure with multiple encoding of internal states (partitioning
by current state) and maximal encoding of microinstructions,

PAY, — double-level structure with multiple encoding of internal states and micro-
instructions,

PA — double-level structure with multiple encoding of internal states (partitioning
by current state),

PYY — double-level structure with multiple encoding of internal states (partitioning
by microinstructions) and maximal encoding of microinstructions,

PAYse — double-level structure with shared multiple encoding of internal states
and microinstructions with common memory.

The AaS System works in command line of the Windows XP operating system. It

is executed as follow:

synth[.exe| file.kiss2 -Method [~ImplementationSystem device]

where:

synth|.exe] is the name of the executable file of the A#S System.

file.kiss2 is a name of a file to be synthesized.

-Method is the name of a method of synthesis.

-ImplementationSystem device is a optional argument that allows to generate
synthesis macro for third party commercial synthesis system. At this stage only
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XST from Xilnix is supported. Instead of device word there have to be placed a
correctly symbol of device,
For example:
synth dk14.kiss2 -PAY0 -xst xcv50-bg256-6.

Output files are saved in newly created directory. The name of this directory is the
name of synthesized file with the suffix Method, where instead of the word Method
is placed the name of the method of synthesis, for example, dk14_PAYO. Besides,
structural description in Verilog of synthesized FSM there is also created a raport
file with the .rep extension. This file indudes codes of encoded parameters, number of
inputs, outputs, states and variables required for encoding, the number of logic functions
realized by the combinational circuit and an estimated size of ROM memory.

Additionally, there can be generated files to run synthesis with XST" if -xst device
option is included. There is created the XST project file (extension .prj), the XST
command file (extension. xst) and the batch file to invoke the synthesis process with
XST (extension .bat).

5. SYNTHESIS

To analyze a gain of application of proposed synthesis methods there was performed
the synthesis of benchmarks form the library LGSynth91. Benchmarks were synthetised
with use of the AaS Systemn and then obtained files was synthetised with Xilinx XST
8.1¢ [31] from Xilinx ISE 8.1i into Xilinx Virtex v50 (xcv50-bg256-6) device [30]
according to proposed design flow (Fig.15).

The obtained results of synthesis (Tab. 1) with use of standard methods (P and PY)
and proposed methods have been compared and with results of synthesis of behavioral
description in VHDL and Verilog. Because, there is no possibility to implement the
behavioral description of an FSM in the KISS2 format it also was converted into
behavioral description in VHDL [20] and Verilog [26].

Table 1

Average results of the synthesis of benchmarks

Type of

Structure

resources
VHDL | Verilog P PY] PY,[ PAY| PYY | PAY, [PAYsc
Slices 30,67 44,511 51,80(50,38145,55134,66 42,041 25,13 23,6
LUTs 4,26 438101,98(89,98 1 81,43|61,21| 4,72|44,34| 41,45
FFs 70211 79,00 4,53 471 47727 4387 4,53 434 4,34
BRAMs 0 0 0] 1,064] 1497 2,15 253 2,6 2.4
Slices T6% 86% | 100% | 97% | 88% | 67% | 81% | 48% | 45%
LUTs 94% 97% 1 100% | 9B% | 89% | 67% | 81% | 48% | 45%
FFs 76% 86% | 100% | 104% 1 104% | 97% | 100% | 96% @ 96%
BRAMs 0% 0% 0% | 43% | 62% | 89% | 105% | 108% | 100%
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It should be mentioned that XST performs synthesis of behavioral description
of FSMs with use of standard single-level P structure. The synthesis of behavioral
description was performed with compact encoding of states and default settings of
other parameters. Differences in hardware utilization between behavioral description
and the structure P can be caused by different state assignment. The XS7T also has
implemented the algorithm of minimization of unreached states which improve results
in some cases. The results also depend on the scheme of description of FSM in HDLs
{121, [22]. The description in VHDL obtained from the KISS2VHDI, converter {20]
is recognized as FSM by XS7 and the minimization of unreached states the state
re-assignment can be performed. The description in Verilog obtained from the Kiss2vi
converter [26] has wrong interpretation of transitions from any state and XST remove
whole state machine during synthesis process.

As it can be seen the standard method with the maximal encoding of microinstruc-
tions (PY) reduces the number of slices only by 3%. The other important parameter is
the number of BRAMS, The conducted research showed that application of the standard
method with the maximal encoding of microinstructions does not give benefits in case
of implementation of control unit into an FPGA device — the number of LUTS is weakly
reduced or even not reduced and additionally it assumes usage of memory blocks.

The multiple encoding of microinstructions (PY,) in most cases diminishes the
number of LUTS. This method is used as a base of further methods and it can be also
used as an alternative balanced method of synthesis when outcomes of other methods
exceeded number of available BRAMs because this method required relatively smallest
number of memory blocks.

Average results obtained for the multiple encoding of internal states based on a
current state (PAY) are belter than the results obtained for the multiple encoding of
microinstructions. The multiple encoding of internal states based on a microinstruction
(PYY) gives better results than the multiple encoding of internal states based on a
current state. These both structures required implementation of two decoders which
means that it required the bigger number of BRAMS.

The multiple encoding of microinstructions and internal states (PAY ) is a further
improvement of the method PAY and it gives better results. The shared multiple enco-
ding of microinstructions and internal states (PAYsc) gives the best results of synthesis
in most number of cases. Additionally the application of the common memory for both
decoders reduce the number of required BRAMs for small FSMs.

6. SUMMARY

There were presented five methods of synthesis and five double-level structures of
a digital device implementing an FSM. Fach structure is dedicated to one adequate
$ynthesis method. The synthesis methods are based on the multiple encoding of some
Parameters of a state machine and structural decomposition of its logic circuit, All
tethods are adapted for synthesis process into FPGA devices. They take advantage
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of features of new FPGAs like embedded memory blocks. The utilization of such 18. A
resources leads to reducing the number of required standard logic blocks, like LUTs, 0 2
for implementation of a control unit, o
The choice from variety of synthesis methods gives opportunity to fit a control
unit exactly into unused hardware resources by other components of the whole digital 20. K
system. It makes that all blocks of device can be used equable, what means that M
synthesis process is more effective. (Iic
1
21 A
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The paper presents modified idea of program execution in PLCs. Instead of serial
cyclic execution of control program event-driven execution is proposed. Suggested approach
to program cxecution allows for selective execution of program parts or tasks. Only these
blocks from entire program are executed whose variables have changed since last calculation.
Proposed method can be implemented as software modification or as hardware accelerated
solution. The most important part of the idea is task or subprogram triggering condition
computation. Methods of program optimization are discussed. In order to determine program
blocks that require recalculation in current program scan execution specific hardware support
is planned to be researched. Memory content change detection unit allows to determine
changes in memory content since last program block execution,

Keywords: Programmable Logic Controller; Central Processing Unit; Control Program; Pro-
cess Image Memory; Scan Time; Throughput Time

1. INTRODUCTION

Time needed to execute one thousand of instructions is one of the basic parameters
that determine performance of Programmable Logic Controllers (PLCs). The second
one measure of a PLC performance is throughput time [10]. If the values of these
parameters are low a possible range of PLC application is wider. Design and develop-
ment of a CPU that would enable execution of a control program during extremely
short time is becoming a very important task. Owing to its constructional features,
such a unit should not only cover all the possible functional requirements but also
make possible to take maximum benefits from these features through possibly most
effective programming techniques [1, 4, 5, 8].
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A PLC during standard processing performs following operations [10}]:

1. Reading of input signals,

2. Control program execution,

3. Updating of output signals. ,

Apart from the presented operations that are visible for user the CPU is responsible
for performing tasks required by its operating system (Fig.1).

In the presented approach entire control program is executed during each scan and

it is independent of inputs and outputs signal changes. Large number of calculations
performed by the CPU does not work out new output signals values because input
arguments remain unchanged since last calculation.
Typical PLC executes control program in serial-cyclic manner. Instructions are executed
one after another. After execution point reaches the end of instruction sequence cycle
starts over. Each execution cycle (Fig.1) begins with Cycle Initialization and ends with
Communication and Diagnostics.

)
Cycle Initialization

A
Input reading Tin

¥
* Program Execution | T

\
Cutput writing Tour

\
Communication

/
Diagnostics

L

Fig. 1. A PLC standard operation cycle

Even though variables haven’t changed between consecutive program executions
PLC behaves in the same way. In case of variables whose state has not changed since the
previous computation cycle CPU executes tasks whose results are already known - they
have been derived during previous program scan. This is very important observation
that allows to introduce a new approach in construction and implementation of program
execution in PLC. This new idea is based on event driven program execution. The
program blocks executed conditionally are triggered by the changes of input variables
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since last time. This approach allows to reduce calculation overhead by execution of
only required parts of program instead of entire control algorithm processing.

Above observation shows that control algorithm can be executed partially. Only
plocks whose input variables have changed since last scan should be selected for
execution. This approach allows to eliminate excessive program execution overhead
arising from code execution whose results are already known. This modification allows
o increase controller performance and reduce its response time.

Such way of control program execution one can obtain in standard PLC but it should
be put in nonstandard operation. The solution may be software supported or hardware
supported.

2. SOFTWARE SUPPORTED SOLUTION

Even though commercially available PLC CPUs are not adapted to work in event
driven fashion approach, it is possible to write a program that takes benefits from event
observation.

Modicon TSX controllers’ family can be programmed using two different program
structures. Control programs can be developed in form of:
I Single threaded main program that consists of segments and subprograms,
2. Multi threaded structure that consists of a main task, quick tasks and alarm interrupt
tasks.
In multithreaded approach each task has assigned priority. The lowest priority is as-
signed to main task that can be executed in cyclic way (typical PLC execution) or
periodically. Quick tasks have higher priority assigned. A quick task should be a short
piece of program due to its periodical execution. Mainly it is executed for monitoring
purposes like monitoring of rapid changes of controller digital inputs. Its execution is
triggered by event like a counter overflow or change on a digital input. In opposite to
described tasks (main and quick) an interrupt task is executed neither periodically nor
continously.
In other types of controllers it is also possible to write a program in a such way
that only selected blocks are executed when input variables have changed since last
 caleulation. Dividing a program into blocks, macros and subprograms an is given
opportunity for partial execution of entire program. All those mechanisms must be
implemented in software. In such approach it is required to implement additional
_ fragment of program that is responsible for execution of condition checking for program
blocks.
A Sequential Function Chart (SFC) offers a programmatic mechanism to describe
fasks whose execution is conditional. This method enables to create subfunctions that
Execution is suspended until given conditions are met. The subfunction can be executed
once or in cyclic way in parallel with other running tasks. A program designer is
_ [esponsible for defining transition and logical statements that activate appropriate step.
~ Steps and transitions contain standard program blocks.

R




272 MIROSEAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.

3. WHAT IS AN EVENT?

To be able to talk about event-driven program execution two questions should be
discussed: :

What is “an event” from the control program’s point of view?

How to divide control program to achieve optimal solution?

Discussion presented in the paper is focused on a proposition of an idea of a
programmable controller that is able to execute control program in an event-driven
mode, releasing the user from the effort of preparing the conditions for the blocks
triggering. These tasks should be completed by the program compiler according to
appropriately defined task partitioning algorithms. During execution of a program PLCs
make use of external signals: inputs, outputs and internal variables: markers, counters,
timers which can also be treated as markers in this case. According to analysis presented
in [6] change of state of a variable or signal requires evaluation of a new output value.

In general controller function can be put down as following formula:

Yy = AX, Q. Yu-1)

Where:

Y, — Calculation result,

X - Input variables,

QO  — Marker variables,

Y,-1 — Previous value of output.

Dividing the program into blocks is the main part of an event-driven program
execution concept. Through an analysis a set of function arguments can be determined,
which can be referred as the sensitivity list of the function A for each block. For purpose
of conditional execution recording of variable changes is required. Processed triggering
conditions are stored in conditional execution marker. Before starting execution of a
block its conditional execution marker (flag) is checked. If in the set of the controlling
function arguments no changes have appeared since last calculation the flag remains
inactive and the block does not undergo recalculation.

The most reasonable way of the program partitioning is outputs based method - as many
blocks as outputs are controlled. For each output a list of variables (sensitivity list) is
created whose state, or rather change of state, will affect the output. Change of one of
these variables will impose execution of the corresponding block. Size of each block
will directly depend on the complexity of the function evaluating the corresponding
output state, whereas size of the triggering function will depend on the sensitivity
list length. The first aspect is typical for a standard controlling program while the
second results from the program division into the event-triggered blocks. As presented
in Fig.2, organization block of the program will contain the cyclically executed part of
the program — the fragments that are not suitable for event-driven execution and the
part of the program that will be responsible for detection of changes in the sensitivity
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Jist of the block. The part of the program, that is intended for event-driven execution
consists of operational part from original program and conditional entry.

s should be

L Oranization Block
1 idea of 4 Cycle Program
vent-driven Execution
the blocks Process Image Me’mory
ccording to v
gram PLC; Actual State of Group 1 | Group 1 >
'.s, counters, changes Task 1
1S presented Group 1 Backup | detection |,
utput value, ) .
\ | State of G 2 1 Group 2
% fee iy chalgges Task 2
% Group 2 Backup 1/\ detection P
% -
| ® »
® ®
L @
Actual State of Group n 1 Groupn >
en program changes Task n
determined, Group n Backup | detection |,
For purpose
d triggering

cution of &
controlling
lag remains

Fig. 2. Program block execution

What should be done when a state of one output affects another one state, or when
several output states depend on one internal variable state? After closer look at the
variables deciding about execution of a given program block, it can be found that only
two kinds of variables can have direct influence on the given function’s state: input

e e
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ivity list) 8
e of one of
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rresponding signals coming directly from the input modules (in most cases their change initiate
- sensitivily change of other variables state) and state of the timers - they are the only internal

variables which changes independently from the input signals. It results from the fact
that the time is counted independently of cycles of the controller loop. All variables
processed by a PLC are shown in the Fig.3. With dashed line are marked sets of
\’firiables that are responsible for calculation triggering. Above observation reduce the
Size of the additional memory necessary for storing information about variable states.
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Fig. 3. A PLC standard variables ranges
4. HOW TO BUILD AN ORGANIZATION BLOCK?

When the decision has been already made that it is sufficient to monitor changes of
inputs and timers, capabilities of the controllers should be investigated for the purpose
of writing procedures checking state of mentioned variables. It is necessary to check the
state of all variables, that given block depends on. It should be noticed that changes of
any number of variables should schedule a single execution of a block. There’s no need
for a multiple execution of a block while input variables are updated at the beginning
of the program scan.

Let’s consider two examples of programmatic implementation of event driven pro-
cessing. First example is schematically presented in Fig.4. Before execution of program
block current value of all variables that are used is compared with their previous va-
lue. If current state of at list one variable differs from previous one the block must be
executed. There is a great inconvenience in implementation of change checker block.
This block consists of large amount of instructions that are responsible for checking
processing condition of a program block only. Exemplary program listing and execution
times are presented in Fig.5 [2].
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Fig. 4. Program block diagram with event-driven tasks execution

Task 1
event
triggered

Task 2
event
triggered

a. 57-344 PLCT

X In.o Fi0.3us
X MiD. 9 jif0éEps
a /0. 3us
x In.7

X H10.7

co FC1 f/E.3us
A I0.0 f/0.2us
= H1B. 0 //l.4ps
A I0.7

nLg.7
Execution Time: f/27. 4ps

b. §7-214 PLC”

LD 6.0 //0.Zeps
B / /8. 00ns
LD 0.0

ED £/8_00ns
OLD 740 zens
ih I0.7

U

oL

o) IO,

ED

oL

CALL SBER O //L.30us
Execution Time:ff113. Aips

Fig. 5. Listing of change detection for one block

In the presented program example it was necessary to detect the changes from 0
0 1 and from I to O for each variable. Detection a variable change in Simatic S7-314
fequires at least 5 instructions (twice XOR, OR, AND, and =) and additional marker
should be used for storing previous value of a signal. Time needed to execute this
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program part for 8 inputs is 27.4ps. The Simatic S7-214 (b) PLC requires 113.5ps,
even though less instructions are executed. The program execution in the S7 314 CPU
is almost four times faster than in S7 214 CPU.

Complexity of program implementation is growing very quickly for blocks that
process several signals. Partially this problem can be overcome by variable grouping
in adjacent memory cells to form longer words that allow processing several bits at
once. This will allow to use byte or word instructions that can greatly accelerate
detection process. Block diagram of optimized solution is presented in Fig.6.

Program part with
cyclic execution

: Group 1 Y Lavsekn:
as chang : triggered

Task 2
event
triggered

@
L 4
@

Task n
event
triggered

Fig. 6. Variables grouping in event detection procedure

Part of exemplary program in STL representation and calculated execution times for
Siemens S7-214 and S7-314 CPU of PLC is presented in Fig.7. The example presents
solution for eight variables, but it can be easy extended up to 32 bits (variables)
— double world — grouped in area of input, output variables or internal markers. In
case of checking larger number of variables or variables that belong to different areas
presented fragment of code must be repeated for all triggering variables. Final result
is logical sum of all partial results that allow to determine if change has occurred. As
it can be seen in the example, in case of both §7-214 and S7-314 controllers, program
execution time decreases significantly. For the S7-314 unit 3 times faster execution is
observed. Increasing efficiency is expected for a bigger number of grouped variables.

Implementing conditional execution of block with modified organization of data
cause program growing. For blocks with moderate number of parameters that are
gathered in coherent memory area such solution gives quite good results. Performance
is reduced when number of parameters is growing or parameters belong to different
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a.  57-314 PLC“
13.5“8, L Grl Memory A0 Pas
14 CPU L Grl Sigmals Fi0 6us
T Grl Memory F40.3us
O 70, 5ps
ks that L 0 . £/0. 6ps
rouping S>IFC‘_’L A7l Eus
. C FC 5 3ps
| bits at /f5.3n
celerate b. , 57-214 PLCT
LD EMO. 0 /0. BOus
LPE F40. Zdns
MOVE  Grl S, Grl Mz fFLE. Ous
AEND 0. 40us
HOBE  Grl M1, Grl M2 fA19. s
AENO A0 d4ns
AB<=  Grl Mz, O 18, Ons
CALL  SER O A48 00ps
LPP 0. Zins
HOVE  Grl &, Grl ML FLE. On=
Totally Emxecution Time: FETE Dbps
Fig. 7. Listing of change detection for grouped variables for one block
areas (input, output or markers). Other inconvenience of this approach is additional
marker allocation for holding previous value of variables.
5. AN EXAMPLE OF EVENT DRIVEN PROGRAM EXECUTION
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e | e e | e |
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'Ijrr}an Fig. 8. An Example of LAD Program
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The above considerations are illustrated by an exemplary program presented in
Fig.8 in a well-known form of LAD diagram [3]. The example is very simple and it
is intended to clearly demonstrate the subject of this paper. There are two program
blocks (Counter and Timer) that are triggered with the same condition. The counter
and the timer have also inputs and outputs that do not directly depend on this condition
— Preset, Reset, Out_Counter, Out_Timer. It does not pay off to test these signals and
process them with event-driven method, which can be clearly seen in the program
listing (Fig.9).

As it can be noticed the instructions 1-9 and 17-19 are directly linked. The element
associating these instructions is, among other things, additional variable L 0.0 included
during the process of program compilation. The rest of the instructions form two-
or three-instruction groups not directly connected with each other. This part of the
program will be coded in unchanged form and will be executed by the controller in
serial cyclic mode. The program written in the standard way is executed by the S7-314
CPU in time of 27.10us. This is the time of presented program execution in each loop
cycle. In order to compare execution time with event driven execution method second
version of program is written.

1. n LStart FFO. 2p=
2. Li] LStart W Fin 2ps
3. ] Stop* FFo 2ps=
4. = L B0 FFo. 8ps
L n L 0.8 F70. 8ps
6. a LBLE F#0. 2p=
7. = LStart W FFD. 2ps
8. | L 4.0 FF0. 8ps
9. [ M1} JLCounter” Ff2 éps=
0. A L Presen FA0LEps
11, L C#s S0 ens
1z. 3 S Counter® fi6. Ops
13. A L Reset™ Fi00Ens
14. R lhounte Fil. s
15. A L Counter® FA0.Bps
1E. = Lan Cowmter™  fr0.EZups
7. R L 0.0 Fio. gp=s
18. L 55TH5= F10.6ps=
i%. 5D Eimex Fi9. p=
20. & Lo Tdmy ™ S0 8us
z1. = st Timer™ S0 Ens
Event Emecution Time: FF16. tips
Cycle Execution Time: FF10.B0us
Totally Execution Time: Fi27. lops

Fig. 9. An Example of STL Program
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n. X Start F70. dus
B. X M Start’ Fio fp=
€. a F#0. 3ps
n. X . Stop” {0 3u=
E. X M Stop” Fio sps
. [1] F70. 3p=
[~ X B £i0. 3us
H. X M BLE” Fio 6ps
I. JCN J Fiz. 3pus

1. E:S LAtars
Z. o] wotart_Up~
3. A LOtop™
4. = Lo.o
R A Lo. 4
& K LBLE™
7. = wStare Tp~
a. A Lo.0
9. cu LAlomter™
10. A L. 0
11. L BETHEs
1Z. 5D Lo Tdme
J. n L Stavt fin 2us
X = M _Stavte fi1 dps
Cycle Execution Time 1: FA100 Bops
Cycle Execution Time 2: FF07 20p=
Event Execution Time: /16 &0us
HIN Exscution Time: Fi11 1eps
HAX Execution Time: FF34. 30us

Fig. 10. An Example of STL Program

The program after application of event-driven control is presented in Fig.10. The li-
sting is limited to the event-triggered part of the program. The rest — executed cyclically
- has been omitted. As can be seen the maximum loop cycle time has increased, what
could be obviously predicted, as the part responsible for the detection of the signals
Start, Stop, and BLK has been added. A decision had to be made which version of the
changes detection should be used, as the number of the tested inputs is only three.

Maybe for three tested variables the solution from Fig.5a will prove to be better.
Application of this solution made the cyclically executed program longer by 7.20us. As
it is seen in Fig.7, application of the grouped variables change checking would make
the program 6.60us longer — after replacing the block calling instruction CC FC1 with
the jump to label instruction INC J. The difference is not significant. It should be
noticed, that even in case of three tested signals the application of change checking in
grouped variables is executed faster. However for the sake of clarity of the programs
and convenience of their comparison this method has not been used in this example.
The minimum program scan time (i.e. no signal changes observed) is 17.70us, what
is about 9us less then in case of the standard solution. It should be pointed out that it
means about 1/3 time saving for those loop cycles for which signals from the sensitivity
list remain unchanged.
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The average program execution time in function of input signal frequency should

be determined. Let us take into account “N” control program scans which contain “n
scans without changes of observed inputs. The average time of control program scan
can be calculated as:

17.70n + 34.40(N —n)
N

< 27.10

Therefore:
n
— > (0.434
N

It means that for the considered example it pays to use event-driven control program
execution if rate of input changes is not grater then one per two control program scans.

That is highly improbable for control systems dealing with real automation systems
like motor drives. Sometimes changes of the Start or Stop signals happen in few
hours intervals, and blocking signals state can change every few days or even much
more rarely. In typical operation condition the average time of program scan for the
event-driven program will be shorter then for the program written using the standard
techniques. It should be stressed here that reducing this time results in reduction of
access time to the input/output signals, while the CPU executes less instructions in

each program loop.

6. HARDWARE SUPPORTED SOLUTION

As it was presented software solution in area of event driven program execution
give very permissible results but requires execution of additional fragment of program
that detects execution condition for program blocks. Based on experience and obse-
rvation from software implementation all those inconvenience can be overcome by
appropriate hardware construction [9, 11]. Merging features of a CPU with custom
hardware implemented in an FPGA gives opportunity to construct systems with set of
features that are not commercially available. Main limitation in detecting of execution
conditions is connected with memory access. In order to determine difference in signal
group additional memory access is required. Current value of signal or variable must
be compared with previous one. In this case comparison operation is limited to diffe-
rence detection that can base on XOR operation between current and previous value
of memory. This operation involves additional instructions as well it consumes some
CPU time to execute this conditional entry to program block.

Is it possible to construct a memory controller that will support memory content
change detector? Further part of this chapter presents developed solution that allows to
detect memory content changes during operation and accelerates controller operation.
Memory is used to store operation arguments of the PLC CPU. In order to accelerate
calculation input variables are transferred from input modules to process image memory
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before calculation starts. Calculation results are accumulated in separated space of
process image memory. When execution of control program is completed controller
transfers content of output part of process image memory to output modules. To be
able to perform complex calculation additional space for internal variables is required.
This additional area is called markér memory.

In event driven system calculation are performed only if changes are detected in func-
tion arguments e.g. (X, Q, Yn-1). This requires to monitor three separate areas input,
output and markers space of process memory. Independently from destination area
only operation that can alter memory content is write operation. In order to implement
difference detection circuit of memory content during write operation current and new
cell content must be compared. While this memory must be connected to CPU, addi-
tional read or write cycles should not be performed. Problem can be solved by use of
memory with separated data inputs and outputs. Schematic diagram of memory system
with data change detection is shown in Fig. 11. From a memory cell with separated
data input and output is formed a memory block that is connected to bidirectional
data bus (D). The memory block is typical component that can be implemented with
use of distributed or block memories available in an FPGA device. Implementation
take benefits from synchronous write operation. It can be compared with writing data
to the set of addressable D-type edge triggered registers. Independent and concurrent
read and write operations allow accessing new and current memory cell contents.
Those two data items are compared against changes with use of XOR gate. Variable
change detector is responsible for catching any changes. Detector register is set during
write cycle at the first detected difference. The HC line becomes active notifying that
difference has been observed. For initialization purposes there is an input (HC_CLR)
that allows to clear HC flag. In order to make available this signal to the CPU it is

mapped in marker space. The HC signal can be read and processed by the CPU as
marker flag.

M.?T?_r! Elf‘ik_ _ From other
:” : Memores  pifference detector
RD T 1 e | l
| ! I '
! \I X 1 |
| ! l I
D f%: D Dour : 7 ! boa ‘ HC
I
AE: A : i > |'
| MEM | | e '
WRo I WE i ! CJ ‘
I
CLKo- [;_“L 'HC_CLR }
e I
| ]
. 1

Fig. 11. Memory system with change detection

Diagram shows only single bit construction. Circuit can be easily extended for detecting
changes in memories with word longer than one bit. For those purpose each data line
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is equipped with difference detector (XOR gate) and difference results are accumulated
by multiple input OR-gate.

Process Image - Configurable Event
Memory Detectors
Group 0 Event detector 0
w O I_GR: 1,7,15
e I e et
o 0 O_GR: 05
[ S S T T R eeuap e ———
=0 M GR: 1,25
Group n 1 B
Group 0 :ﬁ ¢
b ]
3 %‘ ————————————— 4 ]
3 G- ———— Event detector n
Sron— I_GR: 12,15
= D : O _GR: 36
. e M _GR: 00912
o 2
-3
[ T P U OO
=6
Groupn

Fig. 12. Process image memory mapping to difference detection unit

Proposed change detector covers problem of change detection inside given space of
memory (according to memory space assignment). In order to determine condition for
program block execution several change markers should be checked. This approach has
been considered as inefficient solution. Variable grouping reduces overhead connected
with condition checking (see Fig. 6). Further optimization are possible in hardware
detectors. Hardware detectors can integrate functionality that allow to selectively guard
required memory regions covering desired variable set into change detection system.
Exemplary diagram of process memory regions assignment is shown in Fig. 12. Process
image memory is divided into three spaces: input, output and internal marker. Each
space consist from n groups that can be individually included to selected difference
detector . Presented idea allows for hardware detection of changes in selected memory
areas. The change detector can accommodate different requirements of watched area
by configurable memory mapping in so called membership look-up table. Detailed
construction of memory watching system is shown in Fig. 13. In the diagram there is a
main memory that is used by the PLC CPU as process image memory. To the memory
is connected value change detector. Whenever data in memory cells are modified
difference notification is passed to configurable watch points. The configurable watch
point is surrounded by rectangle. Inside watch point there are three look up tables. If
write cycle falls into watched area, look-up table output is active. Each look-up table is
assigned to different memory space (input, output, markers). Number of cells in look
up table determines possible number of group that each space can consists of. Content
of look-up tables describes membership of memory spaces and groups to given task.
This membership look-up tables are loaded by the PLC CPU during initialization of
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system. Variable membership data should be determined by program compiler based

on user program.

Each task that is supposed to be executed conditionally requires one watch point. There

are two requirements that should be met by watch point system:

1. Large number of independent watch points (determines number of conditionally
executed program blocks)

2. Large number of groups covered by one waich point determines precision of va-
riable localization in memory space

There exist a trade off between number of groups and memory space that allow to

store membership information. If number of groups is growing (riggering condition

can be very precisely determined as number of discrete or byte variables inside group

is relatively small. Usually each task is using variables that belong to several groups. In

order to detect changes all those regions must be watched This will require relatively

large storage space that keeps variables assignment information.

The number of conditionally handled tasks depends on number of change detectors

implemented inside an FPGA device. From a PLC user point of view it is important

that number of this blocks is relatively high in order to allow flexible program execution.

Watch points architecture should be as simple as possible and perfectly fit into FPGA

architecture.

Those opposing requirements cause that number of group and number of watch points

must be reduced to a number that can fit inside selected FPGA device.

The configurable watch point was implemented with use of an HDL language and
widely examined. For implementation purposes was chosen Spartan 3 FPGA family
from Xilinx [12]. Those are symmetrical FPGA devices with integrated block me-
mories. One block memory can store up to 16kb. Very important feature of those
memories is dual gate access system with configurable bus width from 1-32 bits with
step of power of 2.

Table 1

Change detector logic resource utilization

Number of groups | LUTs | Distributed RAMs
3x 16 20 3
3x32 33 6
3 x 64 66 12
3 x 128 110 24

In the first approach the difference detector with membership memories was imple-
mented according to block diagram shown in Fig. 13. There was implemented versions
with number of groups from 16 — 128 for each memory space. Membership look-up
tables are implemented as distributed RAM blocks formed from LUTs. Implementation
tesults are collected in Table 1.
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Configurable Event Detector

Fig. 13. Difference detector with guarded memory regions assignment

Difference detector instead of using distributed RAM cells for membership implemen-
tation can use block RAM that is also available in FPGA device. This modification
allow to save logic resources that are used for membership function implementation.
Block RAM can be configured to operate with 32 + 4 bit data words. This allow to
implement up 36 independent difference detectors using one block RAM. The 32+4 bit
data word configuration allows defining up 512 separate regions inside memory. Finally
two implementation of process memory have been created with different approaches
in implementation of difference detection systems. Final implementation results are
gathered in Table 2. In the first line are gathered results for implementation based on
distributed RAMs while second line describes unit designed with use of block RAMs.
The table presents logic requirements, possible number of groups that can be defined
in memory and number of independent detectors implemented.

Table 2

Process image memory with difference detection

Number of

Channels LUTs | Distr. RAMs | Block RAMs
groups
8 3x16 158 24 |
36 512 147 0 2

As it is presented logic complexity of both circuits is comparable. They consume
almost the same number of general purpose components. The only difference is in
membership look-up table implementation. Using block RAM resource (second line of
Table 2) instead of distributed RAMs (first line of Table 2) it is possible to:
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I. Increase number of monitored groups from 48 (3x16) to 512 (8 x increase)
2. Increase number of independent channels from 8 to 36 (4.5 x increase)
3. Slightly reduction of logic resources allocation from 158 to 147 LUTs (about
7%)
Finally it can be noticed that with use of the smallest FPGA device from Spartan 3
family (XC3S50 — 4xRAMBI6) it is possible to implement 2kB process image memory
(IXRAMB16) with up to 108 independent watch points (3xRAMB16).

7. CONCLUSIONS

Studies on the optimized program execution in CPU of the PLC have shown the
grate improvement in operation speed. The presented solutions bring especially many
benefits in case of control of the processes for which input signal changes happen
relatively rarely, as in such situation typical controller executes “empty” loops, while
the event driven controller will only perform testing for changes, what will significantly
reduce access time to the input/output signals whose change happens during such an
“empty” cycle. The authors’ experience show that many industrial application satisfy
the above condition. Most industrial processes feature great number of inputs/outputs,
whose state changes very rarely — controller executes then many instructions uselessly.

This time could be utilized for other important tasks as for example network com-
munication, or simply more frequent checking of the object state what would signifi-
cantly reduce response time for the signal changes of strategic importance. Because in
real applications, especially using event-driven execution, control program scan time
varies from cycle to cycle, it seems that it would be better to introduce a new measure
of a PLC performance - average time of one control program scan. Such parameter
seems to be more useful for determining a real performance of a PLC system.

The presented discussion concerns the attempt to apply standard CPU solutions
met in programmable controllers for nonstandard tasks, however, research is also do-
ne relating to hardware support of the changes detection, what should lead to even
greater response time reduction. In this approach selective program execution takes
benefits from specific memory controller that compares memory contents during write
operation. Through configurable group membership tables it is possible to determine
if given write operation cause condition change for given program task or block. All
those operation are performed in parallel with CPU operations. There are not additional
processing required for condition calculation just conditional execution flag is checked
for given program block. Even relatively small and cheap FPGA device can implement
up to 108 independently triggered processes with possible definition of 512 variables
groups,

Further research and development will concentrate on detailed tests and implemen-
tation improvement of proposed solution. An optimization in autonomous input and
output data collecting and processing is also considered. Concurrently we investigate
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possibility of operating spéed improving of typical bit-byte structure of a PLC CPU

4

9.

10.

,71. We hope that results of the presented work will be useful for this structure too.
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sram Tasks The paper preseats synthesis strategies for PAL-based devices. All component methods

Des’06, pp. used in presented strategics are originally developed. In this paper the essentials of all
methods have been presented. Exact algorithms descriptions can be found in referenced
17th IFAC materials. The optimization of synthesis methods were aimed toward required areas mini-
mization or propagation delay minimization (reducing number of levels).
a Boolean A low computation complexity of synthesis methods that use tri-state output buffers
or output graphs make them useful as additional steps of complex synthesis strategies.
nt Conirol Application of those methods can radically reduce areas or propagation delay. Without
Vschodnie, doubt the best results in terms of required surface can be obtained by methods that use de-
composition components. Decomposition methods that extend classical model of functional
ey & Sons, decomposition (Curtis’ decomposition — row based and column based decompositions) are
computing demanding procedures. The binary decision diagram was taken into considera-
zableol(l)(égic tion in order to increase computation performance/efficiency. The experience that has been
iy 2

gained in implementation of column and row based decomposition allows to implement effi-
cient partitioning procedures for the BDD, Decomposition results for the BDD methods are
slightly worse as referenced to previous approaches. The synthesis process is computation
efficient and allows to decompose complex logic circuits in reasonable amount of time, The
exploration of BDD decomposition methods shows their undiscovered potential that still can
be developed especially for decomposition of function consisting of few hundred of input
and output variables.

Several years’ of experience in design of decomposition procedures for CPLD allows
developing complex synthesis strategies that have been presented as summary of the paper.
They are dedicated for different CPLD families addressing different features (e.g. three-state
output buffers) and requirements (e.g. propagation time constraint).
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1. INTRODUCTION

Technological progress drives the necessity of constant improvement of logic syn-
thesis algorithms. In recent years Field Programmable Gate Array (FPGA) structures
have gained the greatest popularity. Many various synthesis methods were develo-
ped for them [1-7]. A number of synthesis methods, dedicated strictly for Complex
Programmable Logic Devices (CPLD-s), also appeared in the literature [8-18]. They
sometimes utilize elements of synthesis dedicated for FPGA devices. In such a case
certain steps of the algorithm are modified to include constraints characteristic for
resources available in CPLD-s.

A very interesting approach was presented in [9,11]. Generally in the synthesis pro-
cess methods developed for FPGA devices were employed, but Look-up Table (LUT)
blocks were replaced by Programmable Logic Array (PLA) cells, characteristic for
CPLD architectures. The optimal structure of the cells was selected basing on expe-
riments presented in [19-20]. The authors prove, that it would be more efficient with
respect to area occupied in silicon, to build logic blocks as small PLA arrays, instead
of LUT blocks [13-16, 19-22]. On the other hand synthesis methods dedicated for PLA
structures are well mastered, and known for a long time [23-27]. These two observa-
tions let us suppose that it is quite likely that devices, in which arrays characteristic
for Simple Programmable Logic Devices (SPLD-s) are the main building blocks, can
regain their popularity.

One of the basic problems in logic synthesis dedicated for Programmable Logic
Devices (PLD-s) is project decomposition. The goal of decomposition is to partition
the entire design into parts that can be directly mapped onto logic blocks available in
the target structure. Most of contemporary CPLD circuits consist of logic blocks with
internal structures that resemble architectures of simple PAL devices (Fig. 1). Further
on in this paper such devices will be referred to as PAlL-based CPLD-s. A characteristic
feature of a PAL-based CPLD is that its basic building block (a PAL block) contains
a limited, and small number of AND gates (product terms).

The classical method of logic synthesis, dedicated for PAL-based CPLD-s, and
implemented in great majority of vendor tools, consists of two steps. First a two-level
minimization is applied separately to every single-output function, next implementation
of the minimized functions in PAL-based blocks, containing a predefined number of
product terms, is performed. If the number of implicants Ay, representing a function
after minimization, is greater than the number of product terms k, available in a logic
block (Fig. 1), a greater number of logic blocks has to be utilised to implement the
function. The classical product term expansion method utilize feedback lines to build
a multi-level cascaded structure, which increases propagation delays significantly.
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A Programmable
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Fig. 1. An idealized CPLD architecture with PAL-based logic blocks consisting of k product terms

An implementation of a minimized function f, which can be represented as a
sum of Ay implicants, requires 6y PAL-based logic blocks containing k product terms
(Eq. 1.

@-%Af"k +1 ()

k-1

Similarly, the classical implementation of a f : B* — B™ function requires (5}
PAL-based logic blocks (Eq. 2).

u " (T Ay =k
sk = Z(sﬁ = Z(hf—_%] + 1) )
=1 =1

As an example a classical implementation of a function f : B* > B, utilising PAL
blocks containing three (k = 3) product terms, is presented (Fig. 2).
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containing 3 product terms
The purpose of this paper is to present more effective methods of function imple-
mentation in PAL-based CPLD structures, and propose synthesis strategies appropriate
for various device architectures, and optimisation goals. The synthesis strategies pro-
posed in the paper make use of various methods and algorithms, developed by the Tl
authors during several years of research work. groun
The paper is structured as follows: the first chapters briefly presents the synthesis termu
algorithms, their properties, and possible applications. Section 2 introduces some new serves
concepts of product term expansion. Section 3 focuses on multi-level synthesis based numb
on the Graph of Outputs. Various decomposition models for PAL-based devices are not ¢
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presented in Section 4. Section 5 gathers this information, and presents a complex
synthesis strategy dedicated for PAL-based CPLD-s. The strategy comprises all of the
methods presented before. Basic information about interface to vendor tools, and some
experimental results are reported in Section 6. The paper is concluded with a summary
in Section 7. '

2. LOGIC SYNTHESIS METHODS BASED ON THE CONCEPT OF EXPANSION
EXPLOITING TRI-STATE OUTPUTS

Logic blocks contained in CPLD structures feature usually additional logic re-
sources that can facilitate product term expansion. These resources include parallel
expanders, folded NAND feedback lines, often referred to as shared expanders, logic
allocators, and tri-state output buffers.

The expanders enable unequal distribution of product terms between macrocells,
and extending the number of products available for one function beyond the limit of
k terms contained in one PAL block. Anyway they can only move the limit to a
greater value, and they do not provide feasibility of implementation for every function.
Additional expansion of the number of terms is thus necessary.

Product term expansion that exploits tri-state output buffers seems to be the most
attractive solution, as it doesn’t lead to expansion of logic levels. The idea is presented
in Fig. 3.

d OF
ad M y
— PAL
dh =3
e
f o
e Y2
o b2 1 oear

be =3

—t =3 B

Fig. 3. The essence of product term expansion exploiting three-state output buffers

The concept of product term expansion utilizing tri-state buffers lies in the back-
ground of an original synthesis method, dedicated for CPLD-s featuring three-state
terminals. The set of multioutput implicants of a Boolean function f : B" — {0, 1, —}"
serves as the starting point for a two-level synthesis. It has been assumed that the
number of inputs of a PAL block is big enough, so the proposed synthesis model does
hot comprise an algorithm of input partitioning.
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The two-level synthesis consists of Two-level Splitting Minimization, PAL-oriented
term partitioning, and PAL mapping.

The synthesis process starts with the Two-level Splitting Minimization. Then parti-
tioning of individual minimized functions is performed. As a result of the two procedu-
res, the set of implicants of a Boolean function is divided into subsets with cardinality
Jess than the number of terms available in one PAL block.

The detailed criterion of minimization may vary slightly, according to the imple-
mentation style. The idea of the Two-level Splitting Minimization is presented in Fig. 4.
The objective of the classical two-level minimization is to reduce both the number of
products in the Boolean formula representing a function, and the number of literals in
a product. Because of a limited number of multi input terms available in a PAL block,
the primary goal of the Two-level Splitting Minimization is to reduce the number of
products. Reduction of literals is inessential. As the result of the Two-level Splitting
Minimization, we obtain a set of terms of minimum cardinality. The terms contain a
reduced number of - elements.

Q) (In 10-0 1
abed y 0-0- 1
0000 1 01—1 %
0001 1 -1-1 1
0100 1 ® >’, 1-11 1
0101 1 ‘1§/!
0110 1 j}" /
0111 1 S :1:; o
1000 1 3% 4
1010 1 4 /i
1011 1 /
1101 1 1 -
1111 1 e (It i 10-0 1
’ 0-0~ 1
~ TR 0110 1
b F TG -1-1 1
b d 1011 1
C
a res
b & B, |':"
;2;;

Fig. 4. The essence of the Two-level Splitting Minimization: (I) minterms of the exemplary function,
(ID) results of the classical two-level minimization, (III) results of the Two-level Splitting Minimization

The objective of the PAL-oriented term partitioning procedure is to subdivide the
set of implicants into subsets, for which cardinality is less or equal to the number
of terms (k) available in a PAL-based block. Different concepts of the algorithm are
presented in [28-31]. Sometimes the PAL-oriented term partitioning procedure doesn’t
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lead to a one-level structure, but to a p-level' structure, where p is a parameter of the
synthesis algorithm [32].

The idea of the PAL-oriented term partitioning, and PAL-based logic block map-
ping is presented in Fig. 5.

Ty am

0-0~ 1
0110 1
01-1 1

oy

a=1

10-0 1
11-1 1
1011 1

Fig. 5. The idea of PAL-oriented term partitioning: (I) partitioning vector a = 0,
(IT) partitioning vector a = 1, (IlI) mapping onto PAL blocks featuring 3 terms

The synthesis algorithms exploiting tri-state buffers were implemented in software,
and are elements of the PALDec synthesis system. Results of synthesis for different
PAL-based devices are presented in [28-33]. The methods are especially attractive
with respect to dynamic parameters. The algorithms discussed above can be used as
independent synthesis methods, or constitute an extension for other tools, improving
dynamic properties of final solutions.

3. MULTI-LEVEL SYNTHESIS FOR PAL-BASED DEVICES BASED ON
THE GRAPH OF OUTPUTS

Another approach to logic synthesis consists in analyzing the set of implicants for a
multi-output function, and extracting the groups, that are common for several outputs.
The method is based on analysis of the so-called Graph of Outputs.

" Hereafter in this paper, we will interpret the term “number of logic levels” (and consequently
“one-level structure”, or “p-level structure™) as the number of cascaded PAL blocks in the longest
signal path from the inputs to the outputs in the circuit of concern. The exception to this rule will
be the terms “two-level minimization”, and “two-level synthesis”. These terms are well established
in the literature, and we will use them in their traditional meaning, i. e. “two-level” = two levels of
logic gates.
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A minimized multi-output function f : B" — B™ can be described by a set of
multi-output implicants, consisting of the input part, containing the {0,1,-} symbols,
and the output part, containing the {0,1) symbols. Let us assume, that G < Y, U/ >
is a directed graph, where Y is the set of the graph nodes, and U is the set of the
graph edges. An example function, and the graph corresponding to it are presented in
Fig. 6. Every node of the graph represents a different output part of the multi-output
implicants. Edges of the graph connect nodes, for which the output parts have at least
one common | symbol at the same position, and simultaneously the code distance
between the output parts is minimal [33-34].

id
T 010
\ilb abcd Y= 110 ¥ = output part of a multi-
ob £ £ £ wO)=2 output implicant
8 111 oA P p
~000 010 A, ~ node discriminant; the
O)=1 H

0110 111 e number of the same

- 001,111 .
100- 110 ~ | ) i output parts in the set of
-010 001 U =4(010,110) 5/0 . L
0011 111 10,111 1 5 7 multi-output implicants
1111 111 u(y) — the number of {1}
110 o0 symbolsiny
010- 110

Fig. 6. Representation a minimized multi-output function f : B* — B°
by means of the directed graph G

Every node in the lowest range of the graph corresponds to a function output. Every
output can be assigned the AT, and rj? parameters, where j is the index of the given
output, and m is the number of outputs of the multi-output function f. The value of
A7 is equal to the sum of node discriminants that belong to the directed path, starting
from the j-th node in the lowest range of the graph, and ending in a node in the highest
possible range for the j-th output. As an example: A; = Agro+Aro+A = 14243 =6
- see Fig. 6. The r;“ parameter, referred to as the remainder, is a number calculated
from the following relation:

A’j’." -1 = r;“(mod(k -1) 3

where k stands for the number of terms available in the PAL blocks used for imple-
mentation.

A graph built according to the procedure described above is referred to as the
Graph of Outputs. Basing on analysis of the Graph of Outputs, solutions that require
less logic blocks than the classical approach, can be found. Theoretical backgrounds
for the method are presented in [33-34]. The algorithm is founded on the Theorem of
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Selection of a Node of the Graph. Proof of the theorem can be found in [33], together
with many further details.

The essence of the technology mapping consists in analysis of the graph, and sear-
ching for the node discriminants that are associated with possibly large groups of com-
mon implicants. These groups of implicants are implemented by common PAL-based
logic blocks.

The synthesis algorithm consists in iterative selection of the graph nodes. After
selecting in step i a graph node, a new PAL block is introduced to the synthesized
multi-level structure, starting from the inputs, and growing towards the outputs.

The rules for selecting a node can be deducted directly from the Theorem of
Selection of a Node of the Graph [33-34]. They can be described by the following
procedure:

1. From the set of all graph nodes the node iAy is chosen, for which u ("Ay) = max

(i. e. the node, which is placed on the highest range of the graph).

2. If several nodes lie in the same range, further selection is carried out, depending
on values of the discriminants:

2a. if there are nodes, for which ’Av 2 k, the node is selected, for which the discrimi-
nant ‘A, = max;

2b. if for all discriminants ‘A, < k, the node is selected, for which within the set

of remainders R = { /%) cje {1, u’A the maximum number of remainders
f J aca,

A, . g3 A i
A% satisfies the condition 0 < A S Ay <k

3. 1If no nodes meet the criteria 1 and 2, implementation of the implicants assigned
to the other nodes is carried out by means of the classical method.

The Graph of Outputs for the example function from Fig. 6, together with the
associated values of discriminants A’}’, remainders r;", and the implementation using
PAL-based blocks featuring 3 product terms, is shown in Fig. 7.

The classical implementation of this function requires 16 product terms (5, 6, and
5 for each output respectively). If using PAL-based logic blocks containing 3 product
terms, a 3-level structure consisting of 7 blocks is obtained.

The synthesis method presented above was implemented in software as a module
of the PALDec synthesis system. Results of synthesis for different PAL-based devices
are presented in [33-39]. The method is especially efficient with respect to chip area.
The algorithm presented above can be used as an independent synthesis method, or
constitute an extension for other methods, used as a tool for optimising resources usage.
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Fig. 7. A multi-level implementation of the example multioutput function, utilising PAL-based logic
blocks containing 3 product terms

Step 1

4. DECOMPOSITION MODELS DEDICATED FOR PAL-BASED DEVICES

Decomposition plays an extremely important role in modern logic synthesis. In
spite of rapid and multifarious progress in the field, the optimal means of partitioning
a digital circuit into logic blocks characteristic for programmable structures is still not
known at present.

In great majority of applications decomposition is used in synthesis dedicated for
FPGA circuits. It is an essential part that enables partitioning of a designed circuit,
and mapping it onto configurable logic blocks (CLB-s).

Decomposition is hardly ever used in synthesis dedicated for other types of PLD-s.
There are few known algorithms, dedicated for PLA structures [9, 21-23, 25-27]. In
some of them decomposition methods developed for LUT-based FPGA-s were directly
transferred [9, 11]. Input and output assignment is a characteristic feature of those
methods, that significantly influences the number of products in blocks of minimized
functions, obtained after the decomposition process [40-41]. The problem of proper en-
coding of inputs and outputs is widely discussed in connection with state assignment for
FSM-s in [42-43]. Those problems are related to symbolic state encoding, dichotomy
theory, multi-value function minimization, and the concept of output dominance. There
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are also works devoted to binding input and output coding process with decomposition
problems.

The main constraint characteristic of a PAL-based logic block is not the number
of inputs, but the number of multi-input product terms. This results in an observation,
that the objective of decomposition dedicated for PAL-based structures can be defined
in the form of the following two major tasks:

1. Minimizing the number of PAL-based blocks used;
2. “Fitting” the designed circuit into PAL-based logic blocks best.

Further on three models of decomposition, directly concerning the above-mentioned
issues, will be presented.

4.1. THE COLUMN DECOMPOSITION

A function f : B" — B™ can be decomposed if, and only if, the column multiplicity
of the partition matrix v(X, | X,) is lower or equal to 27, i.e.

v(XalX)) 2P e f(Xo, X1) = Fg1(X1), ©2(X1), ... 8p(X1), X, ] )

where the X; and X; sets should satisfy the conditions X;UX, =I={i,,....i»,i{}, and
X1nX2=¢ [44]. The X, and X, sets are respectively called the bound and the free set.

Analysis of the classical decomposition model proposed by Curtis shows that the
partitioning expands the total number of outputs in the circuit. At least p additional
blocks are required for implementation of the bound block. Employing decomposition
is thus eflicient only in the case, when the classical approach leads to a cascaded
structure that requires a greater number of a PAL-based block to implement the same
function.

In the Column Decomposition model presented hereafter, the number of AND
gates required by the implementation is minimized. As a consequence, the number of
PAL-based blocks is minimized simultaneously. The process of the proposed column
decomposition can be divided into the following steps:

e Selection of the bound variables;

o Calculation of column multiplicity;

¢ Column pattern code assignment;

¢ Implementation of the bound and the free blocks.

All the steps are optimized for PAL-based devices with a predefined number of
product terms. The steps of the decomposition process listed above will be briefly
explained below.

Selection of the bound variables: Selecting variables for the bound set is based
on searching for such a variable partitioning, which implies splitting of the analyzed
cireuit into two subcircuits of similar complexity. The circuit complexity is estimated
by multiplying the number of inputs and the number of outputs of a block. The set of
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input variables I = {i,,...,ip,1;} is partitioned into subsets X; and X, in such a way, that

the value of il -p+ (iz + p) -m is minimal (see Fig. 8).

| Bound Block - l—\ /—

\ glEXI) /

XU Xo=

XM X2:¢ Xl

| ym1 y

X
I 1 . H
E E> gn(X)) E
’ 1
SHE 5
0

Yo | r\
/|

Fig. 8. The essence of selection of variables for the bound set

Calculation of column multiplicity: The column multiplicity is obtained as a result
of colouring of the Column Incompatibility Graph. A special colouring algorithm was
proposed for this purpose. The algorithm introduces elements of two-level minimization
at early stages of the decomposition process. The method is presented in detail in [45].

Column pattern code assignment: The column multiplicity of the partition matrix
is equal to the chromatic number of the Column Incompatibility Graph y(G). The
number of bits required to distinguish all column patterns is equal to [1g,y(G)]. The
bound block works in fact as a specific code translator. Its output code is determined
by column pattern assignment. The way the codes are assigned to each of the columns
can significantly influence complexity of the bound and the free blocks after minimi-
zation. Various techniques of output and input coding are described in [23, 27, 40].
Usually the coding methods are closely related to FSM state assignment. Methods of
product minimization after primary circuit partitioning, and appropriate input-output
coding for PLA structures, are also considered. Algorithms of this class can directly be
implemented in synthesis process dedicated for PAL-based structures, but the results
obtained are rather unsatisfactory. Column pattern assignment for CPLD-s should take
into account properties of the target architecture. In the proposed pattern assignment
method, an attempt is made to anticipate the results of two-level logic minimization.
The columns that appear more often in the partition matrix, are assigned codes that
require less products. As a consequence for the whole set of column patterns the codes
are selected, that provide the minimal number of products after minimization. The
proposed code assignment method employs uniform coding [46-48], coverage pattern
coefficients, column code coefficients, pattern pair coverage coefficients, and neighbo-
urhood pattern coefficients. The detailed algorithm of the pattern code assignment is
described in [33, 49].
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Implementation of bound and the free blocks: After partitioning of the I={i,,...,i»,i;}
set into subsets X ={i,,,...,0», {;} and Xo={in,..slnzs2, inz+1}, and encoding column pat-
terns using method described above, a two level function minimization is carried out.
Minimization is performed for the functions that describe the bound and the free blocks.
Following that, the number of PAL-based logic blocks required for implementation &,
is calculated, using Eq. (5). The number is a sum of the number of logic blocks
required for implementing the bound (6,) and free (6,,) blocks. Symbols z; and w;
describe the numbers of product terms required for implementation of the i-th function
of respectively the bound and the free blocks.

14 m
Zl‘—k W[—k
6ZW:6Z+6W:Z((/(_1]+1)+Z([k_1
/ i=1

=1

+ l) (5)

If the 6, value is greater or equal to number of logic block required in classical
approach, the function is implemented using the classical method. In the other case the
next step is performed, during which the free and bound blocks are subject to further
column decomposition. Additionally, after the two-level minimization of single-output
functions (Espresso-Dso), the condition A ri < 2k is checked (where Ay; stands for the
number of implicants representing the function f; — see Eq. 1). When this inequity is
true, the function is implemented using the classical method. This approach reduces
the total number of outputs analysed in next decomposition steps.

The column decomposition method was implemented in the PALDec synthesis
system. Results of synthesis for different PAL-based devices are presented in {33,
50-51]. The method is the most attractive in respect of area, but unfortunately is
characterized by a quite high computational complexity.

4.2. THE ROW DECOMPOSITION

Decomposition is usually carried out for “fitting” the number of inputs of a syn-
thesized blocks to the number of inputs available in configurable LUT-based blocks
of a target programmable structure. After introducing certain additional elements, de-
composition can also lead to minimization of the total number of products, indirectly
influencing minimization of the number of PAL-based blocks. Incorporating into the
decomposition elements of “fitting” the synthesized functions into PAL-based blocks
could constitute a valuable extension of the method.

The proposed Row Decomposition (two-stage decomposition) directly focuses on
“fitting” the designed circuit into PAL-based logic blocks best. The essence of the
proposed concept (Fig. 9) consists in finding such a design partitioning (function de-
composition), which enables implementation of the free block in one PAL-based logic
block featuring a predefined number of product terms.

Additionally, minimization of the number of the bound block outputs is carried
out. As for a given Karnaugh map the number of the bound block outputs is equal to
the row multiplicity (p = u(Xs | X)), one of the main problems occurring at the initial
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The Bound —\ p=Hu (XZIXI) /— The Free
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Fig. 9. The concept of Row Decomposition

stage of the appropriate decomposition search is evaluation of row multiplicities for
subsequently analysed input variables partitionings. The algorithm for determining the
row multiplicities utilises a new idea of the so-called Incompatibility and Complement
Graph [33, 52].

For a given variable partitioning, a function f(X,,X,) can be presented in the
following form:

uXaiX,)
S (X2, X)) = Ho(X3) + Z [Hi(Xz)gi(Xl) + H}(Xz)&'(xl)] (6)

i=1

where g,(X;) denote functions, which describe row patterns.

The number of products necessary to implement the free block is equal to the
number of implicants of the function represented in the above form.

The row multiplicity p (X; |X,), determined as a result of the Row Incompatibility
and Complement Graph colouring, is related to the minimum number of outputs of the
bound block. If the number of implicants required for implementing each of the g (X;)
functions is less or equal to k, then the number of PAL based logic blocks necessary for
implementing the bound block amounts to §, = u (X;| X;). This observation suggested
a simplified method of the &, coefficient (Eq. 5) minimization. A heuristic rule of
restricting the search area to solutions, for which u (X;| X;) = min, is included in the
algorithm. More details are presented in [53-55].

The synthesis method described here was thoroughly examined in comparison to
the Column Decomposition model, presented in the previous chapter. The experiments
show that:

e The Row Decomposition is better with respect to the number of logic levels, than
the algorithms based on the Column Decomposition;

e The Row Decomposition can be useful in cases, for which reducing the chip area is
of main concern, but without degrading the chip dynamic properties significantly;
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o If reducing the number of logic levels is an important factor in the synthesis, the
Row Decomposition algorithm is especially efficient for structures consisting of
PAL-based blocks containing 2’ (a power of 2) product terms.

4.3. BINARY DECISION DIAGRAMS IN DECOMPOSITION DEDICATED FOR CPLD-S

Complexity of most of decomposition algorithms grows dramatically with the num-
ber of function arguments. This impedes their implementation in commercially ava-
ilable EDA tools. Great hopes for prevailing those obstacles are recently pinned on
Binary Decision Diagrams (BDD-s).

The classical decomposition model, in which column patterns are analysed, is
equivalent to an appropriate BDD transformation, based on horizontal diagram parti-
tioning (cutting). It can be proved that the number of nodes that are left below the cut
line, but directly connected with some nodes above the cut line, is equal to column
multiplicity of the partition matrix [56]. Fig. 10 presents an example of decomposition
for a function represented by a Binary Decision Diagram. The edges from the upper
part of the diagram (above the cut line), reach directly to two nodes below the cut line.
This means that the bound block, which will implement the function represented by
the upper part of the graph, should have one output.

Fig. 10. An example of decomposition utilising Reduced Ordered BDD-s (ROBDD-s)

The presented approach, described e. g. in [56], became the base for a number of
decomposition methods dedicated for LUT based FPGA-s.
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In the case of CPLD structures, the main constraint regards the number of product
terms, while the number of inputs is relatively high. So another approach to the graph
partitioning is needed. One of such algorithms was presented in [57]. The essence
of the method consists in searching for such a subdiagram in the BDD, that can be
implemented in a PAL block containing a predefined number of product terms. For
determining the number of products required to implement a subfunction, the number
of implicants associated with the subdiagram needs to be found. The main criterion
for a decomposition attempt is the minimal number of implicants Ay, necessary to
implement the function before the decomposition. If A s is known, also the number of
PAL-based blocks required can be evaluated (Eg. 1). Decomposition of the diagram is
justified only if Ay > 2k. If the condition is not met, the classical approach is used.

The example of function decomposition with the use of the subdiagram search
is presented in Fig. 11. It is assumed, that the number of terms available in PAL
blocks used for implementation amounts to 3. The presented diagram uses the so-called
attributed edges. If an edge ends up with dot, this means that the expression represented
by the pointed subtree has to be inverted. The circuit obtained as the result of the
decomposition is presented in Fig. 12.

1
i
|
|
1
i
i
3
3
p
I
|
I
I
|
I
1
[}
)

Fig. 11. Transformations of a BDD corresponding to a function decomposition dedicated
for PAL-based circuits
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Fig. 12. The synthesized structure obtained as the result of decomposition

The next method of function decomposition, utilising Binary Decision Diagrams,
like the first one, is oriented towards fitting the partitioning of the primary circuit into
the PAL-based logic block structure. It can be considered as an extension of the Row
Decomposition concept discussed in chapter 4.2. In the process of search for the best
partitioning of the set of input variables, an attempt is made to add as many variables
to the free set, as possible, without violating the condition of feasibility of the free
block in one PAL block. The partitioning of the set of variables can represented in a
ROBDD as a horizontal cut. The variables associated with nodes lying above the cut
line correspond to the free set, and the variables below the cut line — the bound set.

In this approach a ROBDD with edge complement attributes is used to evaluate the
row multiplicity 4(X,|X), instead of the Row Incompatibility and Complement Graph
(see p. 4.2). The row multiplicity can be efficiently computed by counting the number
of nodes cut off. Different partitionings are obtained by changing order of variables in
the ROBDD, and by moving the level of the cut line.

The decomposition algorithm consists of several phases. During each phase cardi-
nality of free set, which corresponds to the current cut level, is determined. A variable
partitioning is searched, which satisfies the condition of feasibility of implementation
of the free block in one PAL block, and for which the bound block has the lowest
number of outputs. If a solution is found for given cut level, the cut line is lowered.




304 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

a—> g (x;,x,,x5)
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Fig. 13. Function diagram with annotated path number

In the Row Decomposition model discussed above, only disjunctive partitionings
are considered. In order to reduce the length/depth of the critical path, also non-disjunc-
tive partitionings can be employed. Let’s consider the function defined by the diagram
presented in Fig 14.

In the first step of the non-disjunctive decomposition, a possibly good disjunctive
partitioning is found. Let’s assume, that we are going to implement the function using
PAL blocks containing 3 product terms. For a given variable ordering only xy, can be
included into the free set. In this case, the free block is described by the following
formula:

J = xog(xy, x2, X3, X4) + Xo g1 (X1, X2, X3, X4) @)
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Interconnect Area

Fig. 14. The diagram cut method corresponding to a non-disjunctive decomposition,
and the resulting circuit structure

The free block is implemented using two product terms. Function 8 describes a
diagram rooted by node vy, and g; — by v, respectively. Including the variable x; into
the disjunctive free set increases implementation requirements to 4 product terms. This
exceeds limit of 3 terms in a PAL block. Function g1 is realized by one PAL block,
and g, by two blocks, respectively. Finally, using the disjunctive decomposition, the
circuit can be implemented with the use of 4 blocks, and the maximum path length is
3 levels.

The non-disjunctive decomposition allows to include the variable x1 both
into the free and the bound sets. The free block is described by the formula
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f = xox180 + XoX &0 + Tog1, and utilizes 3 product terms. The whole circuit is built of
3 PAL-based logic blocks, and the maximum path length is reduced to 2 levels (Fig.
14).

According to the observations presented above, the basic decomposition algorithm,
was modified [58]. After finding a proper disjunctive partitioning, the procedure tries
to add a child node, located below cut line, to the free set. In the presented example,
v is chosen as a child of v;. The node is accepted, if the resulting implementation of
the free block fits into a single PAL-based logic block (Fig.14).

5. COMPLEX STRATEGY OF LOGIC SYNTHESIS FOR PAL-BASED CPLD-S

Synthesis algorithms presented in previous chapters were carefully and extensively
verified and tested. The test methodology was based on synthesizing benchmark circuits
[59]. The results obtained were compared against results published by other authors, and
against results generated by using commercial tools. A number of program modules,
implementing the algorithms presented above, were developed. They make up together
the PALDec (“PAL Decomposition”) synthesis system. The number of experiments
carried out in recent few years reaches tens of hundreds. The results obtained were
published in [28-36, 38-39, 49-51, 53-55, 58, 60-62,]. Analysis of the results makes it
possible to compare the algorithms with respect to logic resources consumed, and the
number of logic levels.

Without doubt we can appoint the decomposition methods that utilise tri-state
buffers, as the best for obtaining the shortest paths (and propagation delays). The
one-level method with tri-state buffers (1 TBW) gives the best results {28, 33] in terms
of propagation delays. Finding a solution with this method is however not guaranteed.
If a solution cannot be found using the one-level method, the p-level method with
tri-state buffers (p_.TBW) can be applied instead [32-33]. This method is able to find a
solution providing the smallest possible number of logic levels. The synthesis strategy
combining both methods (1p. TPW), allows to obtain implementations with the smallest
possible number of logic levels.

The 1p.TPW strategy consumes however significantly more logic resources than
the other presented methods. The average increase in logic blocks usage is around 1.5
times, in comparison to the classical approach [33]. A unique feature of the proposed
p-level function implementation is, that the number of logic levels p can be set as a
parameter for the method. It was observed, that solutions, for which the number of
logic levels allowed is higher, are found faster, and they consume less logic resources.
This way it is possible to control propagation delays vs. resources usage in the obtained
solutions. Simplicity of the methods (1_TBW, p_.TBW) enables them to be successfully
used in complex synthesis strategies dedicated for any PAL-based devices featuring
tri-state output buffers.

The greatest advantages of the multiple-output function synthesis methods utilising
the Graph of Outputs are simplicity, and short computation time. By combining the
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method basing on analysis of the Graph of Outputs, with the classical function im-
plementation, a several percent reduction in the number of logic blocks used can be
achieved. This is however paid with a similar increase in the number of logic levels.

In most cases, independently from the size of the PAL logic blocks, applying the
methods utilising Graphs of Outputs leads to expansion of the number of logic levels,
if compared to the classical method. This drawback can however be compensated
in circuits that contain tri-state output buffers. In the methods referenced above, the
groups of multiple-output implicants extracted in subsequent steps of synthesis, were
implemented using the classical method. There is nothing to prevent the groups of
implicants from being synthesised with one of methods exploiting tri-state buffers
(1.TBW or p_.TBW) instead.

The most efficient, in respect of logic resources used, synthesis methods are the
methods employing decomposition. The best results were obtained for the method based
on the Column Decomposition of multiple-output functions (DK) [33, 45]. Using this
method, a reduction of the number of logic blocks between 20% and 30% can be
achieved, in reference to the classical implementation [33].

Elements of adapting the decomposition model to structures of the PAL logic
blocks are included in the Row Decomposition method (DW) [33, 53, 61]. The results
obtained using the algorithms based on Row Decomposition were slightly worse with
respect to the number of logic blocks, from the results generated by the methods based
on Column Decomposition. They were however significantly better with respect to the
number of logic levels.

Computational complexity of the algorithms based on the Row and Column De-
composition limits their usage for functions with large number of arguments. In such
cases it is however possible to apply the methods basing on Binary Decision Diagrams.
The program module dekBDD, developed as a result of the research work [58, 63],
is capable of performing the whole synthesis process for a function with several tens
of arguments within few seconds (eg. apex5: 117 inputs, 88 outputs — synthesis time:
6,3s).

The final goal of the research works carried out in the Institute of Electronics of
the Silesian University of Technology, was to develop eflicient synthesis algorithms
for PAL based CPLD structures. To achieve the goal, the new methods were tested in
a large number of experiments, and the results were analysed. In the experiments the
commonly accepted set of test circuits [59] was used as the means to verify quality
of synthesis tools. The test circuits were synthesised using the programs developed by
the research team (PALDec), and the results were compared with the results obtained
from other tools, used as the reference. The set of reference tools was wide, it included
commercial programs (MAX+Plus, Synplicity, Abel, MACHXxI, ispDesignEXPERT,
Warp, Quartus), available academic tools (ASYL, PLADE) [64-65], and the classical
synthesis method (Espresso). As the conclusion, synthesis strategies can be proposed,
in which the synthesised circuit can be optimised for different goals, and various
architecture-specific features.
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The synthesis strategy proposed for PAL-based CPLD-s without tri-state buffers
starts with the Column Decomposition (DK). The subcircuits obtained as the result are
then optimized by one of the methods utilizing the Graph of Outputs (Z_.GW). Improve-
ment in propagation delays can be gained by the use of the TBW method (1p . TBW). If
the propagation delay is a critical parameter, better results can be obtained by using the
Row Decomposition method (DW). The circuit after partitioning is further optimized
by the Graph of Outputs method (Z_-GW). If using tri-state buffers is permissible, the
best results are obtained with the 1. TBW method, which generates one-level structures.
If the method is unable to find a solution, the p_.TBW method can be used instead.
Finally the two algorithms were combined, and the 1p_TBW strategy was developed,
which produces a solution with minimal number of levels. The proposed algorithm of
selecting synthesis strategies for different optimisation goals, and architecture-specific
features is presented in Fig. 15.

x.pla
/-‘ | Optimization goal
A

AREA|SPEED
N 2Ny
DK DK Ip TBW

¥ v ¢
ZGW]| [z Gw]| [z gW

y

1p TBW
) v
| xvhd | | xvhd | | xvhd| [ xvhd )
TBW - three-state output buffer;
DK — column decomposition;
DW - row decomposition;

Z_GW -~ multiple-output synthesis using Graph of Outputs;
1p_TBW - strategy of term expansion using three-state buffers

Fig. 15. The proposed algorithm of selecting synthesis strategies for PAL-based CPLD-s

The research works are continued, and now the main objective is to develop stra-
tegies including methods based on BDD partitioning. The dekBDD module [58] is
going to be incorporated into the PALDec system. Some early results are presented in
[63].
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6. INTERFACE TO VENDOR TOOLS AND EXPERIMENTAL RESULTS

If thousands of experiments are to be carried out, interfacing prototype software to
tools supplied by PLD vendors becomes an important issue. Software tools developed
by companies or institutions independent from PLD vendors are capable of performing
only the logic synthesis stage. Then the design has to be transferred to a vendor-specific
system for completing the implementation stage. This regards also academic software,
developed by research teams.

The main problem in porting a design to a vendor-specific system is to find an ap-
propriate intermediate format for the design data exchange. Commercial vendor-inde-
pendent systems (eg. Synplify, Leonardo Spectrum, Precision RTL) use low level ne-
tlists for this purpose. This approach is secure, because there is a little chance, that
the low level structure will be interfered by implementation tools. The method is
however not universal, because low level netlists contain much vendor-specific, and
architecture-specific information. Using this approach requires thus to equip the syn-
thesis software with procedures or plugins responsible for converting formats, and
preparing data specific for the implementation tools. This is acceptable for commercial
companies, but difficult for academic research teams, as it requires much “scientifically
worthless” extra job.

It was thus desirable to find out alternative formats for the data exchange, possibly
more universal, and using a higher level of abstraction. Here using a Hardware De-
scription Language (HDL) seems to be the most obvious, and natural choice. Choosing
the right abstraction level for the intermediate format is an important task, because
vendor implementation software can change and “destroy” logical structures generated
by synthesis tools.

Behavioral HDL description seems to be the design specification format most pre-
ferred for design entry, nowadays. Because of its high abstraction level it allows the
designer to concentrate on proper description of the desired functionality. As a textual
format, following the standard of the chosen language, it is universal and portable
between technologies and software tools.

A number of experiments were carried out to examine various synthesis tools, and,
in particular, the effects of selecting different data exchange formats, on quality of
results. The tools were tested using the standard benchmarks [59]. The test circuits
were implemented in CPLD structures.

It turned out that, if behavioural description was used as the entry format, quality
of the solutions was not good. High abstraction level in behavioural modelling gives
much freedom to the software. Logical structures can easily be “spoiled” by vendor
implementation programs. During the experiments it turned out, that it is possible to
propose as the intermediate format in a style of VHDL description, lying at a lower level
of abstraction, than behavioural modelling, but still portable between software tools,
and comprehensdible to a human. The proposed style of VHDL modelling resembles
the dataflow description commonly known in the literature. More details are reported
in [33, 58, 66-67].
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The prototype computer program PAILDec, developed during the research work,
enables a convenient interaction with vendor-specific tools. The program reads input
data in the Berkeley format (pla). Output data are generated as an appropriate descrip-
tion in a hardware description language.

Results of numerous experiments, and precision comparison of particular methods,
are reported in [28-36, 38-39, 49-51, 53-55, 58, 60-62]. In this paper only sample
results, for the popular benchmark rd84, will be presented. The results were obtained for
the simplest PAL-based CPLD structure available — the “Classic” family from Altera.
The basic building block of the Altera “Classic” devices is a macrocell containing
an 8-terms PAL structure with a tri-state output buffer controlled by an extra term.
Choosing those structures, which are quite old, is justified by the concern to preserve the
results from being blurred by extra CPLD functionality, like XOR gates, programmable
expanders etc. As a consequence, it was necessary to use an outdated synthesis tool
- MAX+PLUS IL It is worth to note that for CPLD-s Quartus Il gives results quite
similar to those obtained in MAX+ PLUS Ii.

The synthesis of the rd84 benchmark was carried out using the following four methods:
e description in the pla format, synthesis and implementation in the vendor tool

(M.KL),

e description in the pla format, synthesis in PALDec (DK+Z_GW strategy), imple-
mentation in the vendor tool (DK+Z_GW),

e description in the pla format, synthesis in PALDec (DW+Z_GW strategy), imple-
mentation in the vendor tool (DW+Z_GW),

e description in the pla format, synthesis in PALDec (1pTBW), implementation in
the vendor tool (IpTBW).

The symbols accompanying the methods listed above (M_KL, DK+Z_GW, etc.)
correspond to labels in the charts presented in Fig. 16. The figure presents in a synthetic
form a comparison of the results.

120 Logic blocks 12 Propagation time [ns]

100 100 4~
80 - 80 +—
60 - . 80 +—
40 — 407
| 20 4

28 | e O 0 ; . ]

M_KL DK+Z GW  DW+Z GW  1p_TBW M_KL DK+Z_GW DW+Z _GW 1p_TBW

Fig. 16. A comparison of synthesis results obtained for the rd84 benchmark, and different algorithms

The comparison was presented both for the resources used, and propagation delays.
As the charts show, in all of the cases synthesis in PALDec gives significantly better
results, than the commercial tool. With respect to the number of logic blocks used,
the Column Decomposition combined with elements of the optimization based on the
Graph of Output (DK+Z_GW) is the most efficient strategy.
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The timing delays were determined by the static timing analysis module of
MAX+ PLUS IL In respect of propagation time, the unrivalled strategy is 1p_TBW,
which uses tri-state buffers.

Similar results were obtained also for other vendor-specific tools, both for simple
and complex CPLD-s [33].

7. CONCLUSIONS

The paper presents several different synthesis methods dedicated for PAL-based
CPLD-s. The proposed methods are an alternative to the classical approach, based on
two-level minimization of individual single-output functions. Subsequent steps of the
synthesis process are adapted to logical resources of PAL-based CPLD-s. Adjusting
elements of the synthesis process to logical resources characteristic for a PAL logic
block allows for significant improvement of synthesis effectiveness in relation to the
classical approach.,

Decomposition models presented in the paper are adapted to specific requirements
of PAL-based CPLD structures. The proposed partitioning of the design into PAL-based
logic blocks, allows for general improvement of synthesis methods for commonly ava-
ilable CPLD structures. The presented approach is not limited by final optimization,
which takes into account specific features of a target structure.

Authors do not claim, that the presented methods can instantly be used by commer-
cially available design systems. On the other hand, the results obtained show possible
ways of improving synthesis quality. Significant area reduction can be expected after
embedding in synthesis algorithms decomposition methods adjusted for CPLD-charac-
teristic logic resources. Unfortunately decomposition methods are very computational-
ly complex, and time consuming. Faster algorithms can hopefully be developed for
example by using BDD-s.

Results of the experiments presented in the paper prove, that the synthesis methods
based on decomposition are especially attractive for CPLD structures consisting of
small PAL-based blocks. In this case the solutions were minimal with respect to the
number of PAL-based blocks used. If the synthesis process is to be optimized for
speed, the methods utilizing three-state buffers should be applied. Tri-state buffers
are commonly available in modern CPLD devices, and the synthesis algorithms are
relatively simple and robust.

Results of research work conducted for many years show without doubt, that it
is possible to improve significantly quality of commercial synthesis tools. It is often
possible to obtain structures occupying much less resources, or much faster operating.
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A method of combined state assignment is proposed which targets on a decrease in
the hardware amount (the number of PAL macrocells) in combinational part of Moore
finite-state-machine (FSM). Some peculiarities of Moore FSM such as existence of pseu-
doequivalent states and dependence of output functions on states as well as a wide fan-in
of PAL macrocells are used to optimize the hardware amount. It allows hardware amount
decrease without decreasing in performance of the controlled digital system. An example
of application of proposed method is given. Some results of experiments based on the
probabilistic approach are demonstrated. It is shown that the proposed method always leads
to decrease in the hardware amount in comparison with the known methods of Moore FSM
synthesis.

Keywords: Moore finite-state-machine, synthesis, graph-scheme of algorithm, CPLD, PAL,
macrocell, pseudoequivalent states

1. INTRODUCTION

Control unit of any digital system can be implemented as a Moore finite-state-ma-
chine (FSM) [1,2]. Recent achievements in semiconductor technology have resulted
in development of such sophisticated VLSI chips as field-programmable logic arrays
(FPGA) and complex programmable logic devices (CPLD) [3-6]. Very often CPLD are
used to implement complex controllers [2,7]. In CPLD, logic functions are implemented
using programmable array logic (PAL) macrocells [5-7]. One of the issues of the day
is decrease in the number of PAL macrocells required for implementation of FSM
logic circuit [2,7]. A proper state assignment [8] can be used to solve this problem.
Let us point out that such characteristics of FSM as cost / area, power consumption,
maximum frequency (cycle time) depend significantly on this step outcome. Because
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of their importance, state assignment methods are continually developed. There are
effective methods based on symbolic minimization [9-11], genetic algorithms [12,13]
and other heuristics [14,15]. To get a good solution, peculiarities of both FSM model
and logic elements in use should be taken into account [2]. The peculiarities of Moore
FSM are existence of pseudoequivalent states [14] and dependence of microoperations
only on FSM internal states [1]. The peculiarity of CPLD is a wide fan-in of PAL
macrocells [15]. Tt permits to use different sources for representation of a current state
code [16,17].

In this article we propose a method of combined state assignment, which is oriented
on decrease in the number of terms for both input memory functions and output
functions (microoperations) of Moore FSM. The further hardware amount decrease
can be reached using transformation of the pseudoequivalent states codes into codes
of their classes [14].

2. BACKGROUND OF MOORE FFSM

Let Moore FSM be represented by structure table [1] with the columns: a,, is a
current state, a,, € A, where A = {ay,...,ay} is a set of internal states; K(a,,) is a code
of state a,, having R = [log, M bits; ay is a state of transition; K(ay) is a code of state
ay € A; X;, is a conjunction of some elements of the set of logical conditions X (or
their complements) determining the transition (a,, a;), where X = {xy,...x.}; @, is a
collection of input memory functions from set ® = {D,, ..., Dg} which are equal to 1
to switch the automation memory from K(a,,) into K(a,); h =1, ..., H is the number
of table line. The column a,, contains collection of microoperations Y(a,,) G ¥, which
are generated in the state a,, € A, where Y = {y}, ..., yy}. This table determines Moore
FSM U, shown in Figure 1.

X
| Block of Input () T Block of Y
FMu:::nt(i)oan\s » RG “IMicroop eratio ns g
Start |
Clock

Fig. 1. Structural diagram of Moore FSM U,
In case of Uy, block of input memory functions (BIMF) generates functions

O = DT, X), H

and block of microoperations (BMO) generates functions
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Y = Y(T). 2)

Here T = {T,...,Tg} is a set of state variables used to encode the states a,, € A.
Pulse Start is used to load the code of initial state @, € A into register RG. Pulse Clock
causes change of RG content.

The hardware amount in logic circuit of FSM U can be decreased using one of the
following state assignment approaches [2,14]. In the case of optimal state assignment
[2], classes of pseudoequivalent states are represented by generalized intervals of
R-dimensional Boolean space. It decreases the number of terms in system (1) up to the
number of transitions of equivalent Mealy FSM. Let us remind that states a,, a, € A
are pseudoequivalent states if identical inputs result in identical next states for both
ay and ag. In the case of refined state assignment [14], each microoperation y, € Y is

represented by a generalized interval of R-dimensional Boolean space. It decreases the
number of terms in system (2) up to N. In both cases, such well-known algorithm as
ESPRESSO [8] can be used for state assignment. Obviously, it is impossible to apply
both methods simultaneously. It means that hardware amount can be decreased either
for BIMF, or for BMO. In our article we propose a method allowing hardware decrease
for both combinational blocks of Moore FSM UJ .

3. MAIN IDEA OF PROPOSED METHOD

Let [Ty = {By, ..., B/} be a partition of the set A on the classes of pseudoequivalent
states. Let the symbol U; (T';) stand for the case when a model U; of Moore FSM 1is used
to interpret a GSA I j- Let the partition I14 = {By, ..., B;} be constructed for Moore
FSM Uy ('), where By = {a1}, By = {as, A1), By = {ai1,a13,ai), By = {as, A},
Bs ={ay, a4}, Be = {a7,as}, B7 = {ag, a)p). Let us form a system of Boolean equations

I
Bl’ = ‘Yl le'Am (l' = 1, ey ]) , (3)

where C,,; is a Boolean variable equal to | iff a,, € B;, A, is a conjunction of state
variables corresponding to the code K(an). In the case of FSM U; (I')), the system
(3) is the following one:

By =A;By=As VA By =A VA3V Ay, @
By = A3V Ag; Bs = A; V Ay; Bg :A7\/Ag;B7 = Ay V Ajg.

Let us encode states a,, € A in such a manner that each equation from systems
(2) and (3) includes a minimal possible number of terms. The well-known algorithm
ESPRESSO [8] can be used to solve this problem. Let g(B;) be the number of terms
in function B; € I1,.

Let us represent the partition I14 as I, = g Ulle, where B; € I iff g(B) = 1,
otherwise B; € 1. Let us encode the classes B; € I1p by binary codes K(B;) using
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Ry =[log:(Ip + 1)] (5)

variables 7, € 7, where Iz = |I1g]. The unit is added to number 75 (5) to reserve one
code indicating that B; ¢ Ilp. If condition

Ig>1 (6)

takes place, then GSA T'; can be interpreted using the Moore FSM model U, (Fig. 2)
proposed in this article.

L.

Block of (D Y
Input RG T | Block of
X » Memory o "| Microoperations
Functions
Start Block of Code
T Clock Transformer

Fig. 2. Structural diagram of Moore FSM U,

In FSM U,, block BIMF implements functions

D= DT, 1, X), (7

and block of code transformer (BCT) transforms codes of pseudoequivalent states
a, € B; into codes of the classes K(B;). To execute it, BCT generates functions

T=1(T). (3)

Let us name a combined state assignment the method of state encoding, which

decreases the hardware amount for blocks BIMF, BMO and BCT. In this case the total
number of terms in system @ is decreased till Hy, which is the number of transitions
for equivalent Mealy FSM [14]. If condition (6) does not take place, then structural
diagrams for U; and U, are the same and block BCT is absent.

The proposed method for FSM U, synthesis includes the following steps:
e Construction of the partition I, for given GSA T';.
Construction of the system of generalized formulae of transitions for classes of
pseudoequivalent states B; € [14.
Construction of systems (2) and (3).
Combined state assignment for states a,,, € A.
Construction of partitions Iz and Il¢.
Encoding of the classes B; € Ilp.
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Construction of transformed structure table.

Construction of table for block BCT.,

Implementation of Moore FSM U, logic circuit using systems (2), (7), (8) and

given CPLD chips.

Let us point out that application of proposed method can decrease the number of
layers in FSM logic circuit and, therefore, increase the FSM performance. Obviously,
if condition (6) is not satisfied, then the steps 6 and 8 of the proposed method are
omitted and system (8) is absent.

4. EXAMPLE OF APPLICATION OF PROPOSED METHOD

Let us discuss the case of the Moore FSM Us(T'y) synthesis, where the partition
[I4 was presented in the previous section. It is clear, that A = {ay,...,au}, M = 14,
R = [logld1 =4, T ={Ty, .., T4}, D = {D1y, ..., D4}. Let us have the set of microope-
rations Y = {yj, ..., y7}, and let system (2) be represented as the following one:

Vi =A3V AsV Ag V Ay,

Y2=A VAV ALV A,

Y3=Aa VALV ARV Ay V Ay

Ya=As4V As VA3V Ajp V Ap; )
Vs =A3V Ag VA3V Ag V Ay
y6:A2\/A3\/A4\/A6\/A7;

Y7 = Ay V Az VApVApVA;.

Generalized formula of transitions [16] describes the transitions for class B; € Ty,
whereas the formulae of transition [1] describes the transitions for each state a,, € B;.

Let the following system of generalized formula of transitions be constructed for
the GSA I'y:

By — xjap V X1xa3 V X1 %05,

By — x3a1 V X3ay0;

By — X004 V XyXx3a7 V X3X3x406 V XaX3Xaa13;

By — ag; (10)
Bs — x3a3 v X309,

Be — xaa3 V Xaxsay; V XgXsxed|y V XaXsxedia;

By — x3x6a1 V x3Xsaz V X3xpaio V X3x2a.

Using the algorithm ESPRESSO [8], we can get the following outcome of the
combined state assignment (Figure 3).

Let us point out that equations (4) and (9) are used as the input constrains for
ESPRESSO [10, 11]. Using the state codes from Karnaugh map (Figure 3), we can
get the following systems of equations:
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yi =TTy V _ﬂﬁ;yz =T\12T3V T715Ty;
3 =TTy vV T1ToT3,94 = T\ T3 V T3Ty;

= = , (1D
ys = 11Ty V ToTa; 96 = ToTy V T 1515,
vy = TT3Ty vV T T3Ty v T T 15Ty,
By = T\TyT4; By = ToT3Ty;
B3 = T7T5T4 vV T'T7T3; By = T\ TaTy; (12)

Bs = T\ TaTy; Bg = T1ToT3T4 vV TyT5T;
By = T\T,T5T4 Vv T2 T3 Ty,

T 00 01 11 10
TiT2
00 L oa | a *

01

a
a
1"ia,|lala,|a
10 | ¢

Fig. 3. Outcome of combined state assignment

Our analysis of the system (12) shows that Iz = {B3, Bg, B7}, [ = 3, lI¢ = {B1, B>,
B4, Bs}. It means that condition (6) takes place, and FSM U, (I'y) has the structural
diagram shown in Figure 2. According to (5), Ry = 2, T = {11, 72}. To minimize the
number of terms in system (8), let us encode the classes B; € Il in the following
way: the more states the class B; includes the more zeroes its code contains. In our
particular case the following codes can be assigned: K(B3) = 10, K(Bg) = 10, K(B7)
= 11. The code 00 indicates that B; € Il.

The transformed structure table of Moore FSM U, is constructed using system of
generalized formulae of transitions. It includes the columns B;, K(B;), a;, K(ay), Xy,
®y, h, where H = Hy. Let the symbol H(I';) denote the number of lines for transformed
structure table for Moore FSM U;(I';). In our example, this table includes H, (I') =
20 lines (Table 1).

The column K(B;) contains the codes of classes B; € 114 represented as concate-
nations

K(B;) = K(Bj)p * K(Bi)c, (13)

where the part K(B;)p is represented by variables 1, € r, the subscript B means that
B; € Ilp; the part K(B;)¢ is represented by variables T, € T, the subscript C means
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that B; € Il¢; * is a concatenation sign. If 7, = 7, = 0, then B; € Tl¢, otherwise the
part K(B;)c is ignored. It is marked by signs “*” in the part K(B;)c. Codes of classes
B; € Il can be found in the following order. For example, Boolean equation for B,
from system (12) shows that 7; =Ty, = T4 = 0 and T5 is absent. Thus, K(B))¢ =
= 0 * 00. Using the same approach, the following codes can be found: K(By)c = *110,
K(Bg)c =00 * 1, K(Bs)e = 10 * 1. These codes are present in the column K(B;) of
Table 1. The codes of states a, € A are taken from the Karnaugh map (Figure 3).

Table 1

Transformed structure table of Moore FSM Us(I'))

B; K@®B)) a, | K(ay) Xp Dy, h
7172 | T\ T 5T,
a, | 1001 Xy DDy 1
B,| 00 0*00 az | 0001 i /x; x» D, 2
as | 0110 | /x( /x, DyD4 3
B, | 00 *110 a( | 0000 X3 - 4
a9 | 1010 /X3 D,D; 5
ay | 1011 X DD;Dy | 6
a; | 1000 /X7X3 D, 7
Bs| 01 ook ag | 0011 | /xo/x3xy D3Dy 8
a3 | 0100 | 7x9/x5 /x4 D, 9
By 00 00*] ag | 1111 1 DiD,D3Dy | 10
asz | 0001 X3 Dy 11
Bs| 00 10*1 ag | 1101 /X3 DD;Dy (12
a; | 1001 X4 DDy 13
ay; | 1100 /X4Xs DD, 14
Be| 10 ok app | 1110 § /x4/x5%¢ | D/Dy Dy |15
ap | 0101 | /x4/xs/xg DyDy 16
a, | 0000 X3Xg - 17
az | 0001 X3/Xg Dy 18
B, | 11 Hokeok ok ap ! 1010 | /x3x, D, D3 19
ap | 1110 | /x3/%5 D,D;Ds {20

The table of block BCT reflects the law for transformation of state codes K (ay)
into class codes K(B;), where a,, € B;. It includes columns an, K(an), By, K(B;), Ty,
m. Here the column 7, includes variables 7, € 7, which are equal to | in code K(B,)
from the m-th line of the table. In case of FSM U,(T'}), the table of block BCT has
Iy =7 lines (Table 2).
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Table 2
Table of block BCT for Moore ESM U,(I'y)
an K(am) Bi K(Bl) Tm m
ay 1100 Bz 01 T2 1
a;z | 0100 2
a4 0101 3
az 1000 Bg 10 Ty 4
ag | 1111 5
ady 1101 B~ 11 Ty T2 6
a0 7
In common case, value [y, can be found as
/
Iy =) m-C (14)
i=1

where n; = |B;|, C; is a Boolean variable equal to 1 iff B; € IIz. This table is used to
derive the equations (8). In our particular case, the following system of equations can
be found:

T = AV AV Ay V Ajg = T1ToTa vV T1To Ty
T = AoV AV ALV AV A = ToT3 vV T, T5T
This system was minimized using the Karnaugh map from Figure 3.
System (2) is represented by equations from the system (11). Equations from system
(7) depend on terms F, (h = 1,..., H, (I';)) corresponding to the lines of transformed
structure table. These terms are represented as:

(15)

— Rl lr/) N drh 6
Fh—/\l’l' OAIT, ® X, (16)
= =

r

where [,;,, d,, € {0, 1, x} are respectively the values of the r-th bit of codes K(B;) and
K(a,,) from the h-th line of the table: 79 =T, Trl =7, T? =T,, T,l =T, 7 =T =1

In our particular case the following equation, for example, can be derived from
Table 1:

Dy=F\VF,VFsVFgVFoVF I VFoVF3VFegVFig=tin[1T3T4x V..V
T1T2X4X5X V T|ToX3Xg-

Let us point out that in our particular case there are no codes K(B;) with “don’t
care” [8] values of bits. But in common case, it is quite possible.

Implementation of Moore FSM U, (I';) logic circuit is reduced to implementation
of logic circuits for systems (2), (7) and (8) using some CPLD chips. This step is well
presented in literature [7,15] and we do not discuss it in this article.
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5. ANALYSIS OF PROPOSED METHOD

Let us start from analysis of our particular example. Let the symbol H; (f) stand
for the number of terms in function f € T U T U Y for Moore FSM U;. The number
of PAL macrocells having ¢ terms which is needed to implement function f can be
denoted as m;(f, ¢). Using results [7], we can find that

nfoq) = [M] i1
q-1

Let us note that subscript i determines the type of Moore FSM model. The results
of our calculations are shown in Table 3.

(17)

Table 3

Characteristics of different models

U, U Us Uy
D, 17 8 Il 5 12 6 18 9
D, 14 7 8 4 8 4 13 6
Ds 19 9 8 4 9 4 13 6
Dy 19 9 10 5 10 5 12 6
¥i 4 2 2 | 3 { 2 1
V2 4 2 2 1 3 1 2 1
Ya 3 2 2 1 2 1 2 [
Y4 5 2 2 1 3 1 2 I
Vs 5 2 2 1 3 1 2 1
Yo 5 2 2 1 2 1 2 1
¥7 5 2 3 I 5 2 2 1
T 0 0 2 1 0 0 0 0
T2 0 0 2 1 0 0 0 0
BIMF 33 2 18 2 19 2 27 2
BMO 14 2 7 1 8 2 7 1
BCT - - 1 - - - -
FSM 47 4 27 3 27 4 34 3

In case of Moore FSM U, states are encoded in an arbitrary way. Let in case of
the FSM U, (I'y) we have K(a,) = 0000, K(ay) = 0001, ..., K(ajs) = 1101. The first
column in Table 3 shows the values H;(f) and the second shows the values n:{(f, q) for
FSM U/(I'}). The first column in line BIMF shows the total number of macrocells in
the logic circuit of block BIMFE. The second column in this line shows the number of
layers in this circuit. The same characteristics are shown for blocks BMO and BCT,
The total number of macrocells and layers in logic circuit of FSM is shown in the line
FSM.
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In our experiments, the PAL macrocells with ¢ = 3 are used. In this case the
number of layers L(f, g) for implementation of function f is determined as

L(f. @) = Tlogsni(f, 1. (18)

The characteristics of FSM U,(I'|) are found from Table 1 and systems (11) and
(15).

Using the algorithm ESPRESSO for optimal state assignments, the following codes
for the FSM U;(I'}) can be obtained (Figure 4).

00 01 11 10
T1T2

00| a |a,|4d,]| *

01| a, | a;| ayl *

1" a7 Cl8 Cl9 alo

10 aS a6 aZ 4

Fig. 4. Outcome of optimal state assignment

Application of ESPRESSO for refined state encoding (model Us) produces the
same results as for combined state encoding (Figure 3).

Analysis of Table 3 shows that, in case of GSA I';, application of the combined
state assignments produces the best solution. The logic circuit of FSM Us(I'y) has less
hardware than logic circuits of U;(I'}) and U4 (') was well as less layers than all other
logic circuits analyzed in our example.

The next step in our research was application of probabilistic approach to find an
area where the model Us; consumes less hardware than other models. There are three
key points in the probabilistic approach [17,18]:

1. Use of the class of graph-schemes of algorithm instead of a particular graph-scheme
of algorithm I". Each class is characterized by the parameter p;, which is treated
as a probability that a particular vertex of the graph-scheme of algorithm I' is an
operational one.

2. Use of matrix realization of the logic circuit of FSM [1] instead of the implemen-
tation using some standard VLSI chips. In this case we can find a hardware amount
as the area of matrices for a given structure of logic circuit of FSM.

3. To study relation S(U;) / S(U,), where S(U;, S(U;) are the areas of the matrices for
finite-state-machines U; and U, respectively. It is proved in [18] that such relations
for the cases of matrix realization are the same as for circuits implemented with
standard programmable logic devices, such as PAL, PLA or PROM.
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Matrix realization of Moore finite-state-machine U 1 is shown in Figure 5.
se the g
X & 1 (I) & 1
—) F T A, | Y
( 18) M’! Mz _ RG M3 M4

1) and Start l

Clock
codes

Fig. 5. Matrix realization of Moore FSM U,

Here M, is a conjunctive matrix that implements the system F of terms of the
system (1); M, is a disjunctive matrix that implements functions of the system (1); M3
is a conjunctive matrix that implements the system Ao, where each function corresponds
to conjunction A,,(m = 1,..., M) respective to the code K(a,,) of the state a,, € A; My
is a disjunctive matrix that implements the functions (2). It is clear that the matrices
M, and M, represent the block BIMF, and matrices M3 and M, represent the block
BMO. The complexity of these circuits can be expressed as

S(BIMF), =2(L+R)-H+H -R: (19)
SBMO)y =2-R-M+M-N. 20)
Matrix realization of Moore FSM U, is shown in Figure 6.
es the
X & 1 & Y
nbined M F o M (D, RGLT, M3
as less ! 2
1 other . T
Start
ind an —Glock_|
> three |
Fig. 6. Matrix realization of Moore FSM U,
cheme |
tre.ated “ In case of Uy, let F include Hy elements, where Hy is the number of transitions for
-~ is an equivalent Mealy FSM [14]. We assume that each function of systems (2) and (5) is
implemented using in average k PAL macrocells. Because of it, both BMO and BCT
lemen-

are represented by conjunctive matrix M3. The complexity of these circuits can be
imount expressed as

;:es for S(BIMF), = 2(L+R)) - Hy + Hy - R: (21)
lations
d with
S(BMO); = 2R(N + R,) - K. (22)
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Now we should analyze the following function:
S(BIMF), + S(BMO
S )2 +5( )2 (23)

"~ S(BIMF), + S(BMO),

To reduce the number of variables in (23), we can use results from [16,17], where

parameters L, R, H, Hy, R; are expressed as the following functions:

L=(-p)-K/1,3;

R =[logpi - KT;
H=17,4+1,7p,-K;
Hy=4,4+1,1-p, -K;

Ry = [logy(2,75+0,34 - p, - K)].

In expressions (24)-(28), parameter K is equal to the number of vertices in
GSAT. Some results of our experiments are shown in Figure 7 — Figure 12.

f 0.64
e = 4
Zi o hﬂ,,,*r"’*—ﬂ"*——”;L
0.5 / / /
0.52 / './ /
N ayd
ol S

Ve

0.44

p1=05

0.42
100 200 300 400 500 600 700 800 900 1000 K

Fig. 7. Comparison of U, and U, (p;=0,5)
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(28)
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(23)

where

(24)

(25)

(26)

27

(28)

initial
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06—

057 T———

0.54

051

V74
s

0.42 —
100 200 300 400 500 600 700 800 900 1000 K

N =50

Fig. 8. Comparison of U, and U, (N=50)

As it follows from Figure 7 and 8, application of the combined state assignment
always leads to decrease in hardware amount in comparison to the arbitrary state assi-
gnment (Uy). The gain is increased with decrease in the number of vertices (decrease
of K}, increase in the number of microoperations (increase of N) and in the number of
operational vertices (increase of py) in interpreted GSA T'. For example, if p; = 0.7,
N =50, K = 400, the hardware amount is decreased up to 44% in comparison with
Uy. Let us point out, that small values of k (k < 4) practically do not affect the value
of function f.

The matrix realization of Moore FSM Us is the same as shown in Figure 5. Due
to optimal state assignment, the following relations are true:

S(BIMF)3 = S(BIMF),; (29)

S(BMO); = S(BMO),. (30)
Now we should analyze the following function:

_ S(BIMF), + S(BMO),
- S(BIMF)s + S(BMO);

f (31)

It is clear from Figure 9 and Figure 10, that application of the proposed method
always gives less amount of hardware than the method of optimal state assignment. This
gain is increased with decrease of the number of vertices of GSA T and increase of the
number of operational vertices of graph-schemes of algorithm I" (increase of parameter
p1) (Figure 9). This gain is increased with increase of the number of microoperations
N in interpreted GSA T (Figure 10).
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Fig. 9. Comparison of U; and Uj (p,=0.,5)
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Fig. 10. Comparison of U, and U; (N=50)

The matrix realization of Moore FSM U, is the same as it is shown in Figure 6,
but outputs r are absent. It leads to the following relations:

S(BIMF)s = S(BIMF)y; (32) ,
alwa)

=2.R.-N. gnme
S(BMO)4 =2 -R-N-k. (33) of K
in th

Now we should analyze the following function:
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_S(BIMF), + S(BMO),

f (34)

~ S(BIMF), + S(BMO),’

&
N=10 Py =05 |
0.57 -
100 200 300 400 500 600 700 800 900 1000 K
Fig. 11. Comparison of U, and U, (p,=0,5)
FOoS T
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N=50
0.59 T T T T T T T T T
100 200 300 400 500 600 700 800 D00 1000 K

Fig. 12. Comparison of U, and U, (N=50)

As it follows from Figure 11 and 12, application of the combined state assignment
always leads to decrease in hardware amount in comparison with the refined state assi-
gnment (Uy). The gain is increased with decrease in the number of vertices (decrease
of K), decrease in the number of microoperations (decrease of N) and with increase
in the number of operational vertices (increase of py) in interpreted GSA T.
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To check the correctness of these experiments, we developed some original software
tools oriented on industrial CPLD chips [4,5]. This software uses the standard package
Web Pack of Xilinx [S] and VHDL models of Moore FSM U, — U,. Some standard
benchmarks [19] were used to conduct our experiments. The experiments conducted
using this software confirm correctness of tendencies represented in Fig. 7 Fig. 12.
The only difference is a slightly less gain in comparison with theoretical experiments.
In all our experiments the gain was approximately 7% — 10% less than in cases of
theoretical experiments.

6. CONCLUSION

The proposed method of combined state assignment is oriented on decrease in
hardware amount for both blocks of input memory functions and microoperations of
Moore FSM. If necessary, the codes of some classes of pseudoequivalent states are
generated by the block of code transformer. In this case a PAL property such as a wide
fan-in is used to operate with two sources of class codes. Our experiments show that
proposed method always produces logic circuits with less amount of PAL macrocells
than any known methods for Moore FSM design, in particular the methods based on
refined and optimal state assignments.

Let us point out, that decrease of hardware amount is very often combined with
decrease in the number of layers of resulted combinational circuit. It results in decrease
of FSM cycle time and, therefore, increase of its performance as well as performance
of the whole digital system. As the code transformation is executed in the same time
when system data-path executes some operation, it does not lead to slowing down of
digital system with Moore FSM.

Our future research is connected with exploration of possibility for the application
of proposed method in the digital systems where a control unit is implemented using
technology of FPGA [3.,4].
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Improvements to Symbolic Functional Decomposition
Algorithms for FSM Implementation in FPGA Devices
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The method of symbolic functional decomposition for FSM implementation in FPGA
devices yields better results than the currently widespread, two-step approaches based on
state encoding and mapping of the resulting binary function. This paper presents the method
using an example FSM and briefly discusses the existing algorithms, along with results ob-
tained for benchmark FSMs. The paper also proposes a heuristic algorithm for input selection
as well as a new, clique-based algorithm for the construction of the crucial decomposition
blankets.

Keywords: finite state machine, FPGA, FSM, symbolic functional decomposition

1. INTRODUCTION

The method of symbolic functional decomposition of finite state machines, first
introduced in [5], is a novel approach to the implementation of FSMs in field program-
mable gate array (FPGA) devices. Contrary to the classic, two-step solutions based on
encoding the machine’s states and then mapping the resulting binary function into
the device’s LUT cells (ideally using the method of binary functional decomposition)
[1, 6, 8], the symbolic method maintains the multi-valued representation of the states
throughout the whole decomposition process and encodes the states partially, in a way
that’s optimal in the given mapping iteration.
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The implementations of this method presented in [10, 11, 12] yield better results
than the classic approaches. Unfortunately, while proving the high quality of the re-
sults obtained using this method, these soluions are not really viable for larger FSMs
without additional algorithms implementing heuristic input selection; the algorithms
constructing the crucial blankets used in the method can also be subtantially improved
upon.

Fig. 1. Symbolic Functional Decomposition with Blankets

After a brief introduction of the existing symbolic functional decomposition algo-
rithms, this paper proposes the algorithms for input selection heuristics and a new,
clique-based algorithm for blanket construction.

2. SYMBOLIC FUNCTIONAL DECOMPOSITION

2.1. DEFINITIONS

Symbolic functional decomposition of an FSM can be described similarly to serial
decomposition of a Boolean function defined using blanket algebra (see [1] and [6]
for details on these two concepts). Let X be the set of primary inputs, ¥ be the set of
primary outputs of a certain FSM specified by a state transition table. Let Q and Q' be
multi-valued variables representing present and next state of this FSM. Let U and V
be two subsets of X, such that U UV = X. Let Qy and Qy be multi-valued variables
encoding variable Q. Let By and By be blankets induced by the primary input subsets
V and U. Let B¢, and g, be blankets induced by the multi-valued variables Qy and
Qu. Let By and By be blankets induced by the primary output sets and by the next
state multi-valued variable Q’.
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Theorem 1 Existence of the symbolic functional decomposition [7].
The FSM has a symbolic functional decomposition with respect to (U, Qu, Qv, V)
if there exists a blanket B such that By e Bo, < Bc and By e By, ® B < Br, where

Br =PBreBy.

Fig. ?? presents an outline of the symbolic functional decomposition with the
abovementioned blankets.

2.2. MAIN CONCEPTS BEHIND THE METHOD

The main idea behind the symbolic decomposition method is to take a finite state
machine which cannot be directly implemented in the target FPGA device’s LUT
cells (because after encoding the machine’s states with a minimal-length encoding
the sum of the encoding’s width and the number of binary inputs is greater than the
number of inputs of the device’s LUT cells — otherwise the FSM would be directly
implementable, requiring at most a trivial parallel decomposition) and decompose it
into a binary function G and a smaller finite state machine H. Ideally, the G function has
no more inputs than the widest LUT cells (and thus is directly implementable in them,
requring at most a trivial parallel decomposition); the same goal applies to the desired
H FSM ~ if the number of its inputs added to the number of bits in a minimal-length
encoding of its state variable is not greater than the width of the widest LUT cells, H is
directly implementable (again, requiring at most a trivial parallel decomposition). If G
and/or H does not fulfill these goals, the given block undergoes another iteration of the
decomposition process (the “classic”, binary serial decomposition for the G function
and the symbolic functional decomposition for the H finite state machine).

As the finite state machine undergoes the symbolic functional decomposition proc-
ess, every iteration partially encodes the initial FSM’s state variable: every iteration
represents the state variable using the Qy and Qy variables, of which Oy becomes the
state variable of the H state machine and Qy is binary encoded to create inputs to the
G function. This concept makes the whole iterative process of decomposition maintain
the (partial) symbolic representation of the initial FSM’s state variable, while at the
same time encoding it gradually in a way that is optimal for the given iteration of the
decomposition process.

2.3. ADVANTAGES OF THE METHOD

As mentioned in the introduction, the advantages of the symbolic functional decom-
position method (when applied to implementation of finite state machines in FGPA de-
vices) are the ability to retain symbolic representation of the machine’s states through-
out the multi-level decomposition process and the partial encoding of the machine’s
states, optimal for a given level of decomposition.

All of the currently widespread methods of implementing FSMs in FPGA devices,
such as the ones described in [2, 4, 13], are based on a two-step approach. First, the
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FSM'’s states are encoded (in various ways, depending on the method used) to binary
representation; next, the binary function (a result of replacing the states and next-states
with their encoded representations) is mapped to the FPGA device’s logic cells — with
the (classic, binary) functional decomposition regarded as the most effective method
implementing this mapping. '

The main disadvantage of the two-step approach comes from the multi-level nature
of the synthesis process. It’s very hard to project the impact of a given encoding on
more than the first level of decomposition; all of the approaches which encode the
states beforehand are based on some amount of guessing about what encoding strategy
would result in a good overall decomposition.

The symbolic functional decomposition method addresses this problem by skip-
ping the encoding step and maintaining the multi-value representation of the states,
effectively partially encoding the states on each step of the decomposition process in
a way that’s optimized for this particular iteration.

The other disdvantage of the current solutions is the choice of the number of
bits used to encode the FSM’s states. Contrary to naive assumptions, minimal-bit
approaches (such as simple sequential encoding of the states, an encoding based on
the Gray code or a random, minimal-lenght solution) do not neccessarily yield good
results. This observation led to creation of the one-hot encoding, which goes to the
other extreme and uses n bits to encode n states (with one of the bits set to 1 and all the
others set to 0). For some FSMs this approach yields better results than minimal-lenght
encodings, but in most cases the optimal encoding length lies somewhere between the
two extremes.

This characteristic of FSM implementation in FPGA devices is also addressed
by the symbolic functional decomposition method. In this method the states of the
machine are partially encoded on every step of the mapping process without assuming
any particular number of bits, so the final encoding lenght is not determined beforehand,
nor it is directly related to the number of states; instead, the encoding is adapted to
(and depends on) the needs of particular decomposition iterations encountered during
the mapping process, and so leads to better results than methods which must assume
a particular encoding length before the mapping process even begins.

2.4. EXAMPLE FINITE STATE MACHINE

Along with the description of each of the steps of an example graph-based al-
gorithm, an illustration based on an example finite state machine is presented. The
example FSM’s state transition table is given in Table 1.

The example finite state machine has ten states (init0, initl, init2, init4, Owait,
RMACK, WMACK, read0, readl and write0). The previous, two-step approaches of
implementing this state machine would either encode the states with the (seemingly)
minimal number of bits — four (the Jedi and Nova methods) — or would use ten bits,
one for each state (the one-hot method) [2, 4, 13].
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The graph-based symbolic functional decomposition algorithm generates two sym-
bols for the By, blanket and four for the By, blanket, effectively encoding the machine’s
states on three bits (one for the Qy set and two for the Qy set).

Table |
State Transition Table of the Example FSM

AL X2 X3 Xg o o Yioy2
If- - 0 0 init0 initl 0 0
20 1 0 0 init1 init] 00
3- - 1 - initl init2 1 0
491 - 1 0 init2 init4 [0
50- 1 1 1 init4 init4 1 0
6]- - 0 1 init4 [Owait 0 1
710 0 0 - IOwait | IOwait 0 |
8|1 0 0 - IOwait init! 0 1
910 1 1 0 IOwait read0 0 0
0t 1 0 0 IOwait writeO 1 1
[P0 1 1 1 IOwait | RMACK | |
12/1 1 0 | IOwait |WMACK 0 0
13- 0 1t - IOwait init2 0 1
14/0 0 I 0 RMACK |RMACK 1 1
I5/0 1 1 1 RMACK/| readd 0 0
161 1 0 0 WMACK|WMACK 0 0
I7(1 0 0 1 WMACK| write0 0 1
1810 0 0 1  read0 readl 11
1910 0 I 0 readl IOwait 0 |

2000 1 0 O  write0 [Owait 0 1

3. EXAMPLE ALGORITHM

3.1. DVERVIEW OF THE ALGORITHM

The algorithm operates on blankets induced by input, output and intermediate
variables (presented on Fig. 2?). Some of the blankets can be easily computed based on
the state machine’s definition and the choice of the U and V subsets (which are defined
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for a single run of the algorithm), the rest is constructed by creating incompatibilty
graphs, in which the vertices represent the blankets’ blocks, while the edges connect
the blocks that can’t (or shouldn’t) be merged.
The algorithm consists of four steps:
1. Computation of the blankets induced by the finite state machine (in particular, B¢
and Br) and the direct and indirect input variable subsets (8 and By ).
2. Construction of By, , the blanket representing the direct subset of the state variable
encoding.

3. Construction of S, the blanket representing the separations provided by the G block.

4. Construction of B¢, , the blanket representing the indirect subset of the state variable
encoding.

In the final implementation, steps 2-4 are repeated so that different possible By, B
and Sy, blankets are constructed, while the whole algorithm is repeated for different
selections of the U and V sets. Then, the best (for the given target architecture) de-
composition is selected and the G and H tables are built; if the H table is too big to be
implemented in the target architecure directly, it undergoes the whole process again,
acting itself as the FSM to be decomposed.

3.2. BLANKETS INDUCED BY THE FINITE STATE MACHINEE
AND BY THE DIRECT AND INDIRECT VARIABLE INPUT SETS

First step of the algorithm consists of computing the blankets induced by the finite
state machine’s transition table. The B, and Br blankets, as well as the By and By
blankets (for defined U and V sets) are used further in the algorithm as the basis for
construction of the three blankets that define a particular decomposition — By, B¢ and
B Qv+

In this step, the algorithm computes the required blankets based on the blankets
induced by individual columns of the FSM’s transition table. In the case of the example
FSM and the chosen U = {xp,x4} and V = {x;,x3} sets, the following relations hold
true and allow the computation of the “base” blankets: Sy = By o8y, eB,,, Bu = By, ®fx,
and By = B,, @ B,,. Thus, the By, Br, Bu and By blankets equal

Bo = (1;2,3;4;5,6,7,8,9,10,11,12,13;14,15; 16,17; 18; 19; 20},

Br = {1,2,3;4,5,6,7,19,20;8;9,15;10; 11,14: 12,16; 13; 17; 18},

Bu = {1,2,3,4,9,10,16,20;1,3,4,7,8,13,14,19;3,5,6,11,12,15;3,6,7,8,13,17,18},
By = (12,6,7,18,20;1,6,8,10,12,16,17;3,4,5,13;3,5,9,11,13,14,15,19}.
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3.3. BLANKET REPRESENTING THE DIRECT SUBSTET
OF THE STATE VARIABLE ENCODING

The first blanket that has to be constructed by the algorithm (as opposed to just
being computed from the state machine’s representation and the U and V sets) is
Bo,» the blanket representing the direct subset of the state variable encoding. This
blanket, being constructed by merging of the blocks of the Bo blanket, has to satisfy
the Bo < Bg, condition — it cannot provide any separations not already provided by
Bo-

The more “merged” this blanket is (i.e., the fewer blocks it has), the fewer binary
inputs will be required to implement it in the final decomposition (if it has ten blocks,
four binary inputs are required; if it’s merged down to eight blocks, three binary inputs
are enough). At the same time, all separations required by the F function (i.e., by
the Br blanket) and not provided by either 8y or Bo, have to be provided by B (the
condition of By e By, e B < Br has to be satisfied); the more Bo, is “merged”, the
more separations have to be provided by f;, the number of Bc’s blocks is larger, and,
thus, the G block requires more outputs in the final implementation.

To construct the By, blanket, an incompatibility graph is created with vertices
representing the Sy blocks and edges connecting these of the vertices/blocks which
provide separations required by the F function (except for the separations provided
already by the S, blanket). At the same time, the edges of this graph are weighted
with weights representing the number of separations lost when merging the related
vertices/blocks.

Given this approach, any disconnected pair of vertices can be merged at no cost
(merging them lessens the number of separations provided by the By, blanket, but the
lost separations are either not required by the F function or are already provided by the
Bu blanket); once the graph is complete the algorithm starts merging the vertices on
a lowest-weight-first basis. This approach leads to a significant reduction of the number
of blocks of the By, blanket, while still providing as many separations (required by
the F function) as possible.

For the example finite state machine from Table 1, the algorithm first tries to find
a pair of vertices that are not connected with an edge (so the represented blocks can
be merged “at no cost”); the 1 and 5_,6 blocks form such a pair. Once the graph is
complete, the algorithm finds a pair with the lowest edge weight and merges it.

The number of binary inputs required for implementation of any given blanket is
equal to the base-two logarithm from the number of states (rounded up); thus, the inital
number of binary inputs for encoding the ten-block Bo, blanket would be four. The
algorithm merges the blocks until the number of the binary inputs is smaller (so, in
this case, until there are at most eight blocks, and, thus, three binary inputs suffice)
and then tries to construct the corresponding B¢ and By, blankets. Once this is done,
the algorithm returns to this step and makes the Sy, blanket smaller again (in this
example, merges it down to four blocks), and repeats the B and By, creation. This
process is repeated until a set of possible decompositions is obtained.
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In the case of the example finite state machine and the selected U and V sets,
the best decomposition was obtained once the By, blanket was merged down to two
blocks, yielding a final B¢, blanket of

Uy iy

Bo, = 11,2,3,4,5,6,18;7,8,9,10,11,12,13,14,15,16,17,19,20}.

Fig. 2. The Initial Incompatibility Graph for the 8; Blanket

3.4, BLANKET REPRESENTING THE G BLOCK

Once the By, blanket is defined, the S; blanket can be constructed. This blan-
ket describes the output of the G block — it has to provide all of the separations
required by the B blanket except for the ones already provided by Sy and S, — the
Bu ® Bo, ®Bc < Pr condition has to be satisfied.

As the inputs to the G block consist of the Sy and By blankets (the latter possi-
bly merged down to form Sy, in the next step), to construct the B blanket a new
incompatibility graph is created. The vertices of this graph consist of the blocks of the
Bv e Bp blanket (the B¢ blanket has to fulfill the By e Sy < B¢ condition), while edges
connect these of the vertices/blocks which cannot be merged (because they provide
a separation required by the 8 blanket and not provided by either By or By, ).
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Once this graph is constructed, every disconnected pair of vertices can be merged,
the number of blocks of the B; blanket can be made smaller and thus the number of
physical binary outputs from the G block can be brought down to a number that better
fits the target architecture.

In the case of the example finite state machine and the Bo, blanket constructed
in the previous step, the initial graph for the Bc blanket is presented in Fig. 2. Its
vertices represent the blocks of the Sy e Bo blanket, while edges connect these of the
blocks/vertices which have to be separated (if the Br blanket requires a separation of
some of the vectors from these blocks, and that separation is not provided by either

Bu or Bo,,).

4,6,9,11, 13

14,15, 16, 17 3,8,10, 12

1,2,5,7,18, 19, 20

Fig. 3. The Resulting Incompatibility Graph for the 8; Blanket

Again, the number of blocks of this graph governs the number of binary outputs
from the G block, and again the algorithm merges them until the number of the outputs
is smaller than with the initial graph (or the graph becomes complete, as in this case
no more blocks can be merged).

In the case of the example FSM, the graph is merged down to the four-vertex graph
presented in Fig. 3. Thus, the resulting B blanket is equal

&1 & & &4

Be = {1,2,5,7,18,19,20;3,8,10,12;4,6,9,11,13;14,]5,16,17}.
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1.5. BLANKET REPRESENTING THE INDIRECT SUBSET
OF THE STATE VARIABLE ENCODING

Once the Bg, and B blankets are constructed, the final step of the algorithm
constructs the Bg, blanket. This blanket has to provide the B blanket with all the
separations it requires and which are not provided by the By blanket (i.e., it has to
fulfill the By ® By, < B¢ condition).

This blanket is constructed from the blocks of the Bp blanket (to satisfy the
Bo < Bo, condition) and, again, the idea is to merge it down so it provides all the
separations that are required by B¢ (and are not provided by fBy), while having as few
blocks as possible.

7,8,9, 10,11, 12, 13 16,17

2,3 14, 15

Fig. 4. The Initial Incompatibility Graph for the B, Blanket

To construct this blanket, again an incompatibility graph is created. The vertices
of this graph represent the blocks of the Bg blanket, while the edges connect these
of the vertices/blocks which have to be separated to provide the B¢ blanket with the
required separations (which are not already provided by the By blanket). Once this
blanket is constructed, the vertices that are not connected with an edge can be freely
merged together (much in the same way the vertices of the B¢ blanket were merged
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in the previous step); thus, this blanket is being merged down to lessen the number of
the Bg, blocks — which also lowers the number of binary inputs to the G block.

In the case of the example FSM and the B blanket computed above, the inital
graph for the S, blanket is presented in Fig. 4. Much like with the graph for the Bo,
blanket, the vertices of this graph represent the blocks of the By blanket, while the
edges connect these of the blocks/vertices that have to be kept separated.

Again, this graph is merged down until it’s implementable with the minimum
number of binary inputs; in the case of the example graph from Fig. 4, the resulting

graph has four vertices and is presented in Fig. 5. Thus, the resulting Sy, blanket
equals

5,6,19

14,15, 16,17

4,7,8,9,10, 11,12, 13

1,2,3,18,20

Fig. 5. The Resulting Incompatibility Graph for the 8,, Blanket

vy vy V3 V4
Bo, = {1,2,3,18,20;4,7,8,9,10,11,12,13;5,6,19;14,]5,16,17}.

3.6. THE FINAL DECOMPOSITION

Once the By, Bc and By, blankets are constructed, the final decomposition is
defined and the tables representing the G and H blocks can be constructed. In the case
of the example finite state machine from Table 1, the final encoding of the states is
presented in Table 2. As can be seen, the inital ten states are encoded to two variables,
one of which has two values, while the other has four; this means that the final encoding
will have three bits per state. The encoding of different states to the same set of values
is not an error — in the case of the example finite state machine, the states of init0, init]
and read0 can be merged together and treated as one without any loss in functionality.
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In the case of the example finite state machine and the encoding from Table 2, the
final tables for the G and H blocks are presented in Table 3. The G block can be directly
implemented in a four-input, two-output LUT cell and the H block can be (parallelly)
implemented in five five-input, one-output LUT cells; if the target architecture does not
have five-input cells, further symbolic functional decomposition of the FSM represented
by the H block is required.

Table 2

State Encoding Table

Q Qu Ov
IOwait | uy v,
RMACK | uy vy
WMACK | 4y vy

init0 U v
initl U Vi
init2 U vy

init4 Uy V3
read( Uy v
readl U 3

write0 | up vy

4. BLANKET CONSTRUCTION ALGORITHMS

4.1. BLANKETS INDUCED BY THE FSM

The initial blankets, induced by the finite state machine, can be easily computed
based on the FSM’s state transition table. The 3, blanket, induced by the state varia-
ble, represents the separations provided by the unencoded states of the FSM. The Sr
blanket, induced by the machine’s binary output and the next-state variable, defines the
separations that must be provided to successfully implement the finite state machine.

The By and By blankets depend on the selection of inputs for the U (free) and V
(bound) subsets of the FSM’s binary inputs. These of the separations required by the 8r
blanket which are provied by the 8y blanket do not have to be provided by either 8,
or B (the By e B, © B < Br requirement of the symbolic functional decomposition
theorem above); likewise, these of the separations required by the S blanket which
are provided by the By blanket do not have to be provided by the Sy, blanket (the

By @ By, < B requirement).
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Table 4

Experimental Results for an Architecture with 5/1 LCs

FSM |art décomp Secode Gray Jedi bin
bbara 10 12 1 15 15
bbtas 5 5 5 5 5
beecnt 8 6 8 9 10
dk15 7 7 7 77
dk17 6 6 6 6 6
dk27 5 5 5 5 5
lion 3 3 3 3 3
$8 1 1 6 5 5
> 45 45 51 55 56

The construction of the Sy, blanket, which de facto introduces a partial encoding
of the state variable, is crucial for the whole decomposition process. If the blanket has
too many blocks, the resulting A function will represent an FSM with many states,
hard to implement in the subsequent decomposition iteration; at the same time, if By,
does not introduce enough separations required by Br (and not provided by Sy), the
missing separations will have to be provided by the S5 blanket, which will have too
many blocks to be efficiently implemented in the target FPGA architecture.

[10] presents an algorithm for By, construction based on the concept of r-admis-
sibility, which represents the lower bound of the number of binary inputs required
by the subsequently-constructed S blanket. This implementation is quite fast, but the
algorithm is not simple and the resulting S; blanket more often than not crosses the
lower r bound. [11] proposes a simple graph based algorithm for By, construction
based on merging of the By blocks represented as vertices in an incompatibility graph;
this solution gives better results and is simpler, but at the same time is slower than the
r-admissibility one.

As for the S and By, construction, [10] proposes a simple and fast uniform method,
based on coloring of incompatibility graphs corresponding to the requirements for both
of these blankets. [11] proposes another method, based on vertex merging of these
graphs, the same it uses for 5, construction.

The most sophisticated method for S and By, construction is proposed in [12].
This method builds both blankets concurrently, using an innovative bipainting algorithm
which partially side-steps the dependencies between S and B¢, creation.
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5. EXPERIMENTAL RESULTS

The experimental results obtained with a prototypical program art décomp confirm
that the symbolic functional decomposition method yields better results than the com-
mon two-step approach. Tables 4 and 5 present a comparison of results for standard
benchmark finite state machines obtained using the state assignment method described
in [3] and [9] (the Secode column) and different encoding methods proposed in [2, 4,
13].

Table 5

Experimental Results for an Architecture with 5/1 and 4/2 LCs

FSM | art décomp Secode Jedi Nova -i Nova -io one-hot
bbara 9 7 11 13 14 15
bbtas 4 4 5 3 4 6
beecnt 7 6 9 8 9 12
dki5 7 12 11 i3 13 17
dk17 6 10 11 9 (1 17
dk27 3 3 3 4 3 6
lion 2 2 2 3 2 3
s8 i I I ! ! 9
> 39 45 53 54 57 85

The tables contain the number of LUT cells used to implement the given FSM in
two different FPGA devices; one with only five-input, one-output cells, the other having
also four-input, two-ouput cells. As can be seen, the symbolic functional decomposition
method and the algorithms proposed in this paper yield the best overall results.

6. PROBLEMS WITH THE EXISITING ALGORITHMS

There are two main problems with the existing algorithms: the lack of input selec-
tion heuristic and the problem of independent blanket construction.

The first problem is the exhausitve nature of the general algorithm. The approach
described above assumes all of the possible U and V set combinations are tested; this
is a feasible solution for small FSMs (and proves that the method yields better results
than others), but the process of symbolic decomposition of larger FSMs takes much
more time than the classic, two-step solutions. The computational complexity of blanket
construction grows with the number of states (the actual growth factor depending on
the algorithm); at the same time, the number of possible U and V set combiantions
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grows with the factorial of the number of inputs (as well as the factorial of the FPGA
architecture’s inputs), which makes the algorithms unsuitable for medium and large
FSMs.

The second problem is that the construction possibilities (especially regarding the
number of required pins) of the Sy, blanket depend heavily on the construction of the
B blanket, which, in turn, depends heavily on the construction of the B¢, blanket. The
Bo, /B dependency is (at least to some extent) addressed by the bipainting algorithm
mentioned above; still, the possibilities of the construction of both blankets depend
heavily on ¢, and 8o, is not being constructed in a way that would optimize S and

ﬁQv'

The following sections of this paper address these two problems.

7. INPUT SELECTION HEURISTICS

As mentioned in the previous section, the current algorithms simply run the de-
composition process on all possible combinations of the U and V sets. The number of
these combinations grows with the factorial of the number of binary FSM inputs (as
well as with the factorial of the width of the FPGA architecture); thus, a heuristic for
input selection is needed to consider the method feasible for larger FSMs.

7.1. BLANKET SEPARATIONS

Both algorithms described below depend on the common idiom of separations —
on one hand, required by the 8y blanket; on the other, provided by the input blankets.

The B blanket can be interpreted as a requirement for the existence of certain
separations between the FSM'’s transition table’s rows. For example, 8r = {1,2; 3; 4,5}
requires the separation of 1 from both 4 and 5, but does not require the 4|5 separation.

At the same time, the input blankets can be interpreted as providing certain sepa-
rations. If B, = {1,2; 3,4,5} and B, = {1,2,3,4; 5}, then B,, provides both 1|4 and 1[5
separations (and does not provide the unnecessary 4|5 separation), while ,, provides
the 4|5 separation, but does not separate 1 from 4.

In general, the above Sy requires the following eight separations: 1{3, 114, 115, 2|3,
2|4, 2|5, 3|14 and 3|5. By, provides six of them (1|3, 114, 115, 2|3, 2|4 and 2|5), while ,,
only two (1|5 and 3|5); the other two separations provided by S, — 2|5 and 4|5 — are
not required by Sr. Thus, all of By, s separations (and only half 8,,’s) are substantial.

Clearly, in this simple example, x| is a better choice for the U set (as this means
Bo, and B will only have to provide 3|4 and 3|5). On the other hand, if U = {x,}, then
Bo, and B will have to provide the six separations required by S5 and not provided
by Bx,; what’s more, U = {x, xo} wouldn’t be much better than U = {x,}, because £,
already provides half of ,,’s substantial separations.
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7.2. SIMPLE ALGORITHM

The simple algorithm for heuristic input selection first computes the separations
required by Br and then computes the ones provided by each of the inputs. Next, every
input is assigned the number of substantial separations (i.e., the number of separations
that are also required by Br). Once these values are computed for each of the inputs,
the general usefulness of every input can be estimated.

Thanks to the above metric, instead of testing every possible combination of U and
V sets, the general decomposition algorithm can now start testing the most promising
combinations first by putting the “most useful” inputs in the U set and the “least
useful” (hopefully also “most compressible™) inputs in the V set.

With this metric, the x; input (with By, providing six substantial separations) would
be roughly three times more useful when put in the U set than the x, input (with B,
providing only two substantial separations).

7.3. ADVANCED ALGORITHM

A more through (at the cost of higher computational complexity) algorithm can go
a step further when creating the input metric.

As shown above, x; is roughly three times more useful than x, when being the sole
element of the U set — but if x; is already chosen to be a part of U, then adding x,
there brings only a single additional substantial separation, as 15 is already provided
by x;. Thus, a better metric for the inputs would be one that computes the usefulness
of a given input based on the ones already selected for the U set.

This metric can be computed in two ways. An iterative way would first compute the
general metric for all of the inputs and select the best one of them into the U/ set; next,
it would re-compute the metric for the rest of the inputs, disregarding the substantial
separations already provided by the U set.

Another approach would be to compute all of the substantial separations provided
by the input blankets, and then try to select a group of inputs which, as a whole,
provides the largest number of substantial separations.

7.4. REVERSE APPROACHES

Note that both algorithms can be reversed, and the least useful inputs can be chosen
first for the V set. This could be a better solution for cases when the number of inputs
of the target FPGA architecture (which bounds the size of the V set) is much smaller
than the number of inputs of the FSM.

For the advanced algorithm, this approach would additionally simply remove any
inputs that do not provide unique substantial separations.
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7.5. SIMILARITY METRIC

Another metric that should yield a good input selection heuristic would be one
based on the similarity between sets of substantial separations provided by inputs.

If two inputs provide similar sets of substantial separations, then at least one of the
inputs might be a good candidate for the V set. If the number of substantial separations
is small, then neither input is very useful and both should go into the V' set; if the
number of substantial separations is significant, it should suffice if only one of the
inputs is an element of the U set — the other input, being similar, doesn’t provide many
additional significant separations.

8. LOOK-AHEAD BLANKET CONSTRUCTION

The other problem with the existing algorithms is the fact that the Sg, blanket
construction algorithms are based solely on the separations required by the B blanket
(and not provided by the By blanket), and does not take into account the impact a given
Bo, blanket’s final form has on the subsequent construction of the B¢ and o, blankets.
(A similar dependency between the S and B¢, blanket construction is at least partially
addressed by the bipainter algorithm proposed in [12].)

In most situations there are several forms of the By, blanket providing a given set
of substantial separations and implementable on a given number of binary pins, but
yielding very different optimization possibilities for the B¢ (and, subsequently, 8o, )
blanket optimization. The current algorithms take the first generated Bg, blanket, and
discard the whole decomposition if its counterpart B¢ and g, blankets do not yield
a sensible result.

This problem can be addressed by a new algorithm for the Bg, blanket, one which
takes into account fp,,’s impact on the construction possibilities of the S blanket (the
same algorithm could be also used to construct the S blanket in a way that optimises
Bo, construction).

8.1. CLIQUE-BASED BLANKET CONSTRUCTION

The general idea behind the By, B¢ and Bp, construction is to create blankets that
provide as many substantial separations as required (or possible), while at the same
time being implementable on as few binary pins as possible. The latter basically means
keeping the number of blocks smaller or equal to a power of two, as the number of
binary pins required to implement a blanket equals base-two lograrithm of the number
of its blocks (rounded up).

After examining the incompatibility graphs used for S and By, construction, it
can be seen that the the number of blocks in these blankets cannot be smaller than the
clique number of the graphs: only disjoint vertices can be merged (or colored with the
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same color) to form a single block, so all of the vertices of the largest clique in the
graph have to belong to separate blocks in the generated blanket.

Because every block merge of the initial 8, blanket (during the Sy, construction)
creates additional edges in the fB;’s incompatibility graph, two Bp, merges yielding
the same substantial separations outcome (and, of course, the same block count) can
yield two very different clique outcomes for the B incompatibility graph. If the Bo,
graph was constructed not only based on the substantial separations it provides and the
number of its blocks, but also based on the size of the largest clique in the subsequent
Bc incompatibility graph, a given decomposition could be implementable on fever
blocks; in some situations, a sensible decomposition could be obtained where the
current algorithms do not yield one.

The By, construction algorithms proposed previously start with 8, equal to Bo
and iteratively merge By’s blocks to produce smaller blankets while losing as few
substantial separations as possible. Contrarily, the clique-based algorithm starts with
a single-block (i.e., fully merged) Bo, blanket, which corresponds to the densest Ba
incompatibility graph. The algorithm then iteratively introduces new separations by
splitting the blanket’s blocks (initially, the single block) in a way that both makes it
provide the most substantial separations and makes it cut the largest cliques in the
corresponding S icompatibility graph; this reduces the lower bound for the number of
blocks in the final version of B;. As the number of binary pins required by a blanket
is equals the rounded-up, base-two logarithm of the number of its blocks, the new
separations can be introduces in increasing quantities: first the initial single block can
be split into two, but then another two blocks can be introduced in one iteration, and
the next one can introduce further four blocks.

9. CONCLUSIONS

The results obtained with the existing algorithms implementing the symbolic func-
tional decomposition method prove that the method yields better results than the
currently widespread, two-step approaches to finite state machine implementations in
FPGA devices. Unfortunately, these algorithms lack any input selection heuristic, which
makes them unsuitable for use with larger FSMs. At the same time, the By, blanket
construction algorithms do not yield blankets optimised for the subsequent construction
of B and B, , which is supposed to further improve the results.

This paper addressed both of these issues by describing various algorithms for
the input selection heuristic, as well as an algorithm for By, construction targeted at
minimising the clique number of the B blanket’s incompatibility graph. The implemen-
tation of these algorithms should enable the application of the symbolic decomposition
method to arbitrarily-sized finite state machines and yield even better results.
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We extend the limit of investigations for trinomials irreducible over GF(2), having the
form X" + g(X), where deg(g(X)) = 1 or deg(g(X)) = 2 and complete the existing list of
irreducible trinomials with that form by a dozen of new elements. We checked all degrees
n below 500000 while searching for that polynomials. A large part of computations were
performed by a new programming package developed especially for computations in finite
fields with characteristic two. This package is a bit more than twice faster than Shoup’s NTL
package for trinomials and about six times faster than NTL in the case of pentanomials. We
also complete the list of Mersenne irreducible polynomials for which a trinomial does not
exist by pentanomials and irreducible polynomials which are lexicographicaly youngest.

Keywords: Finite fields, binary fields, sparse irreducible polynomials over finite fields, primi-
tive polynomials, irreducible trinomials

1. INTRODUCTION

Irreducible trinomials with coefficients over small number fields are perfect can-
didates for effective implementations of algorithms using the finite field arithmetic.
They are in particular willingly applied in fast algorithms of coding [2], [3] as well
as in modern ciphers for example in ciphers based on elliptic curves geometry [7],
[11], [14]. Also classical stream ciphers [6] have in natural way as their base the
arithmetic of irreducible polynomials over the simplest two element field GF(2). Re-
cent applications in cryptography forces applying of large finite fields GF(2") with n

* This paper was supported by the Ministry of Science and Higher Education of Poland - research
grant no. N517 003 32/0583 for 2007-2010
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being about ten thousand or higher, because of which many authors presented tables
containing irreducible trinomials. Blake, Gao and Lambert [4] explored the existence
of irreducible trinomials up to degree 5000. Seroussi [11] extended the computation
of irreducible trinomials up to degree 10000. The second author generated for each n
below 10000 an irreducible trinomial and pentanomial [8]. Recently the computations
were extended up to degrees n not exceeding 30000 [9].

For security reasons in applications which are close to cryptography the degrees n
of irreducible trinomials are chosen as a prime number. If n is the index of Mersenne
prime number then each irreducible polynomial of degree n is also primitive. This is
a good reason to search for irreducible Mersenne polynomials, especially with only
few nonzero coeflicients. Unfortunately in general case for about one half degrees n
an irreducible trinomial does not exist. The second best way in that case is to choose
irreducible pentanomials that is polynomials with exactly five nonzero coefficients. As
it has been pointed out by the second author [10], the irreducible pentanomials always
exist (at least for degrees n not exceeding 30000) and the number of such polynomials
of degree n seem to be a quadratic function of n. Taking this in mind we were looking
for irreducible pentanomials in such cases, as well as irreducible polynomials for which
the power of the second monomial with nonzero coefficient is as small as possible.
Such polynomials are called lexicographicaly youngest.

Irreducible over GF(2) trinomials of the form X" + X + 1 were investigated by
N. Zierler [13]. He generated a table containing all 33 values of n < 30000 for which
such a trinomials exist. H. Fredricksen R. Wisniewski [5] listed the 19 values of n,
for which the trinomial X" + X? + 1 is irreducible over GF(2). The main result of that
work is the following fact.

COROLLARY. Let X" + X* + 1 be irreducible over GF(2) withn=3orn=5.If e is
the smallest positive integer for which X + X2 + 1 divides the binomial X¢ + 1 (e is
called a period of the trinomial X”+X2+1 and 2"~ 1 is divisible by e) then X" +X?* +1
is irreducible for all numbers r having all of its prime factors divisors of the period
and none of its prime factors divisors of the index of the trinomial X" + X2+ 1, where
by index we mean the number (2" — 1) / e.

22 o

Other words if n =3 orn=5,2" -1 =e-q{'q5"...q;", where e is period of the
trinomial X" +X2?+1 and ged(e,q) = 1, (i = 1,2,..., 5) then X" + X% + 1 is irreducible
for all integers r = q‘f‘ quq[f for nonnegative integers 8; (i = 1.2,..., s).

Our main goal was to extend existing tables of irreducible over GF(2) polynomials
of the form X”+X +1 and X"+ X?+1 taking the advantage of new computer technology
and new package, developed for fast arithmetic in finite fields by the first author. The
ideas underlying the construction and some applications of that package were earlier
described in our joint paper [1].
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2. METHOD OF APPROACH AND RESULTS

Trinomials X" + X + 1 and X" + X? + 1 can be effectively sieved by applying the

following deep result due to Swan [12]. It has to be pointed out that the result of Swan
was stated earlier by Stickelberger.

THEOREM. (Stickelberger-Swan) Let 0 < k < n. The trinomial X” + X* + | has an
even number of factors over GF(2) in each of the following cases

a. n is even and k is odd, n # 2k and (nk/2) =0 or 1 (mod 4);

b. nis odd, k is even, k t 2n and n = +3 (mod 8), or

¢. nis odd, k is even k[2n and n = =1 (mod 8).

Simple conclusions which can be deduced from the Stickelberger-Swan theorem
are as follows:

e For n divisible by 8 a trinomial irreducible over GF (2) does not exist;
e There are no irreducible trinomials X" + X + 1 for n = 2 {mod 8);

o X"+XF+ 1 with n= 23 (mod 8) and k even can be irreducible only for k2n. If k
is odd we use n — k instead of k;

¢ For na prime number, n = 13 (mod 24) or n = 19 (mod 24) there are no irreducible
trinomials of degree n.

By detailed study the discriminant of other polynomials types one can derive si-

milar to the above Stickelberger-Swan criterions describing parity of the number of
irreducible factors.

Table 1
Integers n <500000 such that the trinomial X* + X + I is irreducible over GF(2)

3 4 6 7
5 22 28 30
46 60 63 127 153
172 303 471 532 865
900 1366 2380 3310 4495
6321 7447 10198 11425 21846
24369 27286 28713 32767 34353
46383 53484 62481 83406 87382
103468 198958 248833
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Table 2

Integers n <500000 such that the trinomial X"X? + 1 is irreducible over GF(2)

5 1 21 29 35
93 123 333 845 4125

10437 10469 14211 20307 34115

47283 50621 57341 70331 80141

Detailed analysis of tables 1 and 2 show us that the rate of both types of trinomials
still decreases. In our previous paper [1] where we analyzed irreducible over GF(2)
polynomials f (X) = X" + g (X), such that degree of g (X) is as small as possible
positive integer. These polynomials were called lexicographicaly young and the degree
of polynomial g (X) we called internal degree. For increasing values of n the probability
that one can find irreducible polynomial of degree n and small internal degree is a
monotone falling function. The situation can be illustrated by the following Figure 1.

One can suppose that for a given integer m the probability that there exist an
irreducible polynomial with degree n and internal degree m asymptotically tends to
zero as n tends to infinity. It is also visible that the number of irreducible over GF(2)
polynomials with a given lowest internal degree and degrees n in for consecutive
disjoint intervals of degrees has an escaping maximum. For example in the interval
[1,10000] the maximum is for internal degree equal to 12 (see curve S1), in the interval
[10001,20000] the maximum is for 13 (curve S2), and in the interval [20001,30000]
(curve S3) the maximum is located at the point 14. The general situation is illustrated
by the curve S4 which is related to the whole interval [1,30000].

NUMBER OF Soiot
POLYNOMIALS ene
Serie2
Seriel
MSeried

INTERNAL DEGREE 16 17

Fig. 1. The number of irreducible over GF(2) polynomials with a given lowest internal degree and
degrees n in the interval [1, 30000]. The curve S1 illustrates the interval [1,10000], the curve S2 —
interval [10001,20000], the curve S3 — interval [20001,30000], the curve S4 — the interval [1,30000]
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Table 2 As it has been remarked at the beginning there is a special interest to consider
irreducible trinomials of degrees being exponents of Mersenne prime numbers. Not
for every Mersenne prime exponent n an irreducible trinomial exist. For that reason we
generated for all exponents n up to 216091 for which Mersenne number M,=2"-1is
prime, one irreducible pentanomial and one irreducible polynomial with lowest internal
degree. The results are illustrated in the Table 3.
Table 3
Searching results of different types irreducible Mersenne polynomials
omials Degree n Trinomials Pentanomial Young
GF(2) 2 ! - 1,0
ossible 3 | n 10
degree 5 2 32,10 2,0
yability 7 1;3 3,2,1,0 1,0
ee 1S a 13 - 4,3,1,0 4,3,1,0
ure 1. 17 3:5:6 3,2,1,0 3,0
Xist an 19 - 5,2,1,0 52,1,0
nds to 31 3;6;7;13 3,2,1,0 3,0
GF(2) 61 - 52,10 52,1,0
ecutive 89 38 6,5,3,0 6,5,3,0
nterval 107 - 9,7,4,0 7.5,3,2,1,0
nterval 127 1,7,15;30;63 7,3,1,0 1,0
30000] 521 32;48;158;168 9,7,2,0 9,6,5,3,1,0
strated 607 105;147,273 12,9,7,0 9,7,6,3,1,0
1279 216,418 16,8,3,0 11,9,8,5,3,2,1,0
2203 - 14,6,5,0 11,10,6,4,1,0
— 2281 715;915;1029 20,18,4,0 9,8,7,6,2,0
3217 67,576 21,9,7,0 11,10,9,8,6,5,4,3,2,0
4253 - 21,12,11,0 12,10,7,5,4,0
4423 271,369;370;649,1393;1419;2098 24,5,2,0 14,12,10,9,6,5,1,0
9689 84;471;1836;2444;4178 21,19,16,0 13,11,10,8,3,2,1,0
9941 - 29,12,10,0 9,6,5,4,1,0
: 11213 - 19,11,10,0 10,9,7,5,4,2,1,0
; 19937 881;7083;9842 29,27,21,0 13,8,7,5,2,0
L 21701 - 33,26,2,0 14,12,10,9,6,0
] 23209 1530;6619;9739 55,49,48,0 13,12,9,8,7,6,2,0
44497 8575;21034 28,20,9,0 15,12,10,9,7,5,3,2,1,0
86243 - 54,39,9.0 16,14,13,12,10,9,7,4,1,0
110503 25230;53719 40,12,4,0 18,13,11,10,7,6,2,0
132049 7000;33912;41469;52549;54454 43,36,14,0 15,14,10,9,8,7,3,2,1,0
B 216091 - 36,28,22,0 14,13,12,11,6,4,1,0
e and
S2 —
0000}
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The time devoted for finding the following irreducible polynomial with nine nonzero
coeflicients

Fiiosos(X) = X11003 4 x18 4 x84 x4 x10 4 X7+ X0+ X2+ 1

which is lexicographicaly youngest took about 8 hours on a home computer of the first
author.

3. SOME CONCLUSIONS

Irreducible over GF(2) trinomials play important role in coding theory, cryptogra-
phy, telecommunications, informatics and several other areas. Therefore investigating
these irreducible polynomials is interesting. We extended existing tables of the simplest
trinomials of the form X" + X + 1 and X" + X? + 1, finding twelve new (See Tables 1
and 2. The new elements are written in bold letters). All degrees n up to 500000 were
tested with the aim to find new trinomials with internal degree equal to 1 or 2. The
distribution of that polynomials does not show any peculiarities distinguishing them
from standard behavior of irreducible polynomials which are lexicographicaly young
(see Figure 1). Existing of an irreducible over GF(2) polynomial with small internal
degree and very large degree is rather rare phenomena.

There is also interesting to study irreducible Mersenne polynomials. If M, = 2" -1
is prime for some n, then every irreducible over GF(2) polynomial of degree n is also
primitive. The last feature gives great advantages in representing elements of finite
fields as powers of the simplest nontrivial element of a Galois Field. Table 3 collects
primitive polynomials of Mersenne degrees — trinomials (if exist), pentanomials and
polynomials lexicographicaly young.

The investigations can be easily extended, say to degrees 1000000 by distributed
computing methods.
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There are only few main classes of irreducible polynomials which are used for designing
arithmetic in Galois Fields with characteristic two. These are: irreducible trinomials, penta-
nomials, all-one polynomials (AOP) and equally spaced irreducible polynomials (ESP). The
most critical and time consuming arithmetical operations in Galois Fields are multiplication
and modular reduction. A special structure of the modular polynomial defining the arith-
metic allows significant speedup of these operations. The best class of binary irreducible
polynomials are trinomials, but for about one half of degrees below 30000 an irreducible
trinomial does not exist. By exhaustive computation we established that for all degrees n
between 4 and 30000 an irreducible pentanomial always exists. Therefore using irreducible
pentanomials for defining the arithmetic of Galois Fields have practical interest. In the
paper we investigate a function describing the number of binary irreducible pentanomials
of a given degree n greater than 3 and study its propertics. We also analyze the complexity
of a circuit (the number of XOR and AND gates) implementing multiplication in the finite
field represented by general irreducible pentanomials.

Keywords: Finite fields, binary fields, sparse irreducible polynomials over finite fields, primi-
tive polynomials, irreducible trinomials and pentanomials

1. INTRODUCTION

Trinomials and pentanomials over finite fields are polynomials with exactly three
and respectively five nonzero terms. Their computational advantages have frequently
been pointed out by several authors [31, [6], [7], [10]. Primitive and irreducible poly-

* The computational part of his paper was supported by the Ministry of Science and Higer Education
of Poland - research grant no. N517 003 32/0583 for 2007-2010
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nomials which are sparse (polynomials with only few nonzero terms) play important
role in coding theory [1], [2] and cryptography [6], [8], [10], and in particular in
elliptic curve cryptography. The application in cryptography should by secure and
because of it, large finite fields are preferred. It is especially important in the case
of binary fields GF(2"), for which fast and efficient algorithms of evaluating discrete
logarithms were designed [5] and implemented [4], [9]. The reasonable solution in
the case of fields GF(2") relays on constructing very large finite fields with 2'%0%
elements or higher. It is a common practice to choose an irreducible trinomial for
representing finite field, providing that one exists. The reduction operation can be very
effective speeded up in these cases. If an irreducible trinomial of a given degree n
does not exist, then the next best polynomials are pentanomials. It has to be pointed
out that trinomials and pentanomials are recommended by IEEE(2000) — the Standard
Specification for Public-Key Cryptography (Technical Report IEEE Std. 1363-2000,
Institute of Electrical and Electronics Engineers, Inc., 3 Park Avenue, New York, NY
10016-5997 USA).

Important operations in finite fields are addition, multiplication, division and com-
puting multiplicative inverse. The first operation is very simple and can be implemented
by using of a simple XOR circuit. Multiplication is the most important and complicated
one. Other operations such as exponentiation, division and multiplicative inverse can be
performed by computing multiplication iteratively. It is evident that efficient multiplier
architectures are especially crucial for the speed of operations and lots of architectures
for implementing a multiplier have been proposed in the literature [8].

Several authors presented tables containing irreducible trinomials or pentanomials
useful to implement arithmetic in binary fields [3], [6], [7], [10]. Blake, Gao and
Lambert [3] explored the existence of irreducible trinomials up to degree 5000. Sero-
ussi extended the computation of irreducible trinomials up to degree 10000. Important
remark is that below 10000 there exist 5148 (a bit higher than one half) numbers for
which an irreducible trinomial exist. For those degrees not exceeding 10000 for which
we do not have an irreducible trinomial there always exist an irreducible pentano-
mial. Paszkiewicz [7] generated for each n below 10000 an irreducible trinomial and
pentanomial. Also all irreducible trinomials up to degree 4000 have been generated.
In the same paper the functions 5(n) and T's(n) were investigated where #5(n) denote
the number of irreducible pentanomials of degree n, while T's(n) is the number of all
irreducible pentanomials of degree not exceeding n.

Recently Paszkiewicz' extended the computations reported in [7] and [10] of all
irreducible trinomials up to degree n not exceeding 30000. The numerical experiments
revealed some computational errors in the paper [3] which remained unnoticed in
the later paper [10]. It has also been generated for each n belonging to the
interval [10000, 30000] one irreducible randomly chosen pentanomial. There exist

" A. Paszkiewicz, On some properties of irreducible trinomials over small number fields, (a paper
being recently in press).
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5123 irreducible trinomials of degree in the interval [10001,20000] and the same
number of irreducible trinomials of degree in the interval [20001,30000]

Most of the architectures introduced so far in the literature are benefited from using
special irreducible polynomials which greatly reduces the complexity of the multi-
plication. The most important typés are irreducible trinomials, pentanomials, all-one

polynomials (AOP) and equally spaced polynomials (ESP). We define the four classes
below.

Trinomial: f(X) = X"+ X" + 1;
Pentanomial: f(X) = X" + X" + X* + X' + 1
AOP: f(X)=X"+X" 4 X" 24 4+ X +1:
ESP: f(X) = X" + X%-Dd | x2d | xd 1.

It is evident that AOP are a special case of ESP — polynomials. The problem with
these polynomials is that they are not available for many degrees n. For example there
are only 67 values of n below 1000 for which an irreducible AOP of degree n exists.
By more advanced theory one can prove, that for large real number x, the number of
all values of n not exceeding x for which an irreducible AOP of degree n exists is not

greater than A—Hx— where A is called Artin’s constant and is approximately equal to
X
0,3739558136... .

As we mentioned before irreducible trinomials and pentanomials are most popular
in several applications. It is not an accident that from the five polynomials suggested
by NIST for Elliptic Curve Digital Signature Algorithm [11] two are trinomials and the

other three are pentanomials. Therefore the study of arithmetic based on pentanomials
are of practical interest.

2. MODULAR MULTIPLICATION BASED ON PENTANOMIALS

Let f(X) = X" +X"+ X"+ X' +1 be a general irreducible pentanomial and
A(X), B(X) are two elements of the field GF(2"). They can be represented as two
polynomials of degree at most n-1 with binary coeflicients. A classical multiplication
of two polynomials over a field with two elements consists of 2 steps. The first of them
is an “ordinary” multiplication. We obtain a polynomial C(X), of degree at most 2x-2
where C(X) = A(X) - B(X) and

n—1 n—1 2n-2 m
CO =D aX ) Xt = 3 Ol ajb, pxr. ()
J=0 k=0 m=0 ;=0

In the second step we reduce the polynomial C(X) by the basis polynomial £(X) to
obtain a polynomial D(X), where

D(X) = C(X)(mod f (X)). )
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This step is totally dependent on the choice of the modular polynomial F(x). By above
notations the equality (2) leads to the following equations:

X X X" O<i<n-—m)y;
Xi + Xi+l + Xi~n+m + Xian-}—m%—l + Xi—n+m+k + Xi—n+2m’ (Fl —m<i< l’l‘“k);
n+i__ i i+l i—n+k i—~ptk+1 i—n+2k i—n+m i—n+m+l En+2m
XM= X'+ X"+ X + X + X + X + X +X ,
n—k<i<n-I)
Xi + Xi—n+l + Xi«n+2[ + Xi~n+k + Xi—n+2k + Xi—rH—m + Xi—n+2m,(” —l<i< n__z)
3)
One can prove that the total number AND and XOR gates in a circuit performing
the modular multiplication via the above scheme (3) are as follows:
P

# AND GATES = n?,
# XOR GATES = (n — 1)%,

while the

Total Delay = Tayp + ceil(log,n) - Txor,

where ceil(x) in the above formula is defined as the smallest integer greater than or
equal to x.

The fundamental and crucial problem of the existence of at least one irreducible
pentanomial of a given degree n greater than 3 over the field with two elements still
remain unsolved. Trying to answer to that question we performed a vast computation
for searching at least one irreducible pentanomial of degree n over GF(2) up to large
degrees.

3. EXHAUSTIVE SEARCH FOR BINARY IRREDUCIBLE PENTANOMIALS

Denote by f5(n) the number of irreducible pentanomials of a given degree n over
GF(2). Let Ts(n) by the number of all irreducible binary pentanomials with degrees
not exceeding #.

Ts(n) = ) t5(k) @
k=4

Nowadays it is not known if the function #s(n) has positive values for all integers n
greater than 3. A spare contribution to resolve that question are computations performed
by the author. For every n < 800 we determined the value of #5(n) and for all other
800 < < 30000 we found exactly one irreducible pentanomial. The initial part of this
job was performed in my earlier paper [7] where we established that #5(n) has positive
values for n < 10000. All earlier and recent computations were performed in a small
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local computer network consisting of about 10 Pentium PC computers working on
Microsoft Windows operation system. During recent as well as earlier computations
we used the following simple and well known algorithm for verifying the irreducibility
of a given binary polynomial f(x) of degree n.

Algorithm for testing irreducibility
of the polynomial f(X) over GF(2)

AX) « X
for j « 1 to n do
{
AX) « A(X)* mod f(X)
it GCD(AX) + X, f(X)) = 1
then return “reducible’”’
}
if A(X) = X then return “irreducible”
elsereturn “reducible”

Additionally we determined the value of the #5(n) for some isolated values n=1279
and n=2203, which as it easily can be seen are indices of two consecutive Mersenne
prime numbers. The value #5(n) for n=2203 has been found by P. Bartosik while testing
his package for effective operations on binary polynomials. We have #5(1279)=1411790
and #5(2203)=2027566 for these values of 7.

4. COMPUTATIONAL RESULTS

We present results of all computations in short, compact form. On Figures 1-17
we illustrate the behavior of the function f5(n), while the Fig. 18 shows the graph of
the function T'5(n).

It is interesting to remark that the general graph of the function f5(n) (see Fig. 1
below) is a superposition of several independent graphs. The graph on the bottom of
Fig. 1 corresponds to all arguments n divisible by 8.
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Fig. 1. Graph of the function f5(n)
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Fig. 2. Graph of the function #s(n), n = 8k
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Fig. 3. Graph of the function #s(n), n = 8k + 1
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Fig. 4. Graph of the function t5(n), n = 8k + 2
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Fig. 5. Graph of the function t5(n), n = 8k + 3
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Fig. 6. Graph of the function #5(n), n = 8k + 4
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Fig. 9. Graph of the function #s(n), n = 8k +7
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Fig. 10. Graph of the function t5(n)/n°, n = 8k
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Fig. 11. Graph of the function t5(n)/n°, n = 8k + 1
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t5(n)/in"2

1.6

1.2

038 W A

0,4 I

0,0

0 100 200 300 400 500 600 700 800

n

Fig. 14. Graph of the function ts(n)/n*, n = 8k + 4

t5(n)/n"2
1,0
0,8
0,6
0.4 fmwmmm
0,2 %
0,0
0 100 200 300 400 500 600 700 800
n

Fig. 15. Graph of the function f5(n)/n*, n = 8k + 5

Vol.




ETQ.

Vol. 55 - 2009

IRREDUCIBLE PENTANOMIALS AND THEIR APPLICATIONS...

373

t5(n)in*2

1.0 [ !
08—t g |

GessE=sc

| | ;

0,2 3
0 100 200 300 400 500 600 700 800

0,0
T |

Fig. 16. Graph of the function t5(n)/in?, n = 8k + 6

[_'*‘*Mﬁ“ t5(n)inA2

1,6
1,2 ‘L—R |
0.8

0,4 1
0,0

i

0 100 200 300 400 500 600 700 800

n

1

Fig. 17. Graph of the function r5(n)/n?, n = 8k + 7

] T5(n)in"3 1
| —
0 200 400 600 800
n

Fig. 18. Graph of the function Ts(n)/n°,
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5. CONCLUSIONS

Irreducible pentanomials over GF(2) play important role in developing circuits for

effective implementations of binary arithmetic. We established by computations the
following facts:

1.

For all 4 < n < 30000 there exist at least one irreducible pentanomial of degree n
over GF(2); '

Graph of the function f5(n) defining the number irreducible pentanomials of degree
n over GF(2) (see Fig. 1-17) splits into several independent sub-graphs;

The function #5(n) is a quadratic function of the variable n depending on the rest
class modulo §;

The function Ts(n) defining the number of all irreducible pentanomials of degree
not exceeding n over GF(2) is similar to the cubic function of n;

For the values 1279, congruent to 7 modulo 8 and 2203, congruent to 3 modulo
8 we have £5(1279)/1279% = 0,86303 and 15(2203)/2203 = 0,41777 respectively.
This remains with excellent agreement with results of our computations for small
arguments of the function f5(n) (see Figure 17 and Figure 13 for comparison).
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Optimal Opportunistic channel access of the unlicensed users has been a major problem
in a cognitive radio system. In this paper, we consider an overlay cognitive radio system,
where the secondary user senses the channel for an empty slot and transmits a constant power
for a time period without sensing the channel again. We obtain the optimal transmission
time of the secondary user to achieve the maximum data rate while keeping the interference
on the primary user under a given threshold. We derive closed-form expressions for the
interference at the primary receiver and the achievable data rate for the secondary user.
Our analysis is based on a Markov model for the primary user active and idle times and
we consider the probability of error in sensing by the secondary user. Computer simulation
results of the system show the validity of our analysis.

Keywords: cognitive radio, overlay system, interference analysis, imperfect sensing

1. INTRODUCTION

Current scheme of allocating radio frequency bands for different wireless services
resulted in an inefficient system. Recent measurements in the United States have shown
that 70% of the allocated spectrum is not fully utilized [1]. To improve the utilization
of the radio spectrum, a different allocation scheme has been proposed using cognitive
radio systems [1]. In such a system, cognitive or secondary users share the licensed
spectrum: opportunistically with the primary users that hold the license. While this
scheme has the capability to increase the overall utilization of the spectrum, there
are several challenges that should be answered before it can be implemented. The
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main B. A. BASTAMI, E. SABERINIA E.T.Q. challenge is to control the amount of
interference on the primary user (PU) caused by the secondary user (SU). Generally,
two main approaches have been proposed to control the interference on the PU. In
the spectrum overlay scenario, the SU access the spectrum whenever it senses that
the PU is idle. The PU can transmit at any time and the cognitive user should have
the ability to monitor the channel status and decide whether to transmit or not. On
the other hand, in the spectrum underlay technique, the secondary user can transmit
at any time, but the power spectral density (PSD) of the transmitted signal should
be low enough, preferably at noise level, for small interference on the PU. However,
even in the overlay scheme, channel sensing is used to increase the capacity of the
SU. Using channel information, a power control scheme can be designed for the SU
such that it maximizes its transmission capacity while keeping the interference on
the PU below a threshold [2]. On the other hand, a perfect overlay system can have
zero interference. This requires the SU to have the capability to detect the channel
status without any error. Furthermore, it should have the ability to detect immediately
a PU transition from idle to active and suspend its own transmission. Designing such a
system is very complicated. In practical scenarios, we have to consider some possibility
of sensing errors for the SU. Furthermore, we can assume that the SU transmits its
signal for a limited period of time without sensing once it detects a free channel [3].
This means that there will be some interference on the PU. In this paper, we study
this interference and design a system that maximizes the secondary user’fs capacity
while keeping the interference below a threshold. We consider an overlay cognitive
radio system where the SU may have error in sensing the channel. Also we assume
that the SU does not perform any sensing when it is in transmission mode. We derive
closed-form expressions for the interference on the PU and the achievable data rate of
the SU. Our main objective is to maximize the data rate of the secondary receiver under
the primary user interference limit constraint and derive the optimal secondary user
busy time duration in terms of the primary user timing parameters and probabilities
of imperfect sensing. We assume that the primary user active and idle mode durations
obey an exponential distribution like Markovian models.

Some recent studies consider similar problems in overlay cognitive radio systems. In
[5], the interference and capacity of the SU are analyzed assuming errorless sensing by
the SU. The idle and the active durations of the PU have been modeled as exponential
random variables. Extension of [5] to a general distribution for the idle and busy times
of the PU is presented in [3]. In this paper, we analyze the interference on the primary
user and the capacity of the secondary user considering the possibility of error in
sensing. In [4], an analysis has been done for the outage capacity of the secondary
user taking into account the possibility of sensing errors. However, the work in [4]
does not cover the amount of interference on the PU.

The paper is organized as follows: in section 2, we introduce the system model.
The formulas for the interference on the PU and the achievable data rate of the SU
are obtained in section 3. We also discuss the optimization problem in this section.
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In section 4, we provide the simulation results and compare them with the derived
analytical results. Section 5 concludes the paper.

2. SYSTEM MODEL

We consider a wireless communication system where the primary users can be
inactive for some portion of the time. The busy and idle periods of the primary channel
are modeled with two random variables 7, and t, respectively. The idle period, 7y, is
assumed to have exponential distribution. The length of the transmitted packet of the
PU is usually considered as a random variable with a long tail distribution. Hence,
exponential distribution would be a good choice for the busy period, 7,, as well [3].
Therefore, the distribution function for the r; and 7, f(r), i =1, 2, can be written as:

S(T) = A exp(—A;1), (1)

where, 41 = l and Ay = —l-— and Topr and Toy are respectively the average PU
.~ Torr Ton
idle and active durations.

The secondary user successively senses the channel until it detects that the channel
is in idle mode. Then, it transmits a packet for duration of 7. We assume that during
this transmission time the SU cannot sense the channel. To be more general in our
analysis, we do not assume perfect sensing. The probability of incorrect sensing by
the SU when the PU is idle is assumed to be Py, (probability of false alarm) and
the probability of the incorrect sensing when the PU is busy is assumed to be P,
(probability of miss detection). Let’s denote the sensing duration of the SU with 7.
We assume that the value of 7 is small compared to Topp, Ton and T.

The value of the transmission time, 7, is a system design parameter. It affects
two important system performance parameters. The first performance parameter is the
amount of interference on the PU from the SU. Since the SU does not perform any
sensing during its transmission period, it is probable that the PU starts transmitting
within the transmission time of the SU. Apparently the larger the transmission time
T, the higher is the probability of the interference. The second performance parameter
which is affected by 7 is the bit rate of the SU. The longer the SU transmits once it
detects an idle channel, the higher its achievable data rate is. In this paper, our goal
is to find the optimal transmission time 7, in the sense that it provides the highest bit
rate for the SU while keeping the interference on the PU below some threshold. Our
analysis of the system is based on the alignment of the time line of the SU compared
to the time line of the primary user. Figures 1(a) and 1(b) show typical time lines of
the primary and secondary users. The PU alternates between idle and busy periods, but
the secondary user time line shows different behavior. After each sensing interval of
the SU, we may have a transmission interval or another sensing interval based on the
output of the sensing information. On the other hand, after any transmission interval
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we definitely have a sensing interval. In other words, the switching between sensing
and transmission time follows a Markov model which makes analysis complicated.
Simpler analysis is possible, if we change our point of view of the secondary user time
line.

o FU ‘
T I SO RSN ORS00 B NS
OV N WO A i 2 13 A S WO 2 A A A 1123123 5 Y

] wuide PUacis || Susersing [od 8l scive

Fig. 1. Typical time lines of the primary and secondary users

Let T, be a sensing interval that follows with another sensing interval and 7}, be
a combination of a sensing interval that follows with a transmission interval and the
transmission interval itself. Therefore, T, has a duration equal to 7 and T}, has a
duration equal to T + Ty. Figure 1(c) shows this alternate point of view of the SU
time line. With this point of view, the intervals T, and T, can follow each other
independently. Meaning that at any point of time, regardless of what type of interval
we had before, we can have either an interval of T, or 7). Suppose P, and P, represent
the probability of the occurrence of each of the intervals type T, and T}, respectively.
During a total time of Troy, the average portions of the time which are occupied
PaTa PbTb

e Tpott. aNA Ty
Pa Ta N PbTh Total PaTa i PbTI) Total

respectively. Therefore, the average number of the types T, and T}, intervals during
T 1o Would be:

with 7, and T, types of intervals would be

P aTTotal
o= e B O 2
L PaTa + PbTIJ ( )

and
_ _ DT
PczTa + PbTb

respectively. We will use these equations in our analysis of interference and bit rate in
the following sections.

@)

nrp

3. SYSTEM PERFORMANCE EQUATIONS

In this section we evaluate the system performance equations based on the system
model parameters described in the previous section.
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Fig. 2. Joint timing between the primary and the secondary user
3.1. INTERFERENCE ANALYSIS OF THE PRIMARY USER

The interference on the PU is proportional to the overlapping time in which both
PU and SU are simultaneously transmitting. In other words we have:

Ip = KTy “®

where, 7, is the expected value of the interference and T, is the expected value of
the overlapping time. Constant K; denotes the interference per unit of the overlapping
time and depends on the power spectral density of the SU transmitted signal and the
distance between the primary receiver and the secondary transmitter.

In order to calculate the overlapping time we consider different scenarios of conflict
in the system. Figure 2(a) shows a scenario where the PU starts transmission while the
SU is in transmission period. In this case, the sensing by the SU was done when the
primary user was in idle mode. Suppose 1z, is the point in time where the last sensing
has ended for the SU during previous PU idle duration. Apparently, f15 < 7] <ty +7.
If we define T| = 71 = I as a random variable that represents the remaining time

of the PU idle period, the probability that 7| is less than an arbitrary value A can be
calculated as:

P(Tllx <A) :f(;l =Tt <Al <71y <715 + 7))
_ 1= exp(=A/Topr) O<A<T (5)
I — exp(~T/TopF)

Equation (5) represents the cumulative distribution function (CDF) of }. The overlap-
ping time in this scenario can be written in terms of 71, 72 and T as follows:
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T -1, T-1, <1
TOVI:{ ! i : (6)

T T—1,>1

Evaluating the expectations in (6), we obtain

Toy = E(Tovl) =
Ton Torr exp(=T/Torr) — Ton exp(~=T/Ton) + (Ton — Torr) (7)
(Ton — Topp)(1 — exp(~=T/ToFr))

Another scenario of overlapping active transmission times is where the SU starts trans-
mitting when the primary channel was already busy (Figure 2(b)). This scenario only
happens if there is a wrong sensing by the SU during the busy interval of the PU.
Let 7oy collectively indicates the overlapping time during the busy interval of the PU
other than the overlapping time in the previous scenario. We can use Equations (2)
and (3) to calculate the expected value of 7,,,. When the PU is busy, type T, interval
happens when the sensing by the SU is correct and type 7', interval happens when the
sensing by the SU is incorrect. Therefore, P, = 1 — P,, and P, = P,,. For a given 1,
the total duration within which the secondary user may make a wrong decision causing
interference is 75 — Toy1. Therefore, the total numbers of T, and T}, intervals are:

— (1 - Pm)(TZ - 7'ovl)
(l - Psn)Ta + PmT:’) (8)

_ T2 — Tovl
(1 - Pm)Ta + Pme

Nq

Ny

Noting that a sensing time (Ts) exists in both 7, and T}, intervals, the total average
time of sensing during the time 13 — 7oy would be (N, + N)T;. Hence, the average
overlapping time in this case would be

Tov2 = T2 =~ Toyt — (Ny + Np)T
(T2 = Tovi) T (9)
(1 _Pm)Ta"'PmTh ’

=T~ Tovl —
Therefore, the expected value of this overlapping time would be

(Ton = Tov1)
Tos = E(tos) = Tox — Tovt — T, 10
ov2 (Tov2) ON ovl (A= P)T,+ P, T, (10)

Considering the overlapping times in the two scenarios, the total expected value of the
overlapping time would be:

Toy = Toyi + Tovz =
- Torr exp(~T/Torp)~Ton exp(=T/Ton)+(Ton—Torr)
(Tox - Tox Ton—Tom) (I —exp-T/Tor) ) an

(1 - Pm)Ta + Pme >

Ton —
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3.2. DATA RATE ANALYSIS OF THE SECONDARY USER

The data rate of the SU is proportional to the amount of time that the SU transmits
without overlapping with the PU. Let Tnov denotes the none-overlapping time in which
the secondary user is transmitting within the idle period of the PU. The data rate, C,,
of the SU is

Cs = K> Thov, (12)

where Ty = E(1,0y) is the expected value of the non-overlapping time. Constant K,
denotes the data rate per unit of the non-overlapping time and depends on factors such
as modulation type and symbol duration of the secondary user. In order to evaluate
the data rate of the SU, first, consider the scenario shown in Figure 2(c), where the
PU switches to its idle mode and the SU is still transmitting because of a bad sensing
result when the PU was busy. Suppose 71, is the last sensing end point of the SU
during 7, and let T5 =Ty~ Tie. Since Trs2 18 the end time of the last sensing interval,
we should have 11 < 7, < Tis2 + T. Therefore, the probability that 7; is less than an
arbitrary value A can be calculated as:

P(ty < A) = P(t, ~ T2 <At <12 <10 + T)
1._ —

_ exp(—A/Ton) O<A<T (13)
I —exp(=T/Ton)

Equation (13) represents the distribution of 75. The non-overlapping time then depends
on the 75, 7| and T as follows

T— T/Z T~ TIZ < T
= ; 14
Thovl { T T — T, > T (14)

Manipulating (14), we have

Tnovl = E(Tnovl) = .
- Ton exp(=T/Ton) ~ Torr exp(~T/Tyymorr) + (Topp — Ton) (15)
OFF .
(Torr — Ton)(1 — exp(=T/Ton))

Now consider the scenario as shown in Figure 2(d) in which the SU senses and transmits
during the idle interval of the PU. Let Thov2 indicates the collective non-overlapping
time during the idle period of the PU other than the non-overlapping time in previous
scenario. When the PU is idle, type T, interval happens when the sensing by the SU is
correct and type 7, interval happens when the sensing by the SU is incorrect. Therefore
Py=1-Ps and P, = Prq. Given 11, the total duration within which the secondary
user may make a correct decision causing interference is equal to 7| — 7,4,(. Therefore,
the total numbers of 7, and 7, intervals are:
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N’ = Pfa(Tl = Tnovl)

“ PfaTa + (1 - Pfa)Tb

N/ = - Pfa)(Tl ~ Tnovl) (16)
b PfaTa + (1 - Pfa)Tb.

Since the sensing time exists in both T, and T, intervals, the average number of sensing
during the time 7| — Tyoy1 Would be (N, + N))T,. Hence, the non overlapping time is
equal to:

Thov2 = T1 — Tnovl — (N:, + N;:)Ts
(T1 = Thovt) . (17

=Ty = Thovl — 5
: novl PfaTa + (1_ Paf)Tb

The expected value of this non-overlapping time is equal to

. (Torr = Thovt)
T = FE(t =Tope — T, - T,. 18
nov2 ( n0v2) OFF novl PfaTa " (1 — Pfa)Tb K ( )

Hence, the resulting total expected value of the non-overlapping time would be

Thov = Thovt + Toovr =
(T T Ton exp(~T/Ton)~Torr exp(~T/ T()FF)“*”(TOI‘F_TON>)
OFF OFF (Torr—Ton)(1- exp(~T/Ton)) T
s

PfaTa + (1 - Pfa)Tb ‘

(19)

Torr —

3.3. OPTIMAL TRANSMISSION TIME OF THE SECONDARY USER

Our objective is to obtain the value of the SU busy period, T, which maximizes the
data rate of the SU and maintains the average interference on the PU receiver smaller
than a target value. We assume that the average values of the busy and idle durations
of the PU, the sensing information probabilities and the length of the sensing period
of the SU are given known values. It can be easily verified that both Ty and T,, are
increasing function respect to 7. Hence, the optimum value of 7" which maximizes the
SU data rate for a given interference threshed 7 is equal to T ().

4. SIMULATION RESULTS

In order to verify our analysis, we have performed a simulation of the system
described in section 2 using MATLAB. In our simulations, the mean values of the PU
idle and busy periods are assumed to be Tton = 1 and Topr = 2 which gives the ratio
of @, = 66% for the idle period. The false alarm and miss detection probabilities of
the sensing process are assumed to be 0.2. The sensing duration of the SU is set to
0.01. We run two systems simultaneously and calculate overlapping busy time of both
as well as busy time of the secondary user without overlapping with the primary user.

of
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- Analytical Resuit
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Fig. 3. The average overlapping time of the Pu and SU busy periods as an indicator of the average
interference on the PU

Figure 3 shows the simulation results for the overlapping busy period as a function
of the SU transmission time and compares it with the analytical results of equation

(11).

~ Analytical result

T

Fig. 4. The average non-overlapping time when the SU is transmitting in the idle period of the PU as an
indicator of the data rate of the SU

Figure 4 shows the simulation result for the busy time of the SU without over-
lapping with the PU and compares it with the analytical results of equation (19). The
simulation results have a very good agreement with the analytical results.
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nov
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ov

Fig. 5. The relationship between the system performance parameters

Figure 5 shows the relationship between the maximum data rate of the secondary
user with the interference threshold of the primary user. For a given threshold on
the interference and system parameters, we can calculate maximum overlapping time.
Using Figure 5, we can find the corresponding transmission time of the SU without

overlapping with the PU which can be translated to the total data rate of the secondary
user.

5. CONCLUSION

We calculated the optimal transmission time of the secondary user in a practical
overlay cognitive radio system. In our assumed system, the secondary user does not
sense the channel when it is transmitting. There is also a non-zero probability of error
in sensing. We derived closed-form expressions for the interference on the primary
receiver and the achievable data rate of the secondary user. The maximum data rate of
the cognitive user under the primary user interference constraint has been derived. Our

obtained performance expressions are in a promising agreement with the simulation
results.
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XXIT IEEE-SPIE Symposium on Photonics and Web
Engineering 30-31 January 2009, Warsaw, FE&IT WUT

Participants of one of sessions during the 23" IEEE-SPIE Symposium on Photonics and Web
Engineering, Faculty of Electronics and Information Technologies, Warsaw University of Technology,
FE&IT, WUT, 31.01.2009, in front of the prof. J. Groszkowski bust monument, patron of the Faculty.

There are sitting (1 to r): mgr Tomasz Czarski, dr Maciej Linczuk, prof. T. Morawski - invited speaker,
prof. R. Romaniuk — symposium Chair, dr Krzysztof PoZniak, mgr Arkadiusz Kalicki.

During the weekend days of 30-31 January 2009, at the Faculty of Electronics and
Information Technologies, Warsaw University of Technology, there took place the next
23" Symposium on Advanced Applications of Photonic and Electronic Control and
Measurement Systems. The Symposium was attended by over 50 young researchers, a
number of them members of IEEE. The young researchers originate from WUT and
collaborating institutions like DESY, CERN, Max-Planck Institute, etc. There were
presented over 40 research papers. The Symposium official language is English. The
Symposium is organized under the eminent patronage of domestic institutions: PSP
— Photonics Society of Poland, Committee of Electronics and Telecommunications
of Polish Academy of Sciences, FE&IT WUT, as well as international institutions:
IEEE-R8, and SPIE-Europe. The Symposium has been organized two times a year,
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for 12 years. The proceedings are published in the USA in the series of Proc.SPILE,
and in Poland as special issues of Elektronika Monthly - a professional journal of the
Association of Polish Electrical Engineers, and Electronics and Telecommunications
Quarterly — a Journal by Polish Academy of Sciences.

The subject of WILGA Symposium series are advanced applications of photonic and
electronic distributed, large, control and measurement systems in high energy physics
research, astrophysics of elementary particles, superconducting accelerator technology,
laser technology of FEL machines, etc. The Symposium participants usually take part
in various large research experiments around the globe like: LHC and CMS, E-XFEL
and FLASH, ILC and CLIC, Auger Observatory and Chandrayaan satellite, ALBA,
GSI, FAIR and CBM, BESSY, PITZ, and others. Two times a year they meet face
to face at home in WILGA to discuss the results and work development. Usually,
during the everyday work course, only the video conferences are possible, as well as
e-mails. The best of young researchers, who show exceptional skill in the team work
and display research creativity have big chances in doing their M.Sc and Ph.D. theses
at one of the biggest experiments. Quite a number of PERG/ELHEP students spend
their vacations in big European HEP research institutions like DESY in Hamburg and
CERN in Geneva, also in Fermilab in Chicago. They participate in summer student
programs. The experience gained there is exceptional and uncompared.

International Research Collaboration “Pi-of-the-Sky” (with participation of members
from PERG/ELHEP Laboratory) discovered in March 2008 an exceptionally massive
gamma ray burst (GRB) with an accompanying optical flash. The GRB was catalogued
as 080319. The GRB was probably associated with formation of a super-massive black
hole. The distance from the event was estimated for 7,5bIn light years, i.e. half of the age
of our universe. The flash was visible with a naked eye for a minute. The observation
was done by a system of four-coupled wide angle super-sensitive cameras constructed
by the collaboration and ELHEP Ph.D. students. The cameras were positioned in ESO’s
Las Campanas facilities. The discovery was published in NATURE, nr.455, 2008.

International Research Collaboration on CMS — The Compact Muon Solenoid (with
participation of PERG/ELHEP members) finished in November 2008 the construction
of the detector at LHC in CERN. The ELHEP Laboratory took part in building of
the muon trigger. A 300 pages manual on The CMS was published by TOP/SISSA
in October 2008. A number of ELHEP members and Ph.D. students are active in the
works on the construction and upgrade of the LHC. The work goes on Linac 4, SPS
accelerator, LHC booster, also on a new generation of the safety system (Infer Lock)
for the LHC.

International research consortium organized around the Indian Moon satellite Chandra-
yaan-1, with participation of PERG/ELHEP Ph.D. students, and coordinated by Max
Planck Institute of Solar Research, has finished work on some apparatus for the satellite.
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The satellite was launched and positioned on an orbit around the Moon in December
2008 and started regular measurements. A Ph.D. student from ISE (P. Sitek) partici-
pated in construction of the SIR-1 near infrared spectrometer. SIR-1 actually collects
measurement data from the Moon’s surface.

ELHEP Laboratory (Photonics and Electronics for HEP Experiments) traditionally
closely cooperates with a number of institutions in this country which participate in
large, international research experiments. These are, among others: Sottan Institute for
Nuclear Studies (IPJ) in Swierk/Otwock, Institute of Experimental Physics at Warsaw
University. The young researchers from these institutions actively participate in the
WILGA Symposium. Some of the Ph.D. students of WUT are employed at IPJ in order
to continue their research and to supplement for modest university Ph.D. fellowship.
During their stays with the experiments they are paid per diem for short stays and they
get experiment fellowships during longer stays.

The WILGA Symposia, organized in winter - smaller but international and with more
focused topical range, and the spring ones, organized during the whole last week of
May, much bigger, fully international, play in this country a completely unique role.
During the most popular years, the May Symposia gather more than 350 young rese-
archers from this country and from allover Europe. These are very special meetings of
young researchers, indeed. The meetings are completely void of any formalities and any
idealistic approach. They are devoted only to the science, research, new technologies
and the conditions of research work for young scientists in different parts of Europe and
IEEE-Region 8. During more than a dozen of years of WILGA Symposium activities,
it has gathered a few thousand of young researchers. The results of their work were
published in nearly 20 volumes of Proc.SPIE accessible via Internet data bases of the
American Institute of Physics, IEEE eXplore, Scitopia, SPIE Digital Library, Amazon,
Scopus and others. The young researchers which went through WILGA school may
be encountered all over the world in big research experiments and advanced engine-
ering and technology businesses like in: Spain, Italy, England, Switzerland, France,
Argentina, Germany, USA, India and other places.

The XXII™ Symposium had a special invited speaker, who was professor Tadeusz
Morawski, professor of radioelectronics, a prolific author of research literature, but also
a very well known palindromist. The occasion was the presentation of his new book
on the history of Polish palindromes. The book entitled “Kobyta ma maty bok — czyli
o Polskich Palindromach” has been issued recently as vol No. 24 of the “Biblioteczka
Rozrywki”. This is the fifth book on palindromes by professor Morawski. During the
session the author presented the book and after that signed and dedicated the book for
the session participants.

The Symposium organizers express solid hope that the IEEE-SPIE WILGA Symposium
cycle will be successfully continued. The next Symposium from the series is schedu-
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led for the last week of May, 25-31.05.2009. It will be held traditionally in WILGA
on the Vistula River near Warsaw in the WUT creative work resort. The organizers
warmly invite B.Sc., M.Sc., Ph.D. students, young researchers and their tutors/mentors
to WILGA. The Symposium is nearly cost free. There is no entrance fee. Cheap nights
and cheap, but extremely good, food is offered by the summer WUT WILGA Resort
staff. A unique research-gastronomical specialty of WILGA Symposium are late night
topical working sessions combined with a grill sponsored by Photonics Society of
Poland and IEEE. SPIE funds special awards for the best presentations during the
Symposium, Full information about WILGA are accessible through the Symposium
web: http://wilga.ise.pw.edu.pl.

professor Ryszard S.Romaniuk, Warsaw University of Technology, ISE
WILGA Symposium Chairman
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