POLISH ACADEMY OF SCIENCE
n and: COMMITTEE FOR ELECTRONICS AND TELECOMMUNICATIONS

ELECTRONICS AND
TELECOMMUNICATIONS
QUARTERLY

KWARTALNIK ELEKTRONIKI I TELEKOMUNIKACJI

VOLUME 55~ No 2

WARSAW 2009

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY
Quarterly of Polish Academy of Sciences

INTERNATIONAL PROGRAMME COMMITTEE
Marek AMANOWICZ
Military University of Technology, Poland

Daniel J. BEM
Wroclaw University of Technology, Poland

Franco DAVOLI

University of Genowa, Italy

Gilbert DE MEY

Ghent University, Belgium

Stefan HAHN

Warsaw University of Technology, Poland
Wiodzimierz JANKE

Koszalin University of Technology, Poland

Viktor KROZER

Technical University of Denmark, Denmark
Andrzej MATERKA

Technical University of £.6dz, Poland

J6zef MODELSKI

Warsaw University of Technology, Poland
Adam MORAWIEC

European Electronic Chips & Systems Design Initiative, Gieres, France
Antoni ROGALSKI

Military University of Technology, Poland
Herman ROHLING

Technical University of Hamburg, Germany
Ryszard ROMANIUK

Warsaw University of Technology, Poland
Henry SELVARAIJ

University of Nevada, Las Vegas NV, USA
Radomir S. STANKOVIC

University of Ni¥, Serbia

Wojciech SZPANKOWSKI

Purdue University, USA

Marek TLACZALA
Wroclaw University of Technology, Poland

Marek TUROWSKI
CFD Research Corporation, USA

Wiestaw WOLINSKI

Warsaw University of Technology, Poland
Svetlana YANUSHKEVICH

University of Calgary, Canada

Jacek M. ZURADA
University of Louisville, Louisville KY, USA

EDITOR-IN-CHIEF

Tadeusz EUBA

Warsaw University of Technology, Poland
luba@tele.pw.edu.pl

tel. +48 22 825 1580; +48 22 234 7330

TOPICAL EDITORS

Marek DOMANSKI

Poznan University of Technology, Poland
domanski @et.put.poznan.pl

Michal MROZOWSKI

Gdansk University of Technology, Poland
mim@pg.gda.pl

Andrzej NAPIERALSK1

Technical University of £.6dz, Poland
napier@dmcs.p.lodz.pl

Jan SZMIDT

Warsaw University of Technology, Poland
J.Szmidt@elka.pw.edu.pl

Tadeusz WIRCKOWSKI

Wroclaw University of Technology, Poland
Tadeusz. Wieckowski@ pwr.wroc.pl

Tomasz WOLINSKI

Warsaw University of Technology, Poland
wolinski@if.pw.edu.pl

Jozef WOZNIAK

Gdansk University of Technology, Poland
jowoz@eti.pg.gda.pl

TECHNICAL EDITOR

Grzegorz BOROWIK

Warsaw University of Technology, Poland
G.Borowik @tele.pw.edu.pl

tel. +48 22 234 7349; 448 22 234 7330

LANGUAGE VERIFICATION
Janusz KOWALSKI

RESPONSIBLE SECRETARY

Elzbieta SZCZEPANIAK

Warsaw University of Technology, Poland
tel. +48 22 234 7799

mobile: +48 500 044 131

Address of Editorial Office
Nowowigjska Street 15/19, 00-665 Warsaw, Poland
Institute of Telecommunications, room 484

Email: etq@tele.pw.edu.pl

Editor-on-duty

Mondays and Wednesdays from 2pm to 4pm, tel. +48 22 234 77 37

Ark. Wyd. 22,00 Ark. druk. 17, 62

Podpisano do druku w sierpniu 2009 r.

Papier offset, kl. Il 80 g. B-1

Druk ukoficzono we wrze$niu 2009 r.

Publishing

Warszawska Drukarnia Naukowa PAN
00-656 Warszawa, ul. Sniadeckich 8

Tel./fax 628-87-77

T
Edito

1. PU
Starti
Fngl
Each
(e.g.

must
COITe

2. C
Start
is int
authe
PLN
finar
next
to in
artic
In c
amo
In ju
fron
into

S.A.
Elec

IMPORTANT MESSAGE FOR THE AUTHORS

The Editorial Board during their meeting on the 18" of January 2006 authorized the
Editorial Office to introduce the following changes:

|. PUBLISHING THE ARTICLES IN ENGLISH LANGUAGE ONLY

Starting from No 1’2007 of E&T Quarterly, all the articles will be published in
English only.

Each article prepared in English must be supplemented with a thorough summary in Polish
(e.g. 2 pages), including the essential formulas, tables, diagrams etc. The Polish summary
must be written on a separate page. The articles will be reviewed and their English
correctness will be verified.

2. COVERING THE PUBLISHING EXPENSES BY AUTHORS

Starting from No’2007 of E&T Quarterly, a principle of publishing articles against payment
is introduced, assuming non-profit making editorial oftice. According to the principle the
authors or institutions employing them, will have to cover the expenses in amount of 760
PLN for each publishing sheet. The above amount will be used to supplement the limited
financial means received from PAS for publishing; particularly to increase the capacity of
next E&T Quaterly volumes and verify the English correctness of articles. It is neccessary
to increase the capacity of E&T Quarterly volumes due to growing number of received
articles, which delays their publishing.

In case of authors written request to accelerate the publishing of an article, the fee will
amount to 1500 PLN for each publishing sheet.

In justifiable cases presented in writing, the editorial staff may decide to relieve authors
from basic payment, either partially or fully. The payment must be made by bank transfer
into account of Warsaw Science Publishers The account number: Bank Zachodni WBK
S.A. Warszawa Nr 94 1090 1883 0000 0001 0588 2816 with additional note: ‘‘For
Electronics and Telecommunications Quarterly”.

Editors

Elek
]
mitte
of P
origi
dely
opto
]
as ye
gy
critic
bran
ther
and
/
ciali
The
Scie
com
Mor
]
distr
the
mor
auth
publ

ine

edit

Dear Authors,

Electronics and Telecommunications Quarterly continues tradition of the “Rozprawy
Elektrotechniczne” quarterly established 55 years ago.

The E&T Quarterly is a periodical of Electronics and Telecommunications Com-
mittee of Polish Academy of Science. It is published by Warsaw Science Publishers
of PAS. The Quarterly is a scientific periodical where articles presenting the results of
original, theoretical, experimental and reviewed works are published. They consider wi-
dely recognised aspects of modern electronics, telecommunications, microelectronics,
optoelectronics, radioelectronics and medical electronics.

The authors are outstanding scientists, well-known experienced specialists as well
as young researchers -~ mainly candidates for a doctor’s degree.

The articles present original approaches to problems, interesting research results,
critical estimation of theories and methods, discuss current state or progress in a given
branch of technology and describe development prospects. The manner of writing ma-
thematical parts of articles complies with IEC (International Electronics Commision)
and ISO (International Organization of Standardization) standards.

All the articles published in E&T Quarterly are reviewed by known, domestic spe-
cialists which ensures that the publications are recognized as author’s scientific output.
The publishing of research work results completed within the framework of Ministry of
Science and Higher Education GRANTSs meets one of the requirements for those works.

The periodical is distributed among all those who deal with electronics and tele-
communications in national scientific centres, as well as in numeral foreign institutions.
Moreover it is subscribed by many specialists and libraries.

Each author is entitled to free of charge 20 copies of article, which allows for easier
distribution to persons and institutions domestic and abroad, individually chosen by
the author. The fact that the articles are published in English makes the quarterly even
more accessible.

The articles received are published within half a year if the cooperation between
author and the editorial staff is efficient. Instructions for authors concerning the form of
publications are included in every volume of the quarterly; they may also be obtained
in editorial office.

The articles may be submitted to the editorial office personally or by post; the
editorial office address is shown on editorial page in each volume.

Editors

Guest Editors Preface

Most papers in this issue are devoted to research in the area of design methods for
finite state machines and microprogram control units targeted at field-programmable
gate arrays and complex programmable logic devices. The selection of papers was
done during the scientific seminar “Digital Control Units Design” which took place
in March, 6, 2009, at the University of Zielona Géra. The seminar was confined to
scientific visit of Professor Samary Baranov — one of the most experienced experts in
the field of control circuits design.

Professor Samary Baranov received M.Sc. degree in Computer Engineering from
the Electrotechnical University in St. Petersburg, Ph.D. degree and D.Sc. degree in
Computer Engineering from the Institute of Precision Mechanics and Optics, also in
St. Petersburg. In 1994, he became a professor in the Computer System Department and
the Head of the Center for VLSI Design at the Holon Academic Institute of Technology.
At the same time, he worked as a consultant for several high-tech companies in Israel,
including National Semiconductors, Fortress, and M-Systems. In February 2001, he
founded the North American Institute of Computer Systems (NAICS) in Toronto — the
first training center in Canada to offer an advanced and intensive 250 hour post-graduate
curriculum “Electronic Hardware Design” devoted to teaching Design Methodology,
Hardware Description Languages (VHDL and Verilog), EDA Tools and ASIC and
FPGA Design. More than 250 students (bachelors, masters and PhDs) successfully
finished this course in 2001 — 2005.

Professor Samary Baranov is a member of program committees of many internation-
al conferences, including: “New Frontiers of Information Technology”; “Engineering
Systems and Software for the next decade”; “Field Programmable Logic and Appli-
cations”; and the EUROMICRO Conferences on Digital System Design; a reviewer
for Design Automation Conference (DAC 2001 — 2008). He is an author of 10 books,
10 textbooks for students and more than 70 papers in Russian, French and English.
His book “Logic Synthesis for Control Automata” was published by Kluwer Academic
Publishers in 1994. His latest book “Logic and System design of Digital Systems” has
been published by Tallinn University of Technology in 2008.

Following extended articles have been prepared based on presentations from the
scientific seminar “Digital Control Units Design”:
® The paper by S. Baranov discusses some procedures of high level synthesis, im-

plemented in the experimental EDA tool. These tools are based on ASM transfor-

mations and special algorithms for data paths and control units design.

® The paper by M. Adamski and M. Wegrzyn is concentrated on behavioral speci-
fication of Reconfigurable Logic Controller programs given initially as Petri nets
and rewritten later in Hardware Description Languages.

* T. Luba, G. Borowik and A. Krasniewski focus on finite state machine synthesis
including logic optimization techniques, the technology mapping techniques, and

the techniques that provide the resulting circuits with concurrent error detection
capability.

In the paper by L. Titarenko and J. Bieganowski two methods oriented on imple-
mentation of compositional microprogram control unit with PAL macrocells and
embedded memory blocks of CPLD are presented. The first method is based on
introduction of additional microinstructions, whereas the second one is based on
expansion of the format of microinstructions.

R. Wisniewski and A. Barkalov focus on the structural decomposition of control
units. Eight methods of compositional microprogram control units are described
and compared. The aim of all the proposed solutions is to reduce the number of
logic blocks of the targeted programmable device.

New methods on synthesis and implementation of Mealy finite state machines in
FPGAs are the subject of the paper by A. Bukowiec and A. Barkalov. The Synthesis
methods presented are based on architectural decomposition of a logic circuit of
an FSM and multiple encoding of its some parameters (states or collections of
microoperations).

The paper by M. Chmiel, E. Hrynkiewicz and A. Milik presents a modified idea
of program execution in PLCs, where the event-driven execution is proposed in-
stead of serial cyclic execution of a control program. The proposed method can be
implemented either as software modification or as hardware accelerated solution.
In the paper by D. Kania, A. Milik, J. Kulisz, A. Opara and R. Czerwinski the orig-
inal synthesis strategies oriented towards PAL-based devices are presented. These
synthesis methods are aimed at minimization of required chip area or propagation
delay (by reducing number of levels).

A. Barkalov, L. Titarenko and S. Chmielewski deal with the method of combined
state assignment which targets on decreasing the amount of hardware exploitation
by combinational part of Moore finite-state-machine. It is based on the existence
of pseudo-equivalent states and a wide fan-in of PAL macrocells.

The last paper by P. Szotkowski and M. Rawski proposes a heuristic algorithm
for input selection and a new, clique-based algorithm for the construction of the
crucial decomposition blankets. This method yields better results than the current-
ly widespread, two-step approaches based on state encoding and mapping of the
resulting binary function.

As Guest Editors of these ten papers, we would like to thank all the authors who

submitted papers for this special issue.

Marian Adamski
Alexander Barkalov
University of Zielona Géra

fion

ble-
and

on
on

trol
bed
r of

S 1n
eSis
t of
, of

dea

| be
n.

rig-
ese
ion

ned
on
nce

the
nt-
the

vho

ELECTRONICS AND TELECOMUNICATIONS QUARTERLY, 2009, 55, no 2

CONTENTS

S. Baranow: High level synthesis in EDA tool “Abelite” i i,
M. Adamski, M. Wegrzyn: Petri nets mapping into reconfigurable logic controllers
T. Luba, G. Borowik, A. Krasniewski: Synthesis of finite state machines for implementation
with programmable StuCtUres
L. Titarenko, J. Bieganowski: Optimization of compositional microprogram control unit by mo-
dification of microinstruction format
R. Wisniewski, A. Barkalov: Structural decomposition of microprogrammed controllers
A. Bukowiec, A. Barkalov: Structural decomposition of finite state machines
M. Chmiel, E. Hrynkiewicz, A. Milik: Fast operating PLC based on event-driven control program
Tasks EXCCULiON ... o
D. Kania, A. Milik, I. Kulisz, A. Opara, R. Czerwidski: Logic synthesis dedicated for CPLD
CITCULLS ettt e e et
A. Barkalov, L. Titarenko, S. Chmielewski: Hardware reduction for moore FSM implemented with
CPLD e
P. Szotkowski, M. Rawski: Improvements to symbolic functional decomposition algorithms for
FSM implementation in FPGA deviCeso. oo
P. Bartosik, A. Paszkiewicz: New trinomials X" + X + I and X" + X% + 1 irreducible over GF(2)
A. Paszkiewicz: Irreducible pentanomials and their applications to effective implementations of
arithmetic in binary fields
B.A. Bastami, E. Saberinia: Optimal transmission time of secondary user in a overlay cognitive
Fadio SYSTEIN ...t
R. Romaniuk: XXIII'" IEEE-SPIE Symposium on Photonics and Web Engineering 30-31 January
2009, Warsaw, FE&IT WUT ...
Information for the Authors

123
157

183
201
215
243
269

287

F
Algc
tion,
optit
on tt

allov

an o
for ¢
Higl

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 123156

High level synthesis in EDA tool “Abelite”

SAMARY BARANOV

Holon Institute of Technology, Dept. of Computer Sc., Holon, Israel
samary@012.net,il

Received 2009.01.21
Authorized 2009.03.18

The paper presents the first description of methods and algorithms realized in expe-
rimental EDA (ool Abelite. High level synthesis, implemented in this tool is based on
Algorithmic State machine (ASM) transformations (composition, minimization, extraction,
etc.), special algorithms for Data Path and Control Unit design and a very fast optimizing
synthesis of FSM and combinational circuits with hardly any consiraints on the number
of inputs, outputs and states. Design tools supporting this methodology allow very fast to
implement, check and estimate many possible design versions, to find an optimized decision
of the design problem and to simplify the verification problem for digital systems.

Keywords: EDA tools, High level synthesis, Logic synthesis, VHDL

1. INTRODUCTION

High level synthesis, implemented in the experimental EDA tool Abelite is based on
Algorithmic State machine (ASM) transformations (composition, minimization, extrac-
tion, etc.), special algorithms for Data Path and Control Unit design and a very fast
optimizing synthesis of FSM and combinational circuits with hardly any constraints
on the number of inputs, outputs and states. Design tools supporting this methodology
allow very fast to implement, check and estimate many possible design versions, to find
an optimized decision of the design problem and to simplify the verification problem
for digital systems.

High level synthesis contains three stages:

L. Construction of Combined Functional ASM and FSM;
2. Data Path Design;

3. Control Unit Design.

124 SAMARY BARANOV ETQ.

Since whole paper is devoted only to EDA tool Abelite we didn’t include references
to other works including works of the author of this paper.

2. CONSTRUCTION OF COMBINED FUNCTIONAL ASM AND FSM

Let us suppose that the task is to design a digital system. Problem orientation
regarding this system is nonessential — it can be a processor, a robot, a controller,
etc. If the system is rather complicated, it is possible to pick out some subbehaviors
(modes) in its behavior. For a processor it can be an instruction or a set of instructions
that can be described together; for a mobile robot — its different modes (cruise, follow,
avoid, escape etc.). We also suppose that any digital system is usually regarded as a
composition of a Control unit and an Operational unit (Data path). In a processor, for
example, a data path contains such regular blocks as memory, registers, ALU, counters,
coders, encoders, multiplexers, demultiplexers, etc. A control unit produces a sequence
of control signals that force an implementation of microoperations in a data path.

Now we will discuss the main steps of the first stage (Fig. 1) in more details. As an
example, we will consider the design of a simple processor with four instructions — ao
(arithmetic operation), lod (operation load), bun (branch unconditional) and operation
out.

Step 1. Drawing Functional ASMs in ASM Creator (see box 1 in Fig.1, ASM Creator).
At this step a designer draws separate ASMs for each subbehavior (for each operation or
a group of operations) in ASM Creator. It is really important that an ASM may contain
any number of generalized operators. Each of such operators is an ASM itself and it
will be automatically inserted in the combined ASM at the fourth stage. Moreover,
there are no restrictions on the number of such generalized operators in an ASM and
on the number of included levels — each of such operators can contain any number of
generalized operators itself. Our four operations are presented in Fig. 2. The generalized
operators for our processor are drawn in Fig. 3.

Vo

vol. 55 — 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 125

ET.Q.

B e o e o e e e e e e e o e 1
‘ences i 1
I T T :

1
: F ASM Creator i :
i ASMn J i
| 3 T s, :

H :

1 L Functional ASMs in ;
: _X/ - the internal format :

i
tation | l ASM Combiner | {
f
oller, | 2 1 |
.] e 1
AV10T'S 1 Functional I
. I Combined ASM I
ctions : e :
llow, } ASM Minimizer !
L as a i L |
. = i
or, for ! |
| . Minimal Combined i
nters, i B - _ Functional ASM |
]]
| | 1
ence : ASM Composer :
1 ! 4 . o !
i Combined Functional ASM 1
a0 I with included components t

. I — . — !

ation | 1
: FSMs Synthesizer G | ASM Insertor '
i J Proper Combined 10 i
: N Functional ASM T s :
itor). i . i
1 Functional FSM Proper ASM i
on or : . H :
. §

s H H
'ntdl_n 1 Tf;“gfzg?“l;r ASM Corrector f
nd it ; 6 . !

< TN
OVet, E Func:ional FSM in VHDL :
1 ASM I
i and i mproper |
- i |
er of : e :
lized : FL_lnctlonaI Error in ASM Extractor | :
| Simulator :J imulation? . | i

I e E e ——————————
! s No — !
I 1
| |
1 1
b e e et et e]| et e e o o et e e e e e e e e e ol

To The Data Path Design

Fig. 1. Construction of Combined Functional ASM and FSM

Step2. Combining of several Functional ASMs into one Combined Functional ASM
(box 2 ASM Combiner). After constructing separate ASMs we combine them into
one combined functional ASM still containing generalized operators. During ASM
combining we minimize the number of operator vertices in the combined ASM.

Vol.

AS
the

cire
Fun
int
We
con
nurn
Mir

126 SAMARY BARANOV ETOQ.

If several ASMs contain the same operator vertex, there will be only one such operator
vertex in the combined ASM.

)

AdR1:=IRY(8-11)
ALU1 =B oR[AdR 1]
ALUZ=IR2

AdrW =tR1(8-11
BoR[AdrW [=1R2

AdIR2:#IR1(12- 15)

| AdrR2:=IR1(12:15) .
IR2=BoRIAdIRZ]

IR2:=BoR(AdrR2]

AdrR2:=IR1{12-15) AdIW:=IR1 (8-11)

AdIR1:2IR1(8-11) AdR1=IR1B-11)
AdrR2:=1R1(12-15) Adrl=IR2 AdrW:=IR1(8-11) Adr1:=IR2
ALUT=BoRAGR1] ALUT:=BoRAGR1] BoR[AdW [=BoRAdR2] BoR[AdMW];=M1{Adr1]
ALUZ=BoRIAIR2] ALU2=MI{Adr] L l
otrALU:=IR 1(0-4) L
RALU:=ALU
chi=c e
visy =

AdYWiSIR HB-11)
BORIANWI=RALY

J AdR:=IR1 (12-15)
IR2:=BoR[AdR]

Stel

AdTR:=IR1(12-15)

Adri:=IR2
PCsM1AdT]

AdIW:=IR1(8-11)

PC =B oR[A)
BoR[AdewW]:=InpR RIGRI gen
FGL=0
AS
- Chsckint des

C%D bun

Fig. 2. ASMs ao, lod, bun and out

Step3. Minimization of combined Functional ASM (box 3 ASM Minimizer). This
procedure minimizes the number of conditional vertices in the combined functional

ETQ.

erator

This
ional

Vol. 55 - 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 127

ASM. Such minimization allows us to reduce dramatically the number of vertices in
the ASM (sometimes for two or three times) and to reduce the complexity of logic
circuits at the stage of logic design. The combined and minimized functional ASM
Funcm is presented in Fig. 4. It contains only 35 vertices, whereas there are 65 vertices
in the four initial ASMs. '

We can use ASM Minimizer after the second step as well. It means that a designer can
concentrate on the behavior description and does not think about minimization of the
number of vertices in ASMs in his drawings or in VHDL files. After compiling, ASM
Minimizer will minimize each separate ASM.

Adr:=IR2
RALU:=M1[Adr 1]

Adr0:=Ext_Adr

Adr :=Ext Adr Adi0:=Ext_Adr Adrl:=Ext_Adr
Ext_in:=MO[Adr0] Ext_in:=M1[Adri] MOJArO}: =Ext_Out M1[Adr1]: =Ext_Out
DMA cycle
nd [R1(12-1 50000
°
. AdrR=R1{12-15)
| Adrt=x"FFFE" IALU2:=BoR[AdrR]
‘ M1[Adr]=PC CrALU=1
Adrg:=PC Adr(:=PC RIALU=IALY
1R 1:=MOJAT0] HR2:=MOIA GO}
PC=x"FFFE"
EN:=0 IR2:=RIALU
PC=PCH

R:=0 i "
e é End End)
Fetcht Fetch2 IntCycle Checkint AbsAdr

Fig. 3. Generalized operator in our example

Step 4. Including of generalized operators (box 4 ASM Composer). At this stage,
generalized operators constructed at the first stage are included into the minimized
ASM constructed at the previous stage. It is the last stage of the functional ASM
design. This ASM can be presented as two-connected list (file Funcmi.gsa):

128 SAMARY BARANOV ETOQ.

0 begin 20 0 35 Y11 17 0
1 pat 10 0 36 Y13 17 4]
2 Yi2 35 0 37 Yi4 17 0
3 x10 40 41 38 Yis 17 0
4 Y2 1 0 39 Y16 17 ¢
5 ¥3 26 o 40 %9 37 36
6 ¥4 25 0 41 ®9 38 39
7 Y5 6 0 42 ¥17 45 0
8 x1 42 46 43 Yis 44 0
9 Y22 47 0 44 Y19 23 0
10 x14 50 17 45 Y20 46 0
11 Y24 51 0 46 x11 23 43
12 Y6 10 0 47 Y21 29 0
13 Y7 10 0 48 ¥23 17 0
14 Y8 10 0 49 x12 48 17
15 Y9 10 0 50 %13 48 49
16 Y10 10 0 51 Y21 34 0

The second file produced by Abelite after inserting generalized operators (file
Funcmi.txt) contains microinstructions, microoperations and logical conditions which
a designer wrote in ASMs in Fig. 2 and 3:

Micro Instructions: yl8 : PC:=BoR[AdrR]

Y1 = yl y2 yl9 : BoR[AdrW]:=IR2

Y2 = y3 y4 y5 y6 y7 y8 y9 y10 y20 : OutR:=BoR[AdxR]

¥3 = yll yi12 y21 : FGO:=0

¥4 = y13 y22 : PC:=x"FFFE"

¥5 = yl4 y15 y23 : IEN:=0

Y6 = yié y24 : R:=0

Y7 = yi4 yi7 y25 : Adrl:=x"FFFF"

Y8 = yli yi8 ¥26 : M1[Adrl]:=PC

Y9 = yl yl19 y27 : Adr0:=Ext Adr

Y10 = y3 y20 y21 y28 : MO[Adr0] :=Ext_Out

Y11l = y22 y23 y24 ¥29 : Adrl:=Ext Adr

Y12 = y25 y26 y30 : Mi[Adrl]:=Ext_Out

Y13 = y27 y28 y31 : Ext_in:=MIl[Adrl]

Y14 = y29 y30 y32 : Ext_in:=MO[Adr0]

Y15 = y29 y31 ¥33 : RALU:=Ml[Adrl]

Y16 = y27 y32 y34 : IALUl:=IR2

Y17 = yl4 y33 y35 : IALUZ2:=BoR[AdrR]

Y18 = y34 yll y35 y36 y37 y36 : CtrIALU:=1

Y19 = y38 y37 : RIALU:=IALU

Y20 = y39 y38 : IR2:=RIALU

Y21 = y40 y39 : IR2:=RALU

Y22 = yd4l y42 y40 : PC:=PC+l

Y23 = y43 y4l : Adr0:=PC

Y24 = y4l y44 y42 : IR2:=MO[Adx0]
y43 : R:=1

Micro Operations : v44 : IR1:=MO[Adr0]

yl : AdrW:=IR1(8~11)

y2 : BOR[AdrW]:=RALU Logical Conditions

¥3 : AdrR:=IR1(8-11) File Draw

y4 : ALUl:=BoR[AdrR] xl : IR1(6)

y5 : ALU2:=IR2 x2 : IR1(5)

y6 : ctrALU:=IR1(0-4) ®3 : IR1(7)

y7 : RALU:=ALU x4 : R

y8 : cf:i=c x5 : DMA

y93 : ve:=v %6 : 8

yi0 : zfi=z x7 : IR1({0)

yil : AdrR:=IR1(12-15} x8 : IR1({1})

yl2 : IR2:=BoR{AdrR]} x93 M

y13 : IR2:=BR x10 : Ext_RdWr

yi4 : Adrl:=IR2 x11 : IR1{12-15)=0000

y15 : BR:=M1[Adrl] x12 : FGO
: x13 : FGI
y17 : PC:=M1[Adrl] x14 : IEN

ane
cot
doc
is

ETO.

- (file
vhich

Vol. 55 - 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 129

Only for illustration we give this ASM as a graph in Fig. 5. Designer shouldn’t draw
any ASMs, except in Fig. 2 and 3, any more - Abelite continues to work only with
files Funcmi.gsa and Funcmi.txt.

We would like to underline here that in the description at the level of a functional
ASM we don’t have Data Path and each unit in such a functional ASM is presented as
a variable. For example, in microoperation IR2 := MO[Adr0] the word of memory MO
with address Adr0 should be sent to instruction register IR2, but we don not know yet,
and wouldn not like to know, how these units are connected and what signals must
come from the control unit to Data Path to implement this transfer. Really, a Data Path
does not exist yet and our goal at the second stage (Data Path Construction, see Fig. 8)
is to construct a Data Path formally using only the combined functional ASM.

AdR=IR1(8-11)
OulR =BoRAIIR] K
FGO:=

AdrR:=IR 1{12-15)
A PC:=BoRAdIR]

AR =IRY(12-15)
IR2=BORIAIR] {*

QST §
PC:=IR2 N

0
Adrt:=IR2
PC=MiAdr]

AdrRi=(R1(8-11)
ALU1=BoR[AdrR}

AdTW:=IR18-11)
BoR[AW=RALU

Fig. 4. Combined and minimized functional ASM

AdAW:=R1(3-11)
BORIAAW]=IR2

130

SAMARY BARANOV ETQ.

Step5. Synthesis FSM from combined Functional ASM (box 5 FSM Synthesizer).
This procedure constructs 24 various types of minimized Finite State Machine tables
for Mealy, Moore and their combined model with or without state assignment (log or
one-hot). FSM Mealy implementing ASM in Fig. 5 is presented in Fig. 6. In this FSM,
Xi, ..., x14 correspond to logical variables written in conditional vertices, while
Y1, --., Y44 — to microoperations written in operator vertices of ASM in Fig. 5.

IR1:=MOJAdr0]

Adr1 =XFFFFE
MI[Adr1]=PC

Adi0:=E xt_Adr Adr1 =Ext_Adr | AdrO:=Ext_Adr I | Adrl =Exi_Adr I

T € xL_in:=MO[Ad 0} Ext_im=MifAdr] MO[AGIO}=E Xt Out MIAdr1]=Ext_Out
PC=CFFFE"
IEN=0
R:=0

A

iR =R (121 5)

e

1R2:=BoRAAR]

AdD:=PC
IRZ=MO{ALO]

PC=pPC+1

Adrt:=IR2
PO=MH{Adr]

AdrR:=IR1(811)
ALU 1:=BoR[AdR]

ALUZ:=IR2
SrALU:=IR 1 (0-4)
RALU=ALU
o

=
4=

AdrW:=IR 1(8-11)
BoR[AdI'W]=RALU

v
z

AW =IR1(8-11)
BoR{AdI'W]=IR2

¢

1
AdT=R2
RALU: =M1 A dr1)

IR2:=RA LU

R1(12-15)=0000
g

W1 R2
AGR =IR1(12-15)
WALU2'=BoR[AGIR]
Criall:=t
RIALU=IALU

IRZ:=RIALL)

Fig. 5. Combined functional ASM with inserted generalized operators

Vol.

Step
Trar
is n
func

ET.Q. Vol. 55 — 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 131

zer).
3bleS al al x6*x5*%x10*x9 y29y30 1
al al RE*x5*x10*~x9 y27y28 2
g or al al X6*x5*~vx10*x9 y2%y31 3
. al al x6*x5*~x10%~x9 y27y32 4
‘SM, al a3 x6*ex5kxd y25y26 5
. al a9 x6*~x5*~xd y4lydsd 6
vhile al al ~x86 -- 7
a2 al x14*x13 y43 8
a2 al x14%~x13%x12 y43 9
a2 al %1 4*~x13*%~x12 - 10
a2 al ~x14 -- 11
a3 al 1 y22y23y24 12
a4 a2 1 yly2 13
a5 a7 x1*x7 v14yl5 14
ab a2 x1¥*~xT*x8 ylayl7 15
a5 a7 XKL *~xT*~x8 yl4yls 16
a5 a2 ~X1*x7 ylyls 17
a5 a2 ~x1*vxT*x8 yl4yl?7 18
a5 a4 ~RL*~exT*ex8 y3y4y5y6yTy8y9y1i0 19
a6 a2 x7 ylyl9 20
a6 a4 ~x7 y3yAy5y6y7y8y9yl0 21
a7 a6 1 yl3 22
a8 al4 1 y40 23
a9 als 1 yv40 24
om al0 al3 1 y39 25
¢ Qut l all al2 1 y38 26
al2 a7 %7 yldyls 27
al2 a2 ~xT*x8 y1l4yl7 28
al2 a7 ~xT7*~x8 yl4ayls 29
al3 a7 x11*x7 yl4yl5s 30
al3 a2 x1l*vx7*x8 yl4ayl7 31
al3 a7 x11*wx7*~x8 yidyls 32
al3 all ~x11 y34yl1iy35y36y37 33
alid a2 ®3*x7 ylyis 34
al4 a2 ®3*~xT*x8 yl6 35
ald a4 X3*oxTH*x8 ¥3y4y5y6y7y8y9y10 36
ald alg ~x3%x1 y14y33 37
ald a7 ~X3*~x1*x11%*x7 y1l4yis 38
ald a2 ~X3*exl*x1l*~x7*x%8 yldyl? 39
ald a7 ~R3*egI*RIT*~xT*~x8 yldylbs 40
al4 all ~K3*ex1hnx1l y34ylly35y36y37 41
als az x8*x7 y3y20y21 42
als a8 XBF~x T x1*x2 y4ly42 43
als ab xBH~xThx]l *~x2 yllyl2 44
alb a8 *BF~xThax1hx2 y4lyd2 45
als a2 XBF AT X ~x]l*ox2 yllyls 46
als a8 ~x8*x2 ydly4d2 47
als ab ~X8*~x2 yllyl2 48

Fig. 6. Virtual Functional FSM

Step6. Construction VHDL (Verilog) code Jor the Functional FSM (box 6 FSM2HDL
Transformers). A VHDL code for FSM in Fig. 6 is presented in Fig. 7. This FSM
is not a Control Unit, it is a virtual FSM presenting the processor behavior at the
functional level. We will use this FSM for simulation of our processor.

132 SAMARY BARANOV ETQ. vol. 5

pr

library ieee;

use ieee.std logic_1164.all;
use ieee.numeric std.all;
use work.my package.all;

entity FUNCMI is
generic (

AdrMem : integer ~- the length of memory address
WordMem0 : integer —- the length of M0 word
WordMeml : integer -~ the length of Ml woxd
AdrBoR : integer -~ the length of BoR address
WordBoR : integer -- the length of BoR word
yi
port (
clk ¢ in std_logic;
rst ¢ in std _logic;
s ¢ in std_logic;
Ext RdWr : in std_logic;
DMA ¢ in std_logic;
Ext_Adr : in std_logic_vector (0 to 15);
Ext out : in std_logic_vector (0 to 15);
FGI_Set ¢ in std_logic;
InpR 1 in std_logic_vector (0 to 15);
FGO_Set ¢ in std logic;
M ¢ in std_logic;
Ext in : out std_logic~vector (0 to 15);
OutR . out std_logic_vector (0 to 15);
Idle : out std_logic
)
end FUNCMI;

architecture ARC FUNCMI of FUNCMI is

type states_FUNCMI is (
sl, s2, s3, s4, s5, s6, s7, s8, s9
s10, sl1, sl12, s13, si4, sli5
|

signal current FUNCMI : states FUNCMI;

type ram0_type is array (0 to 2**AdrMem - 1) of std_logic vector (0 to WordMemQ - 1);
signal MO : ram0_type;

type raml_type is array (0 to 2**AdrMem - 1) of std_logic vector (0 to WordMeml ~ 1};
signal M1 : raml_type;

type bor_type is array (0 to 2**AdrBoR ~ 1) of std_logic_vector (0 to WordBoR -~ 1);
signal BoR : bor_type;

signal PC ¢ std_logic_vector (0 to 15);
signal IR1 H std_logic_yector (0 to 15);
signal IR2 : std_logic vector (0 to 15);
signal RALU H std:logic:vector (0 to 15);
signal cf,zf,vf : std_logic;

signal R ¢ std_logic;

signal IEN : std logic;

signal FGI : std:logic;

signal FGO ¢ std_logic;

signal RIALU H std_logic_yector (0 to 15);
signal BR : std_logic_yector {0 to 15);
signal BAC ¢ std_logic vector (0 to 3);
signal MAC ¢ std_logic_vector (0 to 15);

begin

ETQ.

Vol. 55 — 2009

HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE”

133

process {clk , rst)

variable Adr0, Adril : std_logic vector (0 to AdrMem -~ 1);
variable ALU 1 std_logic vector (0 to 15);
variable ALUl, ALUZ : std_logic vector (0 to 15);
variable ctrALU : std:logiq:vector {0 to 4);

variable ¢, z, v . ¢ std_logic;

variable IALU : std“logicﬂvector {0 to 15);
variable IALU1l, IALUZ2 std_logic vector (0 to 15);
variable ctrIALU : std_logic;

variable AdrR, AdrW : stdmlogic_vector {0 to AdrBoR - 1)

procedure proc_FUNCMI is

begin

case current FUNCMI is

when sl =>

if (S and DMA and Ext RdWr and M) = '1' then
Adrl := Ext_Adr;
Ml (to_integer (unsigned(Adrl))) <= Ext_Out;
current FUNCMI <= sl;
Idle <= '1"';

elsif (8 and DMA and Ext RdWr and not M } = '1' then
Adr0 := Ext_Adr;
MO (to_integer (unsigned (Adx0))) <= Ext_Out;
current FUNCMI <= sl;

Idle <= '1"';
elsif (S and DMA and not Ext RdWr and M) = '1' then
Adrl := Ext_Adr;

Ext_in <= Ml(to_integer (unsigned (Adrl))) ;
current FUNCMI <= s1;

Idle <= '1';
elsif { S and DMA and not Ext RdWr and not M) = '1' then
Adr0 := Ext Adr;

Ext in <= Ma(to_integer(unsigned(AdrO)));
current FUNCMI <= sl1;

Idle <= '1';
elsif (S and not DMA and R} = !1' then
Adrl := x"FFFF";

Ml (to_integer (unsigned (Adrl))) <= BC;
current FUNCMI <= s3;

elsif (S and not DMA and not R) = '1' then
Adx0 := PC;
IRl <= MO (to_integer (unsigned (Adr0))) ;
current FUNCMI <= s9;

elsif (not 8) = 'l' then
current FUNCMI <= sl;
Idle <= '1';

else
current FUNCMI <= s1;
Idle <= '1°';

end if;

when s2 =>

if (IEN and FGI) = 'l' then
R <= "1';
current FUNCMI <= sl;
Idle <= '1';

134 SAMARY BARANOV ET.Q.

elsif (IEN and not FGI and FGO } = '1l' then
R <= '1%;
current FUNCMI <= sl;
Idle <= '1';
elsif { IEN and not FGI and not FGO } = '1' then
current FUNCMI <= sl1;
Idie <= '1';
elsif (not IEN) = '1' then
current FUNCMI <= si;
Idle <= '1';
else
current FUNCMI <= s2;
end if;

when s15 =>
if (IRL(1) and IRL1(0)) = 'l' then
AdrR := IR1(8 to 11);
OutR <= BoR(to_integer (unsigned (AdxR)));
FGO <= '0';
current FUNCMI <= s2;

elsif (IRL(1l) and not IR1(0) and IR1(6) and IRL(5)) = 'l' then
Adr0 := PC;
IR2 <= M0 (to_integer (unsigned (Adx0)));
current FUNCMI <= s8;

elsif (IRL(1l) and not IR1(0) and IRL(6) and not IRL(5)) = '1' then
AdrR := IR1(12 to 15);
IR2 <= BoR (to_integer{unsigned(AdxzR})});
current FUNCMI <= s5;

elsif (IR1{1l) and not IR1{0) and not IR1{6) and IRL(5) } = '1' then
Adr0 := PC;
IR2 <= MO({to_integer {unsigned(Adr0}});
current FUNCMI <= s8;

elsif {(IRL{1l) and not IR1(0) and not IR1(6) and not IR1(5)) = 'l' then
AdrR := IRL1(12 to 15);
PC <= BoR(to_integer (unsigned(AdrR))) ;
current FUNCMI <= s2;

elsif (not IR1(1l) and IR1I(5)) = '1' then
Adr0 := PC;
IR2 <= MO (to_integer (unsigned (ARdr0))) ;
current FUNCMI <= s8;

elsif (not IR1(1) and not IR1(5)) = 'l' then
AdrR := IR1(12 to 15);
IR2 <= BoR(to_integer(unsigned(AdxR))) ;
current FUNCMI <= s5;

else
current FUNCMI <= sl5;
end if;

end case;
end proc_FUNCMI;
begin

ETQ.

Vol. 55 — 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 135

if (xst = '1') then
PC = x"0000";
cf = '0';
zf <= '0';
vf = 'Q";
R = 10t
FGI =0
FGO Cok= 07
IEN = '0";
c = PO
z = 07
v = QT
Ext_in <= x"0000";
OutR <= x"0000";
BR <= (others => '0');
BAC <= (others => '0’);
MAC <= (others => '0')

for i in BoR'range loop
BoR(i) <= (others => '0');
end loop;

current FUNCMI <= sl;
Idle <= '1';
elsif (clk'event and clk = 'l') then
if FGI_Set = 'l1' then
FGI <= '1"';
end if;
if FGO_Set = '1' then
FGO <= '1"';
end if;

Idle <= '0';
proc_FUNCMI;
end if;
end process;

end ARC_FUNCMI;

Fig. 7. Virtual Functional FSM

Step7. Functional Simulation (box 7 Functional Simulator). We can use Functional
FSM in VHDL from Fig. 7 for a functional simulation (not a register transfer level
simulation — it is possible to use the same test bench later when we construct a Data
Path and a Control unit corresponding to this Data Path).

To construct a test bench we should write the test as an assembly program. The
test bench for functional simulation is generated by the special program — Functional
Simulation Generator.

Step8. Extraction one or several ASMs from Combined ASM (box 9 ASM Extractor).
If we detected error in ASM during the simulation we can extract ASM with error
(Step 8, see box 8 ASM extractor), repair it (Step 9, see box 9 ASM corrector) and
return corrected ASM into combined Functional ASM (Step 10, see box 10, ASM
inserter).

In Abelite, we have special program “Check ASM equivalence”, that verifies the equ-
ivalence of two ASMs. That permits designer to check each step of ASM transformer.

136 SAMARY BARANOV ETQ.

3. DATA PATH DESIGN

At this stage (Fig. 8), we use a sequence of programs for automatic design of Data
Path. Input for this stage — Combined Functional ASM (Fig. 5) constructed at the
previous stage. In our design we use the common model in which any digital system
is regarded as a composition of Control unit and Operational unit (Data Path) — see
Fig. 9. Data path contains such regular blocks as memory, registers, ALU, counters,
coders, encoders, multiplexers, demultiplexers etc. A control unit produces a sequence
of control signals that force implementation of microoperations in data path.

Very often designer includes cloud (non-regular) circuits in data path as well. In
Fig. 10 we have a fragment of data path with two registers R/, R2 and a cloud circuit.
Suppose that in the digital system there are transfers from R/ to R2 at different times
with different conditions. Designer often constructs a cloud circuit to realize some
Boolean function, and the output of this circuit is the signal for the transfer. So, this

dat
unil

MUXes and list of
direct connections

circuit defines when and under which logic conditions the transfer information from libr
RI to R2 takes place. bec
thel
From Combined Functional ASM and FSM try
ﬂ for
J T v mrm——————— S S v e m————t
i i
| ;
1 Data Path 1
: Construction :
i i
: Connection }
1 graph [
! i
i Constructor of the I
I List of parallel }
: 12 Mmicrooperations :
| M“LIT:ﬂ__‘_ '
i Optimized fist of parallel 1 -
I microoperations = Da
: Constructor of the | : To
i Graph of i this
I 13 Incompatibility I
: | [: sev
Graph of »
: incompatibility : [()U
1 1 .
i Constructor of i 1
{ MUXes and Direct :
: 14 connections :
1 1
| i
i 1
1 1
4

To the Control Unit Construction

Fig. 8. Stage 2 — Data Path design

ETQ.

f Data
at the
ystem
- see
Inters,
uence

ell. In
ircuit.
times
some
), this
from

Vol. 55 — 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 137

X4 Y1
. Control Data
% - Unit N Path

P
B L

R

Extemal System

g
A

Fig. 9. Digital system as a composition of Control unit and Data path

One of the main concepts in our design methodology is the construction of “naked
data path”. Naked data path doesn’t contain any cloud circuits, only standard regular
units with their inputs and outputs. Such units can be predesigned or even taken from
libraries. We leave all check-ups of conditions to control unit. We can afford this
because we know how to design very complicated FSM with hardly any constraints on
their size, that is, the number of inputs, outputs and states (see Section V). We will
try to show that such design and its verification are very simple. Moreover, we will
formalize a design of the digital system with naked data path.

[R]

Cloud S
circuit

4
Re

Fig. 10. Element of Data path with a cloud circuit

Data path and the following Control unit design are convenient to illustrate by Table 1.
To fill this table, we copy each microinstruction from functional ASM (Fig. 5) into
this table. If some microinstruction appears several times in this ASM we write it
several times in Table 1. For example, microinstruction PC := PC + 1 is written in
four vertices of ASM, so it is written four times in Table 1. The order of writing
microinstructions in this table is unimportant.

138 SAMARY BARANOV ETO.

Table |

Microinstructions and microoperations for functional and structural levels

Functional ASM Structural ASM
Micro . . . Structural Minimized structural
. Functional microoperations
instr. microoperations microoperations

Y1 yl AdrW:=IR1(8-11) 4 | ctromux0:=100 | ctromux0[0] <=1 | yl

y2 |BoR[AdrW]:=RALU| 16 bor_en:=1 bor.en <=1 y2

Y2 y3 AdrR:=IR1(8-11) 4 ctromux2:=1 ctromux1[2] <=1 | vy3
y4 | ALUL:=BoR[AdR] | 16 | ctrmux1:=0011 | crumux1 [2] <=1 | y4

y5 ALU2:=IR2 16 ralu_en:=1 ctromux] [3] <=1 y5
y6 | ctrtALU:=IR1 (0-4) } 5 cfen:=1 ralu_en <=1 y6
y7 RALU:=ALU 16 vf_en:=1 cfen <=1 y7
y8 cli=c 1 zf en:=1 vien <= 1 y8
y9 vi=v 1 zf_en <=1 y9
yi0 zfi=z 1
yI1 | AdR=IR1(12-15) | 4 | CU-mux2=0 " o uxl 2] <=1 | y4
B 1 y12 | Ra=BoR[AdR] | 16 | =IO T g e =1 | y10

oy

yll
y5
ir2.en <=1 y1i0

. - ctromux1f1] <=
Y4 | yi13 IR2:=BR 16 ‘“‘B’i{:?ml ctr_mux1[3] <=

sy

ctromux0:=001

yl4 Adrl:=IR2 16 e ctromux0{2] <=1 | y12
Y5 1015 | BR=MI[Adrl] | 16 m?‘_;ff&}io bren <= | 13
Y6 y16 PC:=IR2 16 ctr.mux{:=1000 | ctromux1[0] <=1 | yl4
pc.en:=| pc.en <=1 y1i5
ctr.mux0:=001
Y7 yl4 Adrl:=IR2 16 | ctromux1:=0000 | ctromux0{2] <=1 | y12
yl17 | PC:=MI[Adrl] 16 pe.en:=1 pc_en <=1 y15
ml.rdwr:=0
v | 11| AGR=IRI(12:15) | 4 (LSimuxed | emux(2] <= 1| y4
y18 | PC:=BoR[AdrR} 16 pe_en:=l pcen <= | yls
Y9 yl Adrw:=IR1(8-11) 4 | ctromux0:=001 | ctromux0[2] <=1 | y12
y19 | BoR[AArW]:=IR2 | 16 bor_en:=1 bor_en <=1 y2
y3 AdrR:=IR1(8-11) 4 ctromux2:=1 ctr.mux2 <=1 y3
Y10 | y20 | OutR:=BoR[AdR] | 16 outr_en:=1 outr.en <=1 yl6

y21 FGO:=0 0 fgo_reset:=1 fgo.reset <=1 yl17

ETQ.

[able |

139

cd. Table |

Vol. 55 ~ 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE”
ctromuxif0] <=1
y22 PC:=x“FFFE” 6 ctromux1:=1100 | ctremuxifi] <=1 | yl4
TEN o pc.en:=1 pcen <= 1 yll
Yil y;z IiN_bo g ien.reset:=1 fenreset <=1 | ylIS
y . rreset:=1 rreset <= 1 y18
y19
ctromux0[1] <=1 | y20
TR ctr.mux0:=011 | ctr-mux0[2] <=1 | yI2
Y12 yQZ AdrL=TREFR™ 16) ux 121001 | ctrmuxI[0] <= 1 | Y14
y2 MI[Adrl]:=pPC 16 ml_rdwr:=1 ctromux1{3] <=1 y5
mlrdwr <=1 |y2l
y27 AdrO:=Ext_Adr 16 | ctr-mux0:=000 o
Y131 V28 | MOJAMO:=Ext.Out | 16| mO.rdwr= | MOadwr <=1 1y22
via| Y29 | Adrl=ExtAde |16 cclir}lr]?xxlq:-_::(?]oo% ctmuxI[1] <= 1 | y11
y30 | MI[Adrl]:=Ext Out | 16 ml _rdwr=1 ml_rdwr <=1 | y21
yis| Y20 Adri=Excade |16 | SU-mux0=000
y31 | Extin:=MI1[Adrl] | 16 m1 _rdwr:=0
s ctr_mux0:=000
Y16 yi; FAtd.r O:I\I?[)(()t[_:?rm :2 ctromux [:=0001 | ctromux1[3] <= 1] y5
¥ SX= dare. mO_rdwr:=0
ctr_mux0:=001
Y17 yl4 Adrl:=IR2 16 | ctrmux 1:=0000 | ctromux0[2] <= 1| yi2
y33 | RALU:=MI[Adrl] | 16 ralu_en:=1 raluen <= | v6
ml_rdwr:=0
y34 IALUL:=IR2 16
vyl | AdR:=IR1(12-15) | 4 | ctr.mux2:=0 o
Y18| ¥35 | IALU2:=BoR[AdrR] | 16 | ctrialu:=] crialu <=1 y23
y36| CulALU:=I 0| rialuen:=] rialuen <=1 y24
y37 RIALU:=IALU 16
s - ctromux1[0f <=1 | yl4
Y19|y38 | IR2:=RIALU 16 ““'.mz“x)lf_‘_llmo cirmux1[2] <= 1 | 'y4
tre-en:= ir2_en j= 1 y10
- ctramux1[1] <=1 | yl1
Y20|y39 | IR2=RALU |16 C‘r‘.r‘?z"’fl'.‘_(;l O cumuxt 2] <= 1 | ya
trecn:= ien<=1 |yl0
Y21| y40 PC:=PC+1 0 pc.count:=1 pccount <=1 | y25
ctr.mux0:=010 _
. Adi0:=PC 16 | ctr.mux:=0001 | O] <= 1Y%
y42 | IR2:=MO[Ad0] | 16| ir2en=I ien et lero
mO_rdwr:=0 e - y
Y23| y43 Ri=1 0 rset:=1 rset <=1 y26
vou| Y41 Adt0:=PC 16 | SO=010 o muxort] <= 1 y20
y44 IR1:=MO[Adr0] 16 mO-;dV‘;r::O irl en <=1 y27

Stepl1. Construction of a Connection Graph from the Functional ASM designed at
the step 4 (box 11 Connection Graph Constructor). This graph and the following list
of parallel microoperations should be constructed for each length of transfers (column

140 SAMARY BARANOV ETQ.

4 in Table 1). Such a graph contains the list of sources and targets for each component
of an operational unit and some metrics that will be used in the optimization of Data
Path. The connection graph as a text list for 16-bit transfers constructed by Abelite is
presented in Fig. 11.

weight : sources targets : weight
1 : ALU RALU : 1

1 : BR IR2 :

-

2 : BoR[AdrR] ALUL :
TALUZ2 :

IR2 :

QutR :

PC :

HOoORr OO

4 : Ext_Adr Adr0 :
Adrl @ 2

N

1 : Ext Out MO [AdrO] : O
M1[Adr1l] : 1

0 : IALU RIALU :

[l

5 : IR2 ALU2 :
Adrl :

BoR[AdrW] :

IALUL :

BPC :

O WO

Pt

2 : MO[AdrO} Ext in
IR1
IR2 :

b D

3 : M1l[adrl] BR
Ext in :

“pC :

RALU :

=]

3 : pC Adr0 : 2
M1[Adrl] : 1

2 : RALU BoR[AdrW] : 1

IRZ : 1
1 : RIALU IR2 : 1
1 : x"FFFE" PC : 1
1 : x"FFFP" Adrl : 1

Fig. 11. Connection Graph

Stepl2. Construction of the optimized list of parallel microoperations from the Func-
tional ASM designed at the step 4 (see box 12). Such a list contains microoperations
which should be implemented in parallel. It is important to increase the speed of the
designed system (Fig. 12 for 16-bit transfers). In this list, we include microinstructions,
containing two or more microoperations, marked by 16 in the fourth column of Table
2. We remind that if’ several microoperations are in one microinstruction, they are
implemented concurrently (at the same clock).

Step i
the ¢
13).°
writts
targef
For e
micr¢

ETQ.

ment
Data
ite is

Func-
itions
f the
tions,
Table
y are

Vol. 35 — 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 141

We can compress the list of parallel microoperations (Fig. 13), if we remove microope-
rations corresponding to direct connections in the connection graph (microoperations
with zero target weights (right column in Fig. 11). At the next steps of the design of
Data path we will use only these two lists — the connection graph and the compressed
list of parallel microoperations. -

Y2 Iz ALUL:=BoR[AdrR]
y5 ALUZ :=IR2
y7 RALU: =ALU
Y5 : yl4 Adrl:=IR2
yl5 BR:=M1[Adrl]
Y7 : oyl4 Adrl:=IR2
yi7 PC:=M1[Adrl]
Y12 : y25 Adrl :=x"FFFF"
y26 M1[Adrl] :=EC
Y13 :oye? Adr0:=Ext_Adr
y28 MO[AdrO] :=Ext_ Out
Y14 r y29 Adrl:=Ext_Adr
y30 M1{Adrl] :=Ext_Out
Y15 : y29 Adrl:=Ext_Adr
y31 Ext_in:=Ml [Adrl]
Yi6 T oy27 Adr0:=Ext_Adr
y32 Ext_in:=M0[Adr0]
¥Yi7 T yl4 Adrl:=IR2
¥33 RALU : =M1 [Adrl]
Yig : y34 IALULl:=IR2
¥35 IALUZ :=BoR[AdrR]
v37 RIALU:=IALU
Y22 T y4l Adr0:=PC
yaz2 IR2:=MO [AdxC}
Y24 : y4l Adr0:=PC
y44 IR1:=MO [Adr0]

Fig. 12. Parallel Microoperations before considering direct connections

Stepl3. Construction of a Graph of Incompatibility from the Connection Graph and
the optimized list of parallel microoperations designed at the step 11 and 12 (box
13). Vertices of this graph are all targets of the connection graph with nonzero weights
written in the last column. We connect two vertices (targets) by edge (line) if these two
targets are together in the same microinstruction in the set of parallel microoperations.
For example, we connect adr! and pc by edge because Adrl and PC are the targets in
microinstruction Y7 in Fig. 13.

142 SAMARY BARANOV ETQ.

Y7 :oyld Adrl:=IR2

y1l7 PC:=M1{Adrl]
Yiz T y25 Adrl:=x"FFFF"

v26 M1[Adrl]:=pPC
Y14 T y29 Adrl:=Ext_ Adr

¥30 M1{Adrl] :=Ext_Out
Y15 T y29 Adrl:=Ext Adr

y31 Ext_in:=M1[Adrl}]
Y16 Toy27 Adr0:=Ext_Adr

y32 Ext_in:=MO[Adr0]
Y17 . yl4 Adrl:=IR2

y33 RALU: =M1 [Adrl]
Y22 : y4l Adr0:=PC

y42 IR2 :=MO[Adx0]

Fig. 13. Compressed list of parallel microoperations

If two vertices (targets) are connected by edge in this graph we cannot pass in-
formation to these targets through the same MUX because these targets are written
together in some set of concurrent microoperations with different sources. For example,

target adr0 cannot be acquired from the same MUX with ext_in and ir2 since adrQ is

connected with these vertices by arcs. However, adr0 can be acquired from the same
MUX with adrl, ml, ralu or pc — adr0 is not connected with them in the graph of
incompatibility.

ralu (alu, mi)

o

pc

‘bor, m1, ir2, x"fffe ")

ml &
(ext_out, pc)

Q bor
(ir2, ralu)

adri
(ext_adr, ir2, x’ffff’)

adrO
(ext_adr, pc)

ext_in
(m1, mO)
irz
(bor, br, m0, raly, riaiu)

Fig. 14. Graph of incompatibility for 16-bit transfers

Vol.

Stey
tion
min
nuy
fron
colo

T
such
with
for ra
Forbi

W
conne
ext_in
as af
these
color

In
pe, m
(color

Tt
MUX
output
and se
with t
input

ETQ.

1SS 1n-
vritten
ample,

1drQ is

> same
aph of

Vol. 55 - 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 143

Stepl4. Construction MUXes by coloring the Graph of incompatibility and Construc-
tion the list of direct connections from the Connection graph (box14). To find the
minimal number of MUXes in our design we must color this graph with a minimal
number of colors. The targets (vertices) colored by the same colors will be received
from the same MUXes and the number of MUXes will be equal to the number of
colors.

Table 2

Coloring process

Vertices Forbidden vertices Colors
adrl ext_in, ralu, pc, ml mux0
ext.in adrl, adr0 mux [
adr0 ext_in, ir2 mux0
ralu adrl mux [

pc adr1 mux1
ml adrl mux1
ir2 adr0 mux |
bor - mux0

The coloring process is presented in Table 2. It is reasonable to order vertices in
such table according to their ranks — to the decreasing number of edges connected
with each vertex (four such edges for adrl, two edges for ext_in and adr0, one edge
for ralu, pc, m! and ir2 and zero edges for bor). We place these vertices in the column
Forbidden vertices.

We color the first vertex adrl with color mux0. Since the second vertex ext_in is
connected to adrl (ext_in has adrl in the column Forbidden vertices), we cannot color
ext_in with the same color mux0, but we can use mux0 for adrO not containing adrl
as a forbidden vertex. We cannot color ralu, pc, ml and ir2 with mux0 either because
these vertices are connected with vertex adr/. Continue until the end of the list with
color mux0 we use this color for pe.

In the next step, taking color mux! for ext_in, we go down the list and color ralu,
pe, ml and ir2 with muxl. Now all vertices are colored. The total number of MUXes
(colors) is equal to two.

Thus, we got the outputs of MUXes by coloring process. To get inputs to these
MUXes we should refer to the connection graph in Fig. 11. Let us discuss MUXO0 with
outputs adrl, adr0 and bor. We go along the last but one column targets in this figure
and search for target Adrl. The first time Adr! appears as a target with source Ext_Adr
with the target weight equal 2 (last column). So we include ext_adr as an input with
input weight equal to 2 (Fig. 15). Then we continue to descend and find Adrl with

144 SAMARY BARANOV ETQ.

source IR2, its target weight is equal to 3. We put the second input to MUX0. Going
down with source Adr/ we find the last input x “ffff” (weight = I).

Now we should repeat the same for target adr0. The first appearance of Adr0 in
column targets is with input Exr_Adr, target weight 2. Since we already have such
input in MUXO0, we add the new weight 2 to the old weight 2 (the weight of input
ext.adr became equal to 4) and write adrQ over the arrow for ext_adr near adrl to
show that this source Ext_Adr sends information to Adrl and Adr0 using MUXO (Fig.
15). Coming down with target Adr0, we add new input pc with weight 2. Then we
repeat the same for output bor.

Continuing in the same way, we constructed MUX 1for 16-bit transfers and MUX2
for for 4-bit transfers. Note, that the same input can appear in the different MUXes
if such input has several targets distributed between several MUXes. For example, ir2
sends information to adrl and bor through MUXO0 and to pc — through MUX1.

MUX0 5x16 ; MUX1 11x16
ir2
4 ext_adr aMinO 1 ralu R SR 1213]
ir2 .
4 2 3M1n1 2 por e in2
adr0 adr1 ralu ext_in pC_ |
1 x"ffff" ﬂl—-»in?, out p——r———-—up- 3 m1 e |iN0
adr0 bor pe .
2 pc ~———plin2 1 ir2 g N8
4 bor . ext_in ir2 .
ralt el 014 2 mo —ee——p>| in 1 .
otr m1 ‘ ralu ext_in
Y 1 pc ——————p!ing oI T Q ———
/!(3 1 ext_out -—-—~—-r—n-1-———-> in4 ir2 m1 pe
ir2 .
1 rialu —)’ in10
pc ,
1 e 5
adrr ‘IVIUX2 2x4 xte ralu 'ln12
3 irf(12-15) 3 N0 adrr 1 au ————p ind
) adir OUt e ir2
2 iri(8-11) ey in1 1 br ee——e—p| in5 ;
ctr cIr

7 e

Fig. 15. Main MUXes

After constructing MUXes and the list of direct connections, it is very simple to
draw data path (Fig. 18). To do that, first, we draw the units of data path and the main
MUXes. Each input of each MUX is connected to the output of the corresponding unit
in accordance with the name of the MUX input. Each output of each MUX is connected
to the inputs of the corresponding units in accordance with the targets written at the
output of MUX. Direct connections are drawn by dotted lines in accordance with the
list of direct connections in Fig. 16 and Fig. 17. Of course, a designer shouldn’t draw
such picture, we give it here only as illustration,

ETQ.
Going

dr0 in
> such
" input
drl to
) (Fig.
en we

VIUX?2
[UXes
le, ir2

ple to
: main
g unit
nected
at the
th the
¢ draw

Fig. 16. Muxes and direct connections for 16-bit transfers as text file from Abelite

Vol. 55 — 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 145
MUXO0
OUTPUT :
Adr0
Adrl
BoR[AdrW]
INPUT:
Ext Adr 4 000 in0 Adr0
Adrl
IR2 4 001 inl Adrl
BoR [AdrW]
BC 2 010 in2 Adr0
RALU 1 100 in4 BoR[AdrW]
X"FFFF" 1 011 in3 Adrl
MUX1
QUTPUT :
Ext_in
IR2
M1 [Adr1]
PC
RALU
INPUT:
M1{Adrl] 3 0000 in0 Ext_in
PC
RALU
MO [Adx0) 2 0001 inl Ext_in
IR2
BoR[AdxR}] 2 0010 in2 IR2
PC
Ext_out 1 0100 indg Ml [Adri]
IR2 1 1000 in8 PC
ALU 1 0011 in3 RALU
BR 1 0101 in5 IR2
BC 1 1001 in9 ML{Adrl]
RALU 1 0110 iné IR2
RIALU 1 1010 inlQ IR2
x"FFFE" 1 1100 ini2 pC
DIRECT CONNECTIONS:
SOURCES TARGETS
BoR[AdrR] ALUL
IALU2
OutR
Ext Out MO [Adrx0]
IALU RIALU
IR2 ALU2
IALUL
MO [Adr0] IRL
M1[Adrl] BR

146 SAMARY BARANOV ETQ.

MUZXes and direct connections constructed for 4-bit transfers in the same manner are
presented in Fig. 17.

MUX2
QUTPUT:
AdrR
INPUT:
IR1{12~15) 3 0 in0 AdrR
IR1{8-11) 2 1 inl AdrR
DIRECT CONNECTIONS:
SOURCES TARGETS
IR1(8-11) AdzW

Fig. 17. Muxes and direct connections for 4-bit transfers as text file from Abelite

The design of VHDL code for Data path is very simple because our naked Data
path doesn not contain “cloud” (irregular) circuits. As it seen from Table 3, Data
path contains 21 units and only 11 standard components which we can take from the
library. Thus, to construct Data path in VHDL we should only instantiate all units as
their components.

Table 3

Implementation of units by components

Units Components

u0_mux0 mux5x16.vhd
Y14 yi1

ul _muxl muxl I1x16.vhd
u2 _mux2 mux2x4.vhd
u3_bor bor.vhd
ud_alu alu.vhd
u5_m0, ub_ml raml6.vhd

u7.irl, u8.ir2, ulO_ralu, ull outr, ul 3. rialu, u2l_br | reg_16bit.vhd

u9._pc count106bit.vhd
wl2 ialu ialu.vhd
uld cf, uldzf, ul6.vf dffvhd

ul7 ien, ul8_r, ul9 fgi, u20 fgo rsff.vhd

ETQ.

Cr are

| Data

Data
m the
nits as

Table 3

Vol. 55 — 2009

HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE”

147

iri8-11)
4
u3_bor
adrw
din
16 BoR
bor 7?;
-/z» adrR
en
y2 [bor_en }—
u2_mux2 reg_ 16bit]
nizts) ;:A . din dout <.
ir1(8- out
B o -
L | of I] w7
) IF(8-15) o i)] x
3 [eir_muxz}— u7_irl i n
reg_16bit e[WA(I215} | 49
ir1(8-15) 10 e
din dout oyl riio-7) {THE]
sl @] x
- ut1_outr -
ya1 [_en | T ST] 08
[Cext_out }
16 _—
y16 [“outr_en }— 7
Ve {
u5_mo
rain647x16
el ralu_en | y§
dout fre
din
18
redwr ul_mux1
y22 [0 rdwr}—— —_— | mutes
ing
L oot
am647x16 : In4
adr | 2 e — s]
18 { S L
S w0 f i)
T e LN P ——{ien_resst] y20
- pe
—_— ng (& -
v21 [mi_rdwr oy | [en] w4
- g
X" y
ot aa } LN Y R set]
riall
4y1 i , 10 .
¥4 yi1 y4y5 [ebr_muxd — alu | EreS8] y1g
uz1_br o
Teg_fohit| | [—>
din dout |
- J l
y1a [bron”}
u9 _pe.
pe
ralu
din dcul .
count en ext_adr
y25 [pe_count | [W 05
i
15 [pe_en] Ll in dout[— fgo] x12
u13_iraly E——«—rf_go_se(
765168 3
din dout
.t
¥23 [et }—
¥1y20y12 olr_mix0}—
y24 [rlalu_en

Fig. 18. Data path

148 SAMARY BARANOV ETQ.

Before we discuss the construction of a test bench for Data path, let us look at its
figure again in Fig. 18. Even if a Processor is not very complicated, it isn’t so easy to
understand from what to start. Now we will show that it is possible to formalize and
even to automatize design of the test bench for Data path using our design methodology.

First, let us return to the main MUZXes presented in Fig. 15. From this figure for
MUZXQO, it is evident that ext_adr (in0) should be transferred only to two inputs of our
units — adr0 and adrl, ir2 (inl) — to adrl and bor, all other inputs of MUX/ must be
transferred only to one of the three possible units, reachable from MUXI. So, instead
of checking 5 x 3 = 18 transfers through MUX! we must check only 7 (the number
of units written over the inputs of MUX1). In the same way, instead of checking
11 x 5 = 55 transfers, it is sufficient to check only 15 transfers through MUX2 during
simulation of Data path.

All these transfers and some other microoperations which really should be imple-
mented in our Processor, are in microinstructions Y1, ... , Y24 in Table 1. Thus, we
must check only this microinstructions and it will be sufficient for checking our Data
path. Of course, we assume that each unit of Data path was simulated and verified
with its own test bench beforehand.

4. CONTROL UNIT DESIGN

After design of the Data Path, we can immediately pass on to the third stage of the
design process — a construction of Control unit (Structural FSM) —~ see Fig. 19.

From the Data Path Construction

[
———————————————————] B e e s e e s e
Control Unit 7,&; .
Construction
(Structural FSM) Structural ASM

constructor

ructural ASM

Structural FSM

FSM2HDL

Transformer
17
__ -l
; Structural FSM in VHDL
A4 or Verilog

,________.__._._.__...__..__._..._._____.___,_..

Fig. 19. Construction of Control unit

Stepl5. Structural ASM Constructor (box15). To explain this next step let’s apply to
the process table (Table 1). Abelite implements each functional microoperation from the

Vol. 55

third «
in the
MUX
to the

I
into s

1. P(

ETQ.

“at its
asy to
e and
ology.
re for
of our
ust be
nstead
1mber
cking
luring

mple-
1S, we
- Data
>rified

of the

ply to
»m the

vol. 55 - 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 149

third column by structural microoperation (or by the set of structural microoperations)
in the fifth column of this table. We will postpone consideration of input encoding for
MUXes and will use codes from Fig. 15. We assume that a code of input is correspond
to the number of input.

Let us discuss several examples of transformation of functional microinstructions

into structural ones. Of course, Abelite makes it automatically.

1.

PC := IR2 (row Y, column 3, Table 1).

To pass information from /R2 to the input of PC through MUXI (see Fig. 15) we
must send signal ctr_mux! := 1000, because the input ir2 of MUX1 has code 1000
(in8 of MUX1I). The signal pc_en := 1 will write information from the output of
MUXI into PC. Finally we use the following microoperations at the structure level:

ctromuxl = 1000; pc_en := 1(row Yg, column 5, Table 1).

AdrW := IR1(8-11); BoR[AdrW] := RALU (row Y;, column 3, Table 1).

IR1(8-11) is connected directly with input AdrW of BoR (Fig. 17) so we do not
need any signal for this transfer. To pass information from RALU to the input of
BoR through MUX0 we must supply signal ctromux0 := 100, because input ralu
of MUXO0 has code 100 (Fig. 15 or Fig. 16). The signal bor_en := I will write
information from the output of MUXO into the register of the BoR with address
AdrW. Finally we use the following microoperations at the structure level:

ctr -mux0 := 100; bor_en := I(row Y;, column 5, Table D.

Adrl := x"FFFF”; MI[Adrl] := PC (row Y, column 3).

The content of PC should be written to the word of memory M/ with address
X“FFFF”. To pass information from the constant x“FFFF” to the address bus
Adrl of the M1 through MUX0 we must supply signal ctr_mux0 := 011, because
input x“ffff”” of MUX1I has code 011 (Fig. 15 or Fig. 16). To pass information from
PC to the input of memory M1 through MUX] we must supply signal ctr_muxl
:= 1001, because input pc of MUXI has code 100]1. The signal mlI_rdwr := I
will write information from the output of PC into the cell of the M] with address
X“FFFF”. Finally we use the following microoperations at the structure level;

ctr mux0 := 0115 ctr muxl = 1001 ml _rdwr = 1 = I(row Y;3, column 5).
AdrR :=IR1(12-15); PC:=BoR[AdrR] (row Yg, column 3).

To pass information from IRI(12-15) to AdrR through MUX2 we must give signal
clromux2 ;= 0, because input irl(12-15) of MUX2 has code 0. To pass information

150 SAMARY BARANOV ETQ.

from BoR to PC through MUXI we must give signal ctr_muxl := 0010, because
input bor of MUXI has code 0010. The signal pc_en := I will write information
from the output of MUX! into PC. Finally we use the following microoperations
at the structure level:

ctr-mux2 = 0; ctr_mux! := 0010; pc_en ;= 1(row Yg, column 5).
5. Adr0O := PC; IRI := MO[AdrO] (row Yy4, column 3).

The content of the word in the memory MO with the address in PC should be
written into IR/. To pass information from PC to the address bus Adr0 of memory
MO through MUX0 we must supply signal ctromux0 := 010, because input pc of
MUXO has code 0/0. The signal m0O_rdwr := 0 will read information from the cell
of MO with address Adr0 equal to PC. Because memory M0 is connected directly
with the input of IR/ (see Fig. 16), no MUX is used to pass information from M0
to IR!. To write information into /R1 it is sufficient to supply signal ir/_en .= I.
Finally, we use the following microoperations at the structure level:

ctr_mux0 := 010, mO_rdwr = 0, irl_en = I(row Y,4, column 5).

In such a manner, we have filled the whole fifth column “Structural Microoperations”
of Table 1. To finish the filling of this table we remind that if some microinstruction, for
example, Ys = {y, y3} is written in the operator vertex of ASM, it means that y; = y3
= [and other microoperations are equal to zero. Our understanding of output signals
in FSM is just like this. If y; and y; are written in the column for output signals at
some ftransition, only these signals are equal to one at this transition but other output
signals are equal to zero.

In consideration of this, let us continue to fill in Table 1. In the sixth column of
this table, we write only assignments, which assign “ones” to the signals in the fifth
column of Table 1. Doing this we present each vector signal (control signal of MUX)
as a set of separate binary components and we write assignments only for components
equal to one. Look, for example, at microinstruction ¥5 in Table 1:

Adrl :=IR2; BR := M1{Adrl].

In the fifth column, the following structural microoperations are written:

ctr_mux0 := 001; br_en = 1;ml _rdwr = 0.

We write in the column 6 only

ctromuxO(2) = 1, bor,n = 1.

In this column, we do not write ctr_mux0(0) ;= 0, ctromux0(1) := 0, and ml_rdwr ;=
0, because zeroes are assigned in these microoperations.

1
from
verti
last |
have
these
ASV

Step
Syntl

Step
uses

ETQ.

because
rmation
srations

ould be
nemory
1t pc of
the cell
directly
-om M0
n o= 1.

rations”
tion, for
Y1 =53
signals
cnals at
- output

[umn of
he fifth
- MUX)
ponents

Yol. 55 — 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 151

The combined structural ASM is presented in Fig. 20. This ASM was constructed
from functional ASM (Fig. 5) by replacing the functional microoperations in operator
vertices, written in column 3 of Table 1 by structural microoperations from the column
last but one in this table. As graphs, these two ASMs are absolutely identical. They
have the same conditional and operator vertices and the same arcs (connections between
these vertices), only the contents of operator vertices were changed in the structural
ASM. Abelite constructs this ASM automatically.

Step 16. Synthesis FSM from Structural ASM (box 16). Abelite uses here the same
Synthesizer which we presented at the step 5.

Stepl7. Construction VHDL (Verilog) code for the structural FSM (box 17). Abelite
uses here the same ASM2HDL transformer which was used in box 6.

Fig. 20. Structural ASM

152 SAMARY BARANOV ETQ.

Thus, we constructed Data path and Control unit. Our next step is to combine two
components — Control unit and Data path in one final block. The top level of our

design is presented in Fig. 21. I1
To minimize the number of output signals at all transitions of FSM (Control unit) of ve
Abelite uses the special algorithm for MUX encoding minimizing the number of “ones” Abel
in the fifth column of Table 1. That reduces the total number of output signals written ABC
in the sixth column of this table. Ir
metes
of iny
CPU
ekl
By
1 ui_fsm u2_dp
s clk STRUCT clk DP
st
st v ctr_mux0(0) 3, ctr_mux0

y20 ctr_mux0{1)

vi2 ctr_mux0{2)

XGEE yi4 ctr_myx1(0)

x9 [Cm} yu %—#—vm muxd
vé ctr_mux1{2} . -

¥5 ctr_mux1(3}
The g
To u
states
a pro
trans

data_out] 16 e gafa_oug

x10 [ext rdwr }
x5 dma q

ext_adr 1%
ext out 1%
eg in L3 t_in

A A 4
[N
s

Fig. 21. Top level of Processor

ETQ.

ne two
of our

ol unit)
g “OneS”
written

vol, 55 — 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 153

5. LOGIC SYNTHESIS IN ABELITE

In this Section we will shortly present the results of experiments for synthesis
of very complicated combinational circuits and final state machines, implemented by
Abelite, and comparisons these results with tools from Synopsys, Mentor Graphics and
ABC tool from Berkeley.

In experiments with combinational circuits we used circuits from Intel, their para-
meters are presented in Table 4. The last column of this table contains average number
of inputs in one product.

Table 4

Parameters of combinational circuits

Examples | # functions | # inputs | # products | inputs/product
idx1at00n 78 30 3793 8.75
idxlat01n 80 30 4165 8.79
idxlat02n 77 25 2055 7.79
idxlat03n 83 28 6730 9.81
idxlati0n 80 20 4133 7.65

The parameters of very complicated FSMs used in experiments are presented in Table 5.
To understand these parameters let’s return to FSM in Fig. 6. This FSM contains 15
states, 48 lines in its table, 14 input variables, 44 output variables. Average length of
a product in one row is equal to 2.35 and average number of input variables at the
transition from one state is equal to 2.79.

Table 5

Parameters of Finite state machines

Examples | # states | # lincs | # inputs | # outputs inputs/product | inputs/state
Bigm2r 174 | 4899 63 54 6.37 2235
Exx 79 1157 24 24 5.28 14.27
Groupl5 | 422 | 10185 39 39 7.58 15.55
Huge 199 | 84993 75 70 13.00 43.97
Other 1275 | 10980 67 96 5.86 6.69
Rex 1806 | 27897 70 97 7.19 11.89
Trym 199 | 24422 71 70 10.63 38.63
Zoom 319 | 5423 64 37 5.60 17.84

Table 6 and Table 7 contain the result of experiments with Abelite and synthesizer
of Synopsys with combinational circuits and FSMs for ASIC with Library Class.
Abelite constructed combinational circuits in 2.16 times better and 115 times faster

154 SAMARY BARANOV ETQ.

than Synopsys. FSMs were constructed by Abelite in 1.75 times better and 750 times
faster. These comparisons were made for five simpliest FSMs from this list because
Synopsys could not synthesize the most complicated FSMs Huge, Rex and Trim.

Table 6

Comparison with Synopsys (combinational circuits, ASIC)

Examples | Chip area (gate equivalent) Time of synthesis
Abelite Synopsys Abelite Synopsys
idxlat00 | 1514 3274 1.162 sec | 2 min 35.8 sec
idxlatO1 | 1865 3843 2.130 sec | 3 min 18.6 sec
idxlat02 | 1023 - 1772 0.519 sec 23.3 sec
idxlat03 | 2229 5472 4.446 sec | 11 min 08.6 sec
idxlatlO | 1283 2769 1.712 sec | 1 min 41.0 sec
Total 7914 17130 9.969 sec | 19 min 07.3 sec

Table 7
Comparison with Synopsys (FSMs, ASIC)
Examples | Chip area (gate equivalent) Time of synthesis
Abelite Synopsys Abelite Synopsys
Bigm2r | 10,964 16,076 16.0 sec 2h 13min 51 sec
Exx 2,713 3,938 1.9 sec 8min 46 sec
Groupl5 | 15,358 29,946 30.1 sec 6h 46min 49 sec
Huge | 55,673 ok [4min 12.4 sec ok
Other 19,874 34,645 43.6 sec 12h 15min 39 sec
Rex 49,513 Hk 6min 28.5 sec ok
Trym | 35,158 *E 3min 19.6 sec ok
Zoom | 12,683 23,343 21.9 sec 2h 08min 53 sec ~ times
Total | 61,592 107,948 Imin 53.5 sec | 23h 33min 58 sec seven
run
could

Table 8 and Table 9 contain the results of experiments with Abelite and EDA tool
Leonardo from Mentor Graphics with combinational circuits and FSMs on FPGA.
Abelite constructed combinational circuits in 1.92 times better and 450 times faster
than Leonardo. FSMs were constructed by Abelite in 2.83 times better and 400 times
faster. These comparisons were made for six simpliest FSMs from this list because
Leonardo couldn’t synthesize the most complicated FSMs Huge and Rex.

Table 10 and Table 11 contain the results of experiments with Abelite and EDA
tool ABC from Berkeley with combinational circuits and FSMs on FPGA. ABC is a
very fast synthesizer. Abelite constructed combinational circuits in 2.06 times better
for the same time. However, for the best result, ABC should be consequently run 10

ETO. Yol. 55 - 2009 HIGH LEVEL SYNTHESIS IN EDA TOOL “ABELITE” 155
Table 8
0 times
hecalse Comparison with Leonardo (combinational circuits, FPGA)
. Examples | Chip area ((Luts)/arrival time)* Time of synthesis
Table 6 Abelite "Leonardo Abelite Leonardo
idx1at00 | 739/14.04 1409/16.15 1.853 sec 16 min 59 sec
idxtatO1 | 905/14.89 1572/15.31 2413 sec | 22 min 18 sec
idxlat02 | 492/11.50 832/14.46 1.052 sec 3 min 57 sec
idxlat03 | 1117/14.89 2288/17.45 4.326 sec | 28 min 29 sec
idxlat 10 | 626/14.04 1347/15.31 1.602 sec 6 min 10 sec
Total 3879 7448 11.246 sec | 1h 17 min 53 sec
* arrival time in nsec
Table 9
Comparison with Leonardo (FSMs, FPGA)
Examples | Chip area (Luts)/MHz Time of synthesis
Table 7 Abelite Leonardo Abelite Leonardo
Bigm2r | 3948/44.9 | 5643/39.9 7.531 sec 34min
Exx 990/46.7 | 1641/49.2 1.531 sec 2min
Groupl5 | 5933/31.7 | 14529/36.9 15.812 sec Ih 5imin
Huge |22658/25.5 ok 6min 35.984sec ek
Other | 6772/36.6 | 19986/32.0 15.531 sec th 18min
Rex 18313/31.7 wok Imin 44.829 sec o
Trym | 13970/30.1 | 50758/22.4 | 1min 17.109 sec | More thanl4hours
Zoom | 4480/38.2 | 9681/43.1 9.046 sec 37min
Total 36093 102238 | 2min 42.418 sec | More than18 hours
times. Really, ABC improved its result and decrease ratio 2.06 to 1.75 but spent almost
seven times more time. FSMs were constructed by Abelite in 1.37 times better (one
run for ABC) and in 1.24 times better (several runs for ABC). Unfortunately, ABC
couldn’t synthesize the most complicated FSM Huge from this list.
DA tool
FPGA.
s faster
0 times
yecause
d EDA
BC is a
s better
run 10

156 SAMARY BARANOV ETQ.

Table 10

Comparison with ABC (combinational circuits, FPGA)

Examples Chip area (Luts) Time of synthesis
Abelite Berkeley Abelite Berkeley
1 time | 10 time 1 time 10 times

idxlat00 739 1519 | 1422 | 1.853 sec | 2.264 sec | 13.840 sec
idxlat01 905 1730 | 1492 | 2.413 sec | 2.433 sec | 17.355 sec
idxlat02 492 899 782 1.052 sec | 1.622 sec | 8.583 sec
idxlat03 | 1117 | 2482 | 2181 | 4.326 sec | 3.395 sec |23.664 sec
idxlat 10 | 626 1370 | 1311 1.602 sec | 2.173 sec | 12.939 sec

Total 3879 | 8000 | 7188 |11.246 sec|11.887 sec|76.381 sec

Table 11
Comparison with ABC (FSMs, FPGA)

Examples Chip area (Luts) Time of synthesis
Abelite Berkeley Abelite Berkeley
[time|10 time 1 time 10 times
Bigm2r | 3948 | 5271 | 4502 16.884 sec 8.60 sec 56.53 sec
Exx 990 | 1147 | 1074 2.403 sec 1.96 sec 10.69 sec
Groupl5 | 5933 | 8061 | 6790 28.691 sec 18.54 sec 2 min 26.17 sec
Huge | 22658 | #*% ¥ |16 min 16.76 sec *E *x
Other 6772 | 8711 | 8006 27.59 sec 14.72 sec 1 min 53.37 sec
Rex 18313 [24967 | 23448 {04 min 38.18 sec| | min 09.84 sec|3 min 26.10 sec” o
Trym | 13969 | 20118 187617 |03 min 42.79 sec| Imin 21.30sec |4 min 50.10 sec* View[(())’
Zoom | 4480 | 6007 | 5094 17.49 sec 10.18 sec [min 14.85 sec which
Total | 54405 | 74282 67675 The P
* Rexm and Trym were run 3 times, after that the result wasn’t shanged ble Lo,

micros
The
Concu

ETQ.

[able 10

[able 11

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 157182

Petri Nets Mapping into Reconfigurable Logic Controllers

MARIAN ADAMSKI, MAREK WEGRZYN

University of Zielona Géra, Institute of Computer Engineering and Electronics,
ul. Podgorna 50, 65-246 Zielona Géra,
M.Adamski@iie.uz.zgora.pl, M. Wegrzyn@iie.uz. zgora.pl

Received 2009.01.29
Authorized 2009.04.06

The paper concentrates on the behavioral specification of Reconfigurable Logic Con-
troller programs, given initially as Petri nets and later rewritten in Hardware Description
Languages. The rule-based textual language input makes it possible to integrate the design
system with existing formal logic based computer-based theorem proovers. The Petri net
description in HDL provides the opportunity to integrate existing Petri net software with
several commercial systems. Different Petri net places encoding methods are also discus-
sed. Verilog-HDL is used for an intermediate representation of controller behavior on top
of existing commercial synthesis tools. The implementation methods using D, JK and T
flip-flops are presented.

Keywords: Logic Controller, Petri Net, Programmable Logic, FPGA, HDL, VHDL, Verilog,
Place Encoding, Modeling, Synthesis, PNSF2

1. INTRODUCTION

1.1. MOTIVATION

To describe digital systems, designers frequently adapt a concurrent and distributed
view of the modeled behavior. Petri nets [36, 37, 38, 41, 42, 55] provide a mechanism,
which is suited to representing parallelism and hierarchy in complex digital processes.
The Petri nets are used both as specification and synthesis models for Reconfigura-
ble Logic Controller designs, which are frequently embedded inside modern, reactive
microsystems [64].

The main aim of this paper is to demonstrate a practical, direct method of mapping
Concurrent Digital Systems into Programmable Logic (PL), during the design process

158 MARIAN ADAMSKI, MAREK WEGRZYN ETQ.

of controller design. The paper gives also an overview of selected papers, related to
the hardware implementation of Petri nets. The experimental results have shown that
the presented novel approach may produce economical Programmable Logic imple-
mentations of reconfigurable logic controllers.

A Petri net can be considered as a behavioral specification of a concurrent sta-
te machine (concurrent control automaton) as well as a formal model suitable for
its rule-based description, transformed and optimized during logic design process
step-by-step. The Petri net can serve also as a direct, immediate model for HDL de-
scription. both for rapid prototyping and optimized design by means of commercial
tools, approved by electronic industry (Xilinx, Altera).

The behavioral rule-based textual descriptions of Control Interpreted Petri Nets
(CIPN) are formally transformed into structured templates in XML, which are tre-
ated as shells for standard hardware description languages, such as VHDL or Verilog.
The automatic model-driven design process is realized at first on the register transfer
level (RTL) by means of experimental dedicated CAD tools developed at University
of Zielona Gora. After local state encoding and structural logic synthesis the logic
expressions are transformed into HDL statements. All procedures make it possible to
obtain a compact and reliable implementation, considering the simplicity of design and
limited size of array structures in SoC (System-on-Chip).

1.2. BACKGROUND

In general, Programmable Logic can be re-configured by the user to perform parti-
cular combinational or registered logic functions. The design process is greatly simpli-
fied by FPGA and CPLD compilers. The effective simulation allows the Logic Control-
ler to be debugged before the device is programmed. If design change is needed, it is a
simple matter to re-edit the original specification and then re-program or exchange the
old device. FPGA can be dynamically reconfigured to perform many different logic
control programs, serving as adaptive concurrent (parallel) state machine with data
path.

While software implementation of logic controllers can be applied only to com-
paratively slow targets, hardware implementation of a Petri net is recommended for
high-speed, parallel, dependable controllers, interacting with several concurrent pro-
cesses. Other advantages of the method are reusability, fast prototyping, and testability,
which are ensured because the reconfigurable controller fully implements a structure
of discrete algorithm and its desired properties [8, 12, 53, 68].

2. LOGIC CONTROLLER -~ CASE STUDY

Logic controllers are related mainly to relatively simple embedded discrete systems,
whose behavior is defined by interaction with its environment. As synthesis tools

E.TQ.

ated to
wn that
imple-

ent sta-
ble for
process
DL de-
mercial

ri Nets
ire tre-
/erilog.
ransfer
iversity
e logic
sible to
(gn and

1 parti-
simpli-
ontrol-
,itis a
nge the
t logic
th data

) com-
led for
nt pro-
ability,
ructure

/stems,
S tools

Vol. 55 — 2009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 159

become more advanced and user friendly, the entry point in the design process is
moving towards higher levels of specification. The proposed structured design is applied
in many formalisms used to specify logic controllers programs, such as interpreted
Petri net or Sequential Function Chart (SFC) UML state machine diagrams. Hardware
Description Languages (VHDL or’ Verilog) are used for synthesis, verification, and
documentation of design. The logic controller model (concurrent state machine with
data path) may be implemented explicitly in hardware description language, or from
the front-end entry (shell) from its rule-based description.

Digital embedded systems require real-time operations and concurrent processing.
Reconfigurable Application Specific Logic Controllers (ASLC) are very fast and fle-
xible dedicated devices, implemented in array-based programmable logic. A discrete
HDL model of Logic Controller (Fig. 1), which is derived from the control interpreted
Petri net is implemented as a FPGA-based control unit, which is nested inside a discrete
control system.

RTELIRZL2WI W2~

s | Logic Controlled
V] contrailer plant

Fig. 1. Logic contro] system

The industrial logic control system consists of three parts: a Logic Controller, a
Controlled Plant (mechatronic operational unit), and an environment, which involves
a human operator.

The applicability of the presented approach is demonstrated by the solution to the
discrete control problem [63]. This toy-example has been adapted by authors as an
illustration of several different design methodologies [68].

Fig. 2 depicts the controlled part of a designed simple reactive system. The con-
trolled system consists of two tankers I and 2 that go on the left (L) and right (R)
sides. The tankers start on signals Start! and Start2, respectively. When both tankers
go concurrently, they can reach points D and E. Because tanker I has higher priority,
it goes to point B, and then goes back to A, where it waits. When it waits until button
Start 1 is pressed the next time, meanwhile tanker 2 waits in point £ until tanker 7
reaches point D on its way back. Then the tanker 2 goes to B and back to emph C,
where it waits for next pressing of bottom Star2. During this process, only oe tanker
carn be located on any single track. When the full technological cycle is completed
the system waits in the initial, idle states.

160 MARIAN ADAMSKI, MAREK WEGRZYN

ETQ.

Start2

L

T
C{ — "

Illllllli|l!llll!|lllll||||ll /E

!
z=1 13
Startt 50 0 0 0 0 0
e 0

A i 5

IlIIIIIIIIIIIIIIIlIIIIlIlIIlII\ \D

Fig. 2. Technological process

It is necessary to identify the inputs and outputs (Table 1) of Logic Controller (Fig.
1). The unique local states of the controller and their verbal descriptions are listed in

Table 2.

Description of inputs and outputs of the controller

Signal name Description

Startl | Start button for tanker 1
Start2 | Start button for tanker 2

A | Tanker 1 in left starting position
Inputs Tanker 2 in left starting position
Tanker 1 or 2 in right final position

C
B
D | Tanker 1 reaches rail switch
E

Tanker 2 reaches rail switch

R1 | Tanker 1 goes right
L1 |Tanker 1 goes left
Outputs | R2 | Tanker 2 goes right
L2 | Tanker 2 goes left

W1 | Tanker | on common track, z=0

W2 | Tanker 2 on common track, z=1

Table 1

Local

Tt
the va
condit
a total
Desig
Petri 1
object

Cc
concul
that is
transit
empty
firing |
of toke
sequen
natural
State N
enviror
3)is v
of the
they ca
tokens
M3 =

ETQ.

r (Fig.
sted in

Table 1

Vol. 552009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 161

Table 2
Local states descriptionh
Local state Description Local state Description

pl Initial state (for tanker 1y p8 Initial state (for tanker 2)
p2 Tanker 1 goes right on private track p9 Tanker 2 goes right on private track
p3 Tanker | waits for permission pl0 Tanker 2 waits for permission
pd Tanker 1 goes right on common track pll Tanker 2 goes right on common track
p3 Tanker 1 goes left on common track pl2 Tanker 2 goes left on common track
p6 Tanker 1 goes left on private track pl3 Tanker 2 goes left on private track
p7 Common track is free pl4 Common track is occupied by tanker |

pls Common track is occupied by tanker 2

3. PETRI NET AS A BEHAVIORAL SPECIFICATION OF LOGIC CONTROLLER

3.1. PETRI NETS AND LOGIC CONTROLLERS

The sequence control problem is represented in or structural manner, showing
the various actions (y) to be taken in each total discrete step (M) and indicating the
conditions (x), which need to be satisfied before the next step. In concurrent systems
a total discrete step (macrostate) is a collection of simultaneously held partial states.
Designing the discrete controller as a digital subsystem involves the generation of a
Petri net based behavioral specification by analyzing, the properties of the controlled
object (plant) and its desired functionality (Fig. 3).

Control interpreted Petri net represents the behavior of a discrete controller as
concurrent sequences of places and transitions. Each place p is related with an action,
that is active (y = 1) when it is marked, or inactive (y = 0) if the place is empty. If the
transition label (guard, predicate) is true, the marked input places of transition become
empty and the next output places become marked. The required sequence of transition
firing is shown by directed edges (arcs), pointing in the direction of the intended flow
of tokens. In such a way interpreted Petri net encapsulates concurrent input and output
sequences that the controller should accept and produce. Safe PNs can be viewed as a
natural extension to linked Finite State Machine (ESM) specifications. A Concurrent
State Machine (CSM) allows data (inputs, outputs) to be exchanged with the external
environment, according to its current global state M. Each place of the Petri net (Fig.
3) is viewed as a local control state (Table 2). The global states M = [pl, ..., pl5]
of the controller are given implicitly by the set of all possible Petri net markings, and
they can be eventually derived from the reachability graph of the net, as distribution of
tokens by the places during the evolution of the net: M/ = Markingl, M2 = Marking2,
M3 = Marking3. The logical expressions (Startl, Start2, ..., E) from Table 1, which

162 MARIAN ADAMSKI, MAREK WEGRZYN ETQ.

Fig. 3. Petri net model

are called guards, are associated with transitions 7/+1/2. Respectively, to represent the
controller actions, the output signals (R1, L/, ..., W2) are associated with the places
pl+pl3.

The virtual Sequential State Machines (SSM), which are included in CSM, interact
with other, by means of a shared memory (internal state register). The colors [1], [2],
[3] demonstrate the proper covering of the Petri net by three P-subnets, representing
concurrently related state machines (SM). The strict rules of SM-coloring of the Petri
net are given in the papers [16, 32].

It should be noted that the considered in the paper Coloured Control Interpreted The
Petri Net (CCIPN) is a subset of the general coloured Petri net (CPN), invented by proposi
Jensen [44] with restricted rules for allowed colouring of places, transitions and arcs possibl
[16, 76]. It makes possible to use efficiently well developed theory of CPN and CPN related
tools for formal analysis of model properties as well as animation of Logic controller by plac
behaviour during its evaluation [66]. sequent

The Petri net which is drawn according to standard CPN is presented in Fig. 4.
In the colored Petri net (Fig. 3) the marking is represented by several colored tokens.
Directed implicitly colored arcs connect the explicitly colored places and the implicitly
colored transitions. Transitions are allowed to or prevented from occurring with respect
to a particular color if the attached Boolean expression is respectively true or false.

ETQ.

sent the
> places

interact
1], [2],
senting
he Petri

rpreted
nted by
nd arcs
1id CPN
ntroller

Fig. 4.
tokens.
iplicitly
respect
r false.

Vol. 55 - 2009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 163

In the standard CPN specification the coloring of the net must be explicitly defined
(Fig. 4).

—

1¢! | 1¢2 Iﬁ

p1 ’ P8
Cdlar_p Color_p!
i7

|Tc2
Tc2

R2

12 o
| 1'¢c2

[oolor Calor_p=with et | 2| c3; |

Fig. 4. Petri net drawn in Jensen CPN style

3.2. CONCURRENT STATE MACHINE

The Petri net is directly mapped into the Boolean equations (decision rules in
propositional logic) without explicit enumeration of all possible global states and all
possible global state changes. The specification is given in terms of local state changes,
related with Petri net transitions (Table 3). Moore type output signals are generated
by places (Table 4). The decision table format is very close to the state tables for
sequential automata used in [25, 13, 27, 72, 73].

164 MARIAN ADAMSKI, MAREK WEGRZYN ETQ.

Table 3

Decision table for the control unit

Transition | Current local states | Conditions | Next local states

tl pl Ml p2

12 p2 D p3

3 p3, p7 D p4, pi4
4 p4 B p5

t5 ps, pl4 D pb, p7
to p6 A pl

t7 p8 M2 pY

t8 p9 E pl0
t9 p7, pl0 D pll, pl5
t10 pll B pl2
tl1 pl2, pl5 E p7, pl3
t12 pi3 C p8

Table 4
Decision table for outputs "
Each
Local state | Outputs || Local state | Output can b
v state utputs Ocai state utputs
P P the nt
p2 R1 pll R2 net cd
p4 R1 pl2 L2
p5 L1 p13 L2
po L1 P14 Wl In
P9 R2 P15 | W2 (@) (rule |
of the
‘ seque
Concurrent Logic Controller can be presented using a modular and hierarchical view of deseri
the modeled system behavior. It retains the natural partitioning of the behavior imposed logic
by the designer, depicted by colors ([1], [2], [3]). A given Petri net is transformed into Place

a hierarchical macronet, a net having structured macroplaces, which represent Petri net
subnets, particularly State Machine subnets (Fig. 5). The functionality is represented
as a set of concurrent blocks of a manageable size that communicate using few signals
(Fig. 6).

ETQ Vol. 55 ~2009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 165

Table 3
Fig. 5. Colored macronet: SM sub-components in hierarchical Petri net model
(1.4 (3 {2,5]
(3]]
I ETER B3]
v l l v v} v
R1 L1 W1 W2(2) R2 L2
Table 4 Fig. 6. Distinguished processes in Logic Controller
Each color represents a sequential process and in considered approach selected color
can be related only to one process. The total number of the colored tokens indicates
the number of concurrent processes being active at any global state. Such colored Petri
net can be decomposed into several Linked State Machine (LSMs) [28].
3.3. TEXTUAL SPECIFICATION OF PETRI NETS
In {4, 7, 14, 20] the digital system is considered as an abstract reasoning system
(rule based system) implemented in hardware. The mapping between inputs and outputs
of the system is described in a formal manner by means of logic rules (represented as
) sequents) with some temporal operators, especially operator "next’ @. The rule-based
{. view of description [5], supported by means of logic deduction techniques (Gentzen natural
1mp956d logic calculus [29]), is used in Programmable Logic Controller design context [9].
ned 1nto Place oriented declarative specification is as follows:
Petri net
resented

/ signals

166 MARIAN ADAMSKI, MAREK WEGRZYN ETQ. Vol. 55

Preconditions:
pl * Startl |- tl;
p2 * D |~ t2; In
pl3 * C (- t12; will n

Next markings:

t6 + pl * !ftl |- @pl;
tl + p2 * 1t2 |- @p2;
£S5+ t11 + p7 * (1t3 4+ 1t9) |- p7;

Sequents may be roughly treated as more general forms of clauses with conjunctive
antecedents and disjunctive consequents and they represent assertions [4]. In the paper
[47] the Petri Net Specification Format (PNSF) for VLSI design was introduced as a
simplified version of rule based description of Petri net using sequent language. One
of its extended improved versions is called PNSF2 (Fig. 7) [67].

.¢lock CLK

.inputs Startl Start2 A B C D E
.comb_outputs L1 L2 Rl R2 Wl W2

.part TankersControl

.places pl p2 p3 p4 p5 p6 p7 p8
.places p% pl0 pll pl2 pl3 pl4 pls
.transitions tl tZ2 t3 t4 t5 6
.transitions t7 t8 t9 £10 til ti12

.net

tl: pl * Startl |~ p2;

t2: p2 * D |- p3;

t3: p3 * p7 * D |~ pd4 * pl4;

t4: p4d * B |- p5;

th: pb * pld * D |~ p6 * p7;
té: p6 * A |~ P1;

t7: p8 * Start2 |- p9;

t8: p9 * E |- pl0;

t9: pl0 * p7 * ID |- pll * pl5;
£l0: pll * B |~ pl2;
tll: pl2 * pl5 * E |- pl3 * p7;
£l2: pl3 * C |~ p8;

.MooreQutputs
p2 |- R1;
p4 [~ RL;
p5 |- L1;
p6 |- L1;
rY |- R2;
pll |~ R2;
pl2 |- L2;
pl3 |- L2;
pld |- Wl;
plS5 |- W2;

.marking pl p7 p8
.end

Fig. 7. Petri net specification in PNSF2

ETQ.

njunctive
the paper
iced as a
age. One

Vol. 55 - 2009

PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS

167

3.4. RAPID PROTOTYPING

In dealing with concurrency the designer is confronted with some problems that
will not arise in the logic synthesis of sequential systems. To keep a very strict

module TankersControl (CLK, Reset, A, B, C, D, E, Startl, Start2,

input CLK, Rese
input A, B, C,
output L1, L2,
reg pl, p2, p3,
wire tl, t2, t3

assign tl = pl
assign t2 = p2
assign t3 = p3
assign t4 = p4
assign t5 = p5
assign t6 = pé
assign t7 = p8§
assign t8 = p9Y
assign t9 = p7
assign tl10 = pl
assign tll = pl
assign tl2 = pl

assign L1 = p§

t;
D, E, Startl,

R1, R2, W1, wW2;
p4, p5, p6, p7, p8, p9,

, t4, tb5, ts6,

& Startl;

& D;

& p7 & D;

& B;

& pld & D;
& A;

& Start2;

& E;

& pl0 & ~D;
1 & B;

2 & plS & E;
3 &C;

| p6;

assign L2 = pl2 | pl3;

assign
assign
assign
assign

always

RL = p2 | pd;
R2 = p9 | pli;
Wi = pi4;
W2 = pl5;

@ (posedge CLX)

if {Reset) pl <=
always € (posedge CLKX)
if (Reset) p2 <=
always @ (posedge CLK)
if (Reset) p3 <=
always @ (posedge CLK)
if (Reset) p4 <=
always C(posedge CLK)
if (Reset) p5 <=
always @ {(posedge CLK)
if (Reset) p6 <=
always @ (posedge CLK)
if (Reset) p7 <=
always @ (posedge CLK)
if (Reset) p8 <=
always @ (posedge CLK)
if (Reset) p9 <=
always @ (posedge CILK)
if (Reset) pl0 <=
always @ (posedge CLK)
if (Reset) pll <=
always ¢ (posedge CLK)
if (Reset) pl2 <=
always @ (posedge CLK)
if (Reset) pl3 <=
always @ (posedge CLK)
if (Reset) pld <=
always @{posedge CLK)
if {Reset) pl5 <=
endmodule

1'bl;

1'b0;

1'p0C;

1'b0;

1'b0;

1'p0;

1'bl;

1'bl;

1'b0;

1'b0;

1'p0;

1'b0;

1'o0;

1'b0;

L1, LZ, R1, R2, Wi, W2);
Start2;
pl0, pll, pl2, pl3, pl4,

t7, t8, t9, tl10, tll, t12;
else pl <= t6 | {pl & ~tl};
else p2 <= ti | (p2 & ~t2);
else p3 <= t2 (p3 & ~t3);
else p4d <= t3 | (p4 & ~t4);
else p5 <= t4 | (p5 & ~t5);
else p6 <= t5 | (p6 & ~t6);
else p7 <= (t5 t11)

else p8 <= t12 | (p8 & ~t7);
else p% <= t7 | (p9 & ~t8);

else pl0 <= t8 | (pl0 & ~t9);
else pll <= t9 | (pll & ~t10);
else pl2 <= t10 | (pl2 & ~tll);
else pl3 <= t11 | (pl3 & ~tl12);
else pld <= t3 | (pld & ~t5);
else pl5 <= t9 | (pl5 & ~tll);

1'00;

| (p7 & ~t3 & ~t9);

Fig. 8. Verilog model (with encoding option in synthesis tool

168 MARIAN ADAMSKI, MAREK WEGRZYN ETQ.

correspondence between an initial specification as Petri net and hardware description
languages, such as VHDL, the rule-based textual form is considered [6]. It was deve- by v
loped as a bridge between PN and its VHDL models. The VHDL style and template The
type, introduced by Bolton, was continued and modified by several researchers [21, (Fig.
40, 57, 77]. The structural version of rapid prototyping is presented in [23]. are 1

The one-hot-encoding of Petri net is treated as the simpliest case of more general adja
mapping. The one-hot method [2, 40, 45, 57, 62, 67, 78, 79] produces fast designs num
with a simple combinational part, especially for rapid implementations in FPGA. It -
is not assumed that all flip-flops, except one, are set to 0 since several places can be
marked simultaneously.

The concurrent one-hot encoding is a modification of a popular one-hot state as-
signment of sequential (non-concurrent) state machine, in which one flip-flop is used
for each global state. After such local state encoding of concurrent state machine, all
flip-flops related with simultaneously marked places are set to one at the same time.
The total number of flip-flops is equal to the number of places:

code (pl) = pl
code (p2) = p2

code (pl5) = pl5

The Verilog model suitable for one-hot encoding is shown in Fig. 8.

3.5. PETRI NET COLORING AND RELATION OF CONCURRENCY

It has been previously mentioned that places in a Petri net are marked sequentially
or concurrently with respect to each other. If the local state space of Petri net or Petri
macronet is explicitly given (Fig. 5), it is straightforward to construct the concurrency
graph. It can be performed by means of inspection of cliques related with vertices in
the reachability graph of macronet (Table 5).

Table 5
Global states matrix

MPI MP2 p7 MP3 MP4
Markingl 1 o 1 1 0
Marking2 0 1 0o 1 0
Marking3 1 0 0 0 1

ETQ Vol. 55 -2009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 169
scription Every two simultaneously marked macroplaces M Pi, MP j (Fig. 9) are represented
as deve- by vertices (M Pi, MPj) connected by edge in the concurrency graph (GC) (Fig. 10a).
template The complement of the concurrency graph GC forms a non-concurrency graph (GN)
ers [21 (Fig. 10b). In the non-concurrency graph edges connect pairs of the macroplaces, which

) ' are not simultaneously marked. The graphs GC and GN are frequently represented as
. general adjacency matrices. The adjacency matrix of graph GC, which is supplemented with
/ designs numbers 1 on the main diagonal, is called a concurrency matrix (Table 6) [22, 57].
PGA. Tt f*%
s can be
Marking1
state as-
) is used
hine, all Marking2 Marking3
ne time. ‘
uentially
- or Petri
currency
rtices in o
a) 3] SL— 23 b) (131 Ten e 2]
Table 5 Fig. 10. Concurrency (a) and non-concurrency (b) graphs for macronet
Table 6
Concurrency matrix
MP! MP2 p7 MP3 MP4 Superposition of
MPIY 1 6 1 1 1 Markingl + Marking3
MP2) 0 6 1 0 Marking2
7 i 6 1 1 0 Markingl
MP3| 1 I 1 1 0 Markingl + Marking2
MP4| 1 0 0 0 1 Marking3

170 MARIAN ADAMSKI, MAREK WEGRZYN ETQ.

An entry Cij in the concurrency matrix C equals 1 if places corresponding to the
row [and the column j may hold tokens simultaneously (they belong to the same

marking of the net), otherwise it equals 0. It should be noted that the main diagonal
of the matrix only contains the numbers 1. The concurrency matrix may be used for
the several analysis or synthesis techniques, including hierarchical, sequential, paral-
lel decomposition and place encoding. The complementary matrix, which represents
relation of non-concurrency is referred as non-concurrency matrix) (Table 7).

Table 7
Non-concurrency matrix

MPI1 MP2 p7 MP3 MP4

MPIl 0 1 0 0 0
MP2l 1 0 1 0

p7 0 1 0 0 1
MP3i| 0 0 0 0 1
MP4| 0 1 1 1 0

4. CONTROLLER SYNTHESIS

4.1. CONCURRENT LOCAL STATE ASSIGNMENT

It is possible to reduce the global number of flip-flops, but usually with increasing
the complexity of the combinatorial circuits per particular flip-flop [17, 34]. Adding
additional state variables for the encoding of a particular place multiplies the number
of expressions in flip-flop excitation functions to be realized in LUT (Look-Up Table).
The basic methods [3, 6] were improved and developed by Bolton and Amroun [22],
Bilinski [30], Koztowski, et al. [47], Pardey and Bolton [57], Wegrzyn [70, 71] and
Zakrevskij [78, 79]. The codes of particular places are as follows:

code (pl) = 1Q1 * 102 * 103
code (p2) =101 * Q2 *10Q3
code (p3) = QI *1Q2 *103
code (p4) = Q1 *1Q2 * Q3
code (p5) = Q1 * Q2 * Q3
code (p6) = Q1 * Q2 *103
code (p7) =103 * 106

code (p8) = 104 *1Q5 * 106
code (p9) =104 * Q5 *1Q6
code (p10) = Q4 *1Q5 * 106
code (pl1) = Q4 *10Q5 * 06
code (p12) = Q4 * Q5 * Q6
code (pl3) = Q4 * Q5 *1Q6
code (pl4) = Q3 *106

code (p15) =103 * Q6

Vol. 5!
Some
remis

T
Table
descr

ETQ.

g to the
1€ same
liagonal
1sed for
|, paral-
presents

Table 7

reasing
Adding
number
Table).
n [22],
71] and

Vol. 552009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS

Some advanced techniques of concurrent state encoding developed by Adamski, Che-

remisinova, Pottosin and Zakrevskij are presented in the book [19].

The encoded decision rules for the transitions of the control unit are presented in
Table 8. The Petri net with encoded places is presented in Fig. 11. The decision rules
describing the controller outputs according to marked places are given in Table 9.

3
ny

p14
131

3

101102103
I
t1 Start1
n
191 Q21Q3
[1]

1IQ41Q5 106

P8
12

174 Start2
12
,9 1Q4 Q5106
e\ ™

8 E
12l

Q41Q51Q6

Fig. 11. Encoded Petri net

172 MARIAN ADAMSKI, MAREK WEGRZYN ETOQ. vol. 55
Table § 1
Decision table for the encoded control unit t
¢
Transition | Current states | Current states’ code | Conditions | Next states | Next states’ code)
el pl 1QI#1Q2*1Q3 " Start1 p2 101* Q2#1Q3)
2 p2 1Q1* Q2%1Q3 D p3 QI*1Q2*1Q3 :
3 p3 * p7 | QI¥IQ2*1Q3*1Q6 D pd * pld | QI¥1Q2* Q3#1Q6 ;
t4 p4 QI*1Q2* Q3 B pS QI* Q2* Q3 ;
5 pS * pld | QI* Q2% Q3*1Q6 D p6 * p7 | QI* Q2*1Q3*1Q6
16 po Q1* Q2*1Q3 A pl 1QI*1Q2*1Q3
t7 p8 1Q4*1Q5*1Q6 Start2 P9 1Q4* Q5*10Q6
t8 po 1Q4* Q5*1Q6 E pl0 Q4*1Q5%1Q6
t9 p7 * p10 1Q3* Q4*1Q5*!1Q6 D plt * pl5 [1Q3* Q4*1Q5* Q6
t10 pll Q4*1Q5* Q6 B pl2 Q4% Q5* Q6
ti1 pl2 * pl5 | 1Q3* Q4* Q5* Q6 E p7 * p13 | 1Q3* Q4* Q5*1Q6
t12 pl3 Q4% Q5*1Q6 C p8 1Q4*1Q5*1Q6
Table 9
Decision table for the encoded outputs
Local state | Local state code | Outputs | Local state | Local state code | Outputs
p2 1Q1* Q2*1Q3 R1 pll Q4*1Q5* Q6 R2
p4 QI*1Q2* Q3 R1i pl2 Q4* Q5% Q6 L2
p5 QI* Q2* Q3 L1 pl3 Q4% Q5*1Q6 L2
po Q1* Q2*!1Q3 L1 P14 Q3*1Q6 Wi
P9 1Q4* Q5*1Q6 R2 P15 1Q3* Q6 W2 (z)
4.2. MAPPING OF CONCURRENT STATE MACHINE (CSM) INTO PROGRAMMABLE 1.LOGIC
The implementation of the control algorithm represented by Petri net is fixed usu-
ally at the design stage. Petri net together with related inputs and outputs is mapped
into a network of interconnected logic blocks. The direct mapping of Petri net into
an FPGA device is based on the correspondence between a transition and a simple
combinational circuit and the correspondence between a place and a clearly defined
subset of state register [6]. A recent overview of Petri net based direct implementation
of logic controllers is given in [19, 65]. The different coding styles for concurrent
Logic Controllers are summarized in [19, 59, 60, 61, 75]. The general structure for The
mapping concurrent Logic Controllers in programmable Logic was introduced in [1]. o
. realiza
The modified architecture is shown in Fig. 12. Global state register is implemented The m
using JK-style flip-flops. Declarative specification for transitions encoder, excitation net). T

function for JK flip-flops (Table 10) and decoder outputs (Table 11) is as follows:

ETQ Vol. 55 — 2009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 173
Table 8 1l = AND(IQ1, 102, 103, Start])
12 = AND(1Q1, 02, 103, D)
112 = AND(Q4, 05, 106, C)
] J1 = OR(t2)
J2 = OR(11, t4)
K5 = OR(18, t12)
5 K6 = OR(t11)
L1 = OR(AND(QI, 02, 03), AND(QI, 02, 103))
5
Trandtions
Start1 > acoder
Start2 —
A- i« 12
B) TI+T12
6 C- S
D———3
6 E B Qi) Qe | Qo Q Q5| Qs Glfet;{q‘za[e
| 1111 orn
I Qutpuits decoder I
Table 9 l l l l l
L1 RIL2RRWIWR
Fig. 12. Structure of the control unit (binary encoding)
Table 10
Decision table for the control unit (for Set/Reset or JK-style flip-flops)
Transition No. | Current states code | Conditions | Next states code | Set/Reset (JK)
1 1QT*1Q2%1Q3 Start1 1Q1*Q2*103 p)
2 1Q1* Q2%1Q3 D Q1#1Q2%1Q3 i1 K2
3 QI*1Q2*1Q3*!1Q6 D QI*1Q2* Q3*1Q6 I3
OGIC 4 QI*1Q2* Q3 B QI* Q2% Q3 2
5 Q1* Q2* Q3*1Q6 D Q1* Q2*1Q3*!1Q6 K3
d usu- 6 Q1* Q2#10Q3 A 1Q1#1Q2*!1Q3 Kl K2
1apped 7 1Q4*1Q5*1Q6 Start2 1Q4* Q5*1Q6 J5
.t into 8 1Q4* Q5*1Q6 E Q4*+1Q5%1Q6 J4 K5
7 | 9 1Q3*% Q4*1Q5*1Q6 D 1Q3* Q4*1Q5*% Q6 J6
SLMpIe 10 Q4*1Q5* Q6 B Q4* Q5* Q6 15
efined 11 1Q3* Q4* Q5% Q6 E Q3% Q4* Q5%1Q6 K6
itation 12 Q4* Q5*1Q6 C 1Q4*1Q5*1Q6 K4 K5
urrent
e for) L.,
. The direct implementation of concurrent controllers in FPGA is similar to the
in [1]. . p . :
realizations of logic controllers based on FSM presented in the books [13, 25, 26, 27].
nented) g p
L. The main essential difference is concurrent state assignment (place encoding of Petri
itation g p g

VS:

net). The logic controller contains a concurrent local states register, serving also as

174 MARIAN ADAMSKI, MAREK WEGRZYN ETQ.

Table 11

Encoded outputs table

Outputs Local state code
R1 QU Q2%1Q3 + QI*1Q2* Q3
R2 | 1Q4* Q5%1Q6 + Q4*1Q5* Q6
L1 QI* Q2% Q3 + QI* Q2*1Q3
L2 Q4* Q5* Q6 + Q4* Q5*1Q6
Wil Q3*1Q6
W2 1Q3* Q6

a global state register. The combination of the code words of individual local states
produces a unique configuration encoding. The superposition of codes of any two
concurrent local states can share logic variables, but must be represented by words
(ternary Boolean vectors), with non-overlapping, complete independent parts. Local
states, which can never be concurrent, may also share a part of logic variables, but
they must have a common overlapping part, with different values of logic variables.

When a Petri net is used to model a Concurrent State Machine (CSM), places
represent its local states. A maximal subset of simultaneously marked places determines
the global state of the controller. Transitions describe the local state changes, mostly
forced by the external inputs. For simplicity, it will be considered that the CSM is
implemented as a sequential circuit with a common internal clock. The controller,
whose output depends on both internal state and external inputs, is modeled as a Mealy
State Machine. The Moore type output by definition is implemented by a combinational
cell as a function of state variables. On the other hand, the Moore type-output may
be produced in advance in a registered output cell, because it must be stable for the
entire clock period. Registered outputs can be eventually used for local state encoding
{71, 75}.

The local state encoding (place encoding) guarantees that all enabled transitions
can fire independently, in any allowed order, not necessary exactly with the same edge
of the clock.

An undesirable situation in interpreted Petri net occurs when two (or more) transi-
tions, such as £3 and #9, attempt to simultaneously unmark the same shared input place
p7 (Fig. 3). It is considered that the behavior of the net is deterministic since such
possible conflict is previously eliminated by the consistent labeling of transitions by
guards D and /D, respectively.

On the other hand, the global state register can be implemented using T-style
flip-flops. The specification for the excitation function for T flip-flops (Table 12) is as
follows (for avoiding of ambiguity, T input is denoted as QT):

rule
tool

sent
flip-
JK

bas
spe

phic
ple

rest
con

ETQ.

ble 11

states
y two
words
Local
s, but
les.

laces
mines
10stly
M . is
roller,
Viealy
tional
L may
or the
oding

itions
- edge

ransi-
place
- such
ns by

style
) is as

Vol. 35 -2009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 175

OTI = OR(t2, 16)
QT2 = OR(t, 12, 14, 16)

OT6 = OR(9, i11)

Table 12

Decision table for the control unit (for T-style flip-flops)

Transition No. | Current states code | Conditions | Next states code Q changes (T)
1 1Q1#1Q2*1Q3 Startl 1Q1*Q2*1Q3 QT2
2 1Q1* Q2*1Q3 D QI*1Q2*1Q3 QT1 QT2
3 QI*1Q2*1Q3*!1Q6 D QI*1Q2* Q3*1Q6 QT3
4 QI*1Q2* Q3 B QI+ Q2* Q3 QT2
5 QI* Q2* Q3*1Q6 D QI* Q2*1Q3*1Q6 QT3
6 QI* Q2*1Q3 A 1Q1#1Q2%1Q3 QT1 QT2
7 1Q4*1Q5*%1Q6 Start2 1Q4* Q5*1Q6 QTs
8 1Q4* Q5*!1Q6 E Q4*1Q5*1Q6 QT4 QT35
9 1Q3% Q4*1Q5*1Q6 D 1Q3* Q4*1Q5* Q6 QTo6
10 Q4*1Q5* Q6 B Q4* Q5% Q6 QT5
I 1Q3* Q4% Q5% Q6 E 1Q3* Q4* Q5*!1Q6 QTo6
12 Q4* Q5*1Q6 C 1Q4*#1Q5*1Q6 QT4 QTS5

4.3. HDL MODELING AND SYNTHESIS OF ENCODED PETRI NET

The encoded Petri net model is converted into Verilog conserving the initial
rule-based specification. It provides a path to commercial simulation and synthesis
tools. The model with the specification of excitation functions for JK flip-flops is pre-
sented in Fig. 13. Because of the fact that in the considered FPGA devices there are D
flip-flops, therefore the specification of global state register (with necessary conversion
JK into D) is modeled as always process. Fig. 14 shows differences between models
based on JK and T flip-flips: excitation function for T flip-flop and process with the
specification of global state register (with necessary conversion T into D).

The Verilog models were simulated in the professional environment Mentor Gra-
phics ModelSim v.6.4a. The considered controller was implemented as a simple exam-
ple into an FPGA device using the standard Xilinx ISE 10.1.3 CAD/CAE tool. The
results of the implementations are shown in Table 13. In addition, the set of benchmarks
considering five different styles of place encoding [75] is under development.

176

MARIAN ADAMSKI, MAREK WEGRZYN

ETQ.

module TankersControl Coded JK {(CLK, Reset, A, B, C, D, K, Startl, Start2,
- - Li, L2, R1, R2, Wi, W2);

input CLK, Reset;

input A, B, C, D, E, Startl, Start2;

output L1, L2, R1, R2, W1, W2;

wire [1:121 t;
reg [1:6] Q;

assign t[1] = ~0{1] & ~Q{2] & ~Q[3] & Start 1;
assign t{2] = ~Q[1} & Q2] & ~Q[3] & D;
assign t{3] = Q1] & ~Q(2] & ~Q{3] & ~Q[6] & D;
assign t{4] = Q1] & ~Q[21 & QI[3} & B;
assign t([5] = Q[1] &« Q2] & Q3] & ~Ql6] & D;
assign t[6] = Q[1] & QI[2] & ~QI3) & A
assign t[7] = ~Q[4] & ~Q[5] & ~Q[6] & Start 2;
assign t[8] = ~Q[4] & Q[5] & ~Q[6] & E;
assign t[9] = ~Q[3] & OQ[4] & ~Q[5] & ~Q[6] & ~D;
assign t(10] = Q[4] & ~Q[5] & Ql6] & B;
assign t[{11] = ~Q[3] & Q4] & QI[S5] & Q6] & E;
assign t{l12] = Q4] & QI[5] & ~QI[6] & C;
wire [1:6] J, K;
assign J[1] = t[2];
assign J[2] = t[1] | t[4];
assign J[3] = t[3];
assign J[4] = t[8];
assign J(5] = t[7] | t[101;
assign J[6] = t[9];
assign K[1] = t[6];
assign K[2] = t{2] | t[6];
assign K(3] = t{5}];
assign K{4] = t[12];
assign K[5] = t[8] | t{l2};
assign K[6] = t{111;
integer i;
always @ {posedge CLK)

if {Reset) Q <= 6'LO000OD;

else for (i = 1; 1 <= 6; i = i+1)

Qli] <= (~Q[i] & JIiD1) | (QIi] & ~K[i]);
assign L1 = Q[1] &« Q2] & Qf3] | Q11 & Q21 & ~QI3];
assign 12 = Qf4] & Q5] & QI6] | Q41 & Q5] & ~piol:
assign Rl = ~Q[1] & Qf2] & ~Q[31 | ol1] & ~Q{21 & QI31;
assign R2 = ~Q[41 & Q[5] & ~Q[6} | Q{4] & ~Q[S) & Qf61;
assign Wl = Q[3] & ~Q[6];
assign W2 = ~Q[3] & Q[6];

//only for testing purpose (removing during opimization)
wire [1:15)] p;

e LI D o) & 0l
assign pl{2] = ~Q[1l] & QI[2] & ~QI[3];
assign p{3] = Q[1] & ~Q[2] & ~Q[3];
assign p(4] = Q[1] & ~Qf2] & QI[3];
assign p[5] = Q1] & Qf2] & Q[3];
assign p(6] = Q[1] & QIf2] & ~Q[3]
assign p[7] = ~Q[3] & ~Q[6];

assign p[8] = ~Q[(4] & ~Q[5] & ~Q[6];
assign p[2] = ~Q{4] & QIS5] & ~Q[6];
assign p[l0} = Q4] * ~Q[5] * ~Q[6]
assign p[ll] = Q[4] & ~Q[5] & QI[6];
assign p[l2] = Q[4] & Q5] & QI[6]
assign p(l3] = QI[4] & QI5] & ~Q{6];
assign pll4] = Q[3] & ~Q[6];

assign p{15] = ~Q[3] & Q[6];

endmodule

Fig. 13. Verilog model with place encoding (for JK-type flip_flop)

The
Contro
The we
versitie
is repo
realize
in Hag
Scienc
The ct
ment f
symbo

Th
chical
consis
also ¢1
their Vv
rules (

ETQ.

Yol. 55 - 2009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 177

module TankersControl;CodedAT (CLK, Reset, A, B, C, D, E, Startl, Start2,
L1, L2, Rl, R2, Wi, W2);:

wire [l:8] QT;

assign QT{1] = t{2] | t[6];

assign QT{2] = €f{1] | ©{2] | tl4] | t[6];
assign QT3] = ti{3] | t{5]; -

assign QT{4] = t[8] | t[12};

assign QT{5] = t{7} | t[8] | t[10] | tiiz};
assign QT(6] = t{9] | t{ll];

integer i;
always @ (posedge CLK)
if (Reset) Q = 6'b000000;
else for (i = 1; i <= 6; i = i+1)
Qlil = (1Q[i] & QTIi])) 1 (Q[i] & !QT[i]);

endmodule

Fig. 14. A part of Verilog model with place encoding (for T-type flip-flop)

Table 13
Synthesis summary (Xilinx FPGA — XC35200pq208-5)

Model Slices # | FF # | LUT4 #
TankersControl I8 15 19
TankersControl_Coded_JK 9 6 18
TankersControl_Coded.T 9 6 18

5. RELATED WORKS

The paper is concentrated on behavioral specification of Reconfigurable Logic
Controller programs, mapped from Petri nets into HDL [11, 40, 54, 57, 69, 77].
The work introduced at the University of Zielona Géra was extended at several uni-
versities abroad [2, 5]. The result of collaboration with the University of Bristol, UK,
is reported for example in papers [31, 47, 57, 58]. Some parts of the work have been
realized at The University of Minho, Braga, Portugal [15, 40, 74], Fern University
in Hagen [43], the Technical University of Ilmenau, Germany [39] and Academy of
Science of Byelorussia [18].
The current research is especially related to Petri net-based structured state assign-
ment for Concurrent State Machines, different kinds of Petri net decompositions, the
symbolic exploration of Petri net state space, etc. [11, 24, 46, 48, 49, 52, 66, 69].

The formats PNSF [47], PNSF2 [67], PNSF3 [66] support the structured, hierar-
chical designs with Petri nets and FPGAs. The CONPAR specification format [40] is
consistent with the previously introduced rule-based specification languages and was
also created mainly as a bridge between the textual logic description of Petri nets and
their VHDL models. Transition rules in PARIS and CONPAR are treated as production
rules (if-then’ non procedural statements). Petri nets can be also specified in the newer

178 MARIAN ADAMSKI, MAREK WEGRZYN ETQ.

textual formats — PNSF3 (Petri Net Specification Format v.3) and CCPNML (Concur-
rent Control PNML) [33]. PNSF3 represents interpreted, synchronous, hierarchical and
colored Petri nets, and it is specified in the XML language.

The book [51] makes the connection between digital electronic design with Pro-
grammable Logic Devices (PLDs) and Programmable Logic Controllers (PLCs). The
design of Petri net based controllers is summarized in [19, 35, 65]. Several aspects rela-
ted to hardware design with Petri net can be found in books [36, 79]. The methodology
for digital design of concurrent (parallel) controllers from Sequential Function Charts
(SFC) and related Petri nets has been in development for several years and is presented
in papers [8, 15, 68]. Hierarchical specification mechanism is introduced by means of
macroplaces to allow the encapsulation of subnets as macronodes, which decreases the
size of the specification, improves its readability and introduces modularity [10, 19].
Reconfigurable architectures for controllers based on Petri nets are described also in
[56].

6. CONCLUSIONS

The paper concentrates on the behavioral specification of RLC programs, given
initially as Petri nets and later rewritten in Hardware Description Languages. Some
engineering notations like Sequential Function Chart (IEC 61131-3), as well as those
mainly used by computer scientists, like Petri nets are integrated into a unified design
methodology. By formally verifying the structural properties of Petri net the behavioral
properties of control program such as reversibility, liveness and safeness are tested.
Hardware description languages, such as VHDL or Verilog, are used for an intermediate
representation of controller behavior on top of existing commercial synthesis tools.
The rule-based textual language input makes it possible to integrate the design system
with existing formal logic based computer-based theorem proovers. The Petri net de-
scription in HDL that is devoted to provide the opportunity to integrate existing Petri
net software with several commercial systems.

The more advanced research, among other topic, would concentrate on:

e Unified Design of Concurrent Logic Controllers with Data Path {26];

e Effective structured state assignment and decomposition techniques devoted to the
mapping of Petri net-based controllers into embedded modern microsystems as
SoPCs (System-on-Programmable-Chips).

e [Extensive application of formal methods for the analysis and synthesis of Concur-
rent State Machines, which are implemented in dynamically reconfigurable arrays.

7. REFERENCES

1. M. Adamski: PLA-realization by means of connecting and control algorithms. Proc. of the 29™
International Scientific Colloquium, IWK’84, Iimenau, Germany, 1984, pp.43-45.

16.

19.

20.

Univi
M.

(W.R
M. .
Vol.3
M. .
Trien
M. ¢
Progi
Work

. M. £

lers.
Polan

. M.

Syste
L.Go
2006.

. M./

on In

ler Pr
Polan
M. A
Valide
Ilmen

. M.A

Proce

of the
2001,
M. A
Spring

ETQ.

(Concur-
hical and

vith Pro-
Cs). The
ects rela-
hodology
n Charts
resented
means of
eases the
10, 19].
d also in

ns, given
es. Some
~as those
>d design
ehavioral
tested.

rmediate
 tools.

n system
ri net de-
ting Petri

ted to the
stems as

f Concut-
le arrays.

of the 29"

2.

3.

6.

to.

20,

21,

Vol. 55 -2009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 179

M. Adamski: Heuristic method of structural encoding of Petri Net places. Zeszyty Naukowe WSI,
No. 78, Technical University of Zielona Gora, 1986, (in Polish).

M. AdamsKki: Direct Implementation of Petri Net Specification. Proceedings of the 7" International
Conference on Control Systems And Computer Science CSCS’87, Bucharest, Romania, 1987, Vol.3,
pp.74-85.)

M. Adamski: Digital System Design by Formal Transformation of Specification. Proc. of the 35"
International Scientific Colloquium, TWK’90, IImenau, Germany, 1990, Heft 3, pp.62-65.

. M. Adamski: Digital Systems Design by Means of Rigorous and Structural Method. Technical

University of Zielona Gora Press, Zielona Géra, 1990 (in Polish).
M. Adamski Parallel Controller Implementation using Standard PLD Software. in: FPGAs
(W.R.Moore, W.Luk (Ed)), Abingdon EE&CS Books, Abingdon, England, 1991, pp.296-304.

. M. Adamski: Petri Nets in ASIC Design. Applied Mathematics and Computer Science, 1993,

Vol.3, No.1, pp.169-180.

. M. Adamski: Application Specific Logic Controllers Jor Safety Critical Systems. Proc. of the

Triennial IFAC World Congress, Bejjing, China, Pergamon Press, 1999, Vol. Q. pp. 519-524.

. M. Adamski: Specification and Synthesis of Petri Net based Reprogrammable Logic Controller.

Programmable Devices and Systems 2001 (PDS 2001): a proceedings volume from the 5" IFAC
Workshop, Pergamon, London, 2002, pp.95-100.

. M. Adamski: Behavioural Specification of Programs for Modular Reconfigurable Logic Control-

lers. Proceedings of the Mixed Design of Integrated Circuits and Systems, MIXDES 2006, Gdynia,
Poland, pp.239-244.

. M. Adamski: Reconfigurable logic controller Jor embedded applications. In: Discrete-Event

System Design 2006, A Proceedings volume from the IFAC Workshop, DESDes’06, (M.Adamski,
L.Gomes, M. Wegrzyn, G.Labiak (Ed)), pp.147-152, University of Zielona Géra Press, Ziclona Géra,
2006.

- M. Adamski: Logic design of reconfigurable controllers. Proceedings of the IEEE Symposium

on Industrial Embedded Systems, SIES 2007, Lisbon, 4-6 July 2007, pp.373-376.

. M. Adamski, A. Barkalow: Architectural and sequential synthesis of digital devices. Univer-

sity of Zielona Géra Press, Zielona Géra, 2006.

.M. Adamski, J. L. Monteiro: Rule-based Jormal specification and implementation of Logic

Controllers programs. Proc. of the IEEE International Symposium on Industrial Electronics, ISIE’95,
Athens, Greece, 1995, Vol.2, pp.700-705.

- M. Adamski, J.L. Monteiro: Declarative Specification of System Independent Logic Control-

ler Programs. Proc. of the IEEE International Symposium on Industrial Electronics ISIE’96, Warsaw,
Poland, 1996, pp.305-310.

M. Adamski, M. Wegrzyn: Hierarchically Structured Coloured Petri Net Specification and
Validation of Concurrent Controllers. Proc. of the 39 International Scientific Colloquium, TWI’94,
Ilmenau, Germany, 1994, Band 1, pp.517-522.

- M. Adamski,M. Wegrzyn: Field Programmable Implementation of Concurrent State Machine.

Proceedings of the 3" international conference on Computer-Aided Design of Discrete Devices, CAD
DD’99, Minsk, Belarus, 1999, Vol. 1, pp.4-12.

- M. Adamski,A. Zakrevski Ji Formal specification of reactive logical control devices. Proc.

of the World Multiconference on Systemics, Cybernetics and Informatics, SCI 2001, Orlando, USA,
2001, Vol.14, Computer Science and Engineering, pp.428-433.

M Adamski, A, Karatkevich M. Wegrzyn (Ed): Design of Embedded Control Systems.

Springer, New York, 2005.

M. Adamski, M. W ¢grzyn, A. Wegrzyn: Safe reconfigurable logic controllers design. In:
Measurement, Models, Systems and Design, J.Korbicz (Ed), WKiE., Warszawa, 2007, pp.343-367.
M. Adamski, M. W cgrzyn P. Woladski: Simulating and Synthesising of Reconfigura-

180 * MARIAN ADAMSKI, MAREK WEGRZYN ETQ.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

40.

41.

42

43.

ble Logic Controllers using VHDL. Proc. of the 42™ International Scientific Colloguium, TWK’97,

Iimenau, Germany, 1997, Band 1, pp.522-527.

A. Amroun, M. Bolton: Synthesis of controllers from Petri net descriptions and application of

Ella. Proceedings of the IMBC-IFIP International Workshop on Applied Formal Methods for Correct

VLSI Design, North Holland, 1989, pp.57-74.

D. Andreu, G. Souquet, T. Gill: Petri Net based rapid prototyping of digital complex system.

Proceedings of the 2008 IEEE Computer Society Annual Symposium on VLSI, 2008, pp.405-410.

G. Andrzejewski: Program model of interpreted Petri net for digital microsystems design. Ph.D.

Thesis, Szczecin University of Technology, Faculty of Information Technology, Szczecin, 2002 (in

Polish).

S. Baranov: Logic Synthesis for Control Automata. Kluwer Academic Publishers, Boston, 1994

S. Baranov: Logic and System Design for Digital Systems. Tallin University Press, Tallin, 2008,

SiB Publishers, Toronto, 2008.

A. Barkalow, M. Wegrzyn: Design of control units with programmable logic. University of

Zielona Goéra Press, Zielona Goéra, 20006,

H. Belhadj, L. Gerbaux, M.-C. Bertrand, G. Saucier: Specification and Synthesis

of Communicating Finite State machines. Synthesis for Control Dominated Circuits. (A-22), Elsevier

Science Publishers B.V. (North Holland), 1993, pp.91-101.

M. Ben-Ari: Mathematical Logic for Computer Science. Springer, London, 2001,

K. Bilinski: Application of Petri Nets in parallel controllers design. Ph.D. Thesis, University of

Bristol, Electrical and Electronic Engineering Department, Bristol, 1996.

K. Bilifiski, M. Adamski,J. M. Saul, E. L. Dagless: Petri net based algorithms for

parallel controller synthesis. IEE Proceedings, Part E: Computers and Digital Techniques, 1994,

Vol.141, No.6, pp.405-412.

K. Bilinski,M. Adamski, .M. Saul,E L. Dagless: Parallel controller synthesis from

a Petri net specification. Proceedings of EDAC94, 1EEE, 2004, pp. 96-101.

J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Pe-

trucci, R. Post, C. Stehno, M. Weber: The Petri Net Markup Language: Concepts, Tech-

nology, and Tools. Proceedings of the ICATPN 2003, (W.M.P. van der Aalst, E.Best (Ed)), LNCS,

2003, Vol. 2679, Eindhoven, Netherlands, Springer-Verlag, pp.483-505.

P. Bubacz M. Adamski: Heuristic algorithm for an effective state encoding for reconfigurable

matrix-based logic controller design. Proceedings of the IFAC Workshop on Programmable Devices

and Embedded Systems, PDeS 2006, Brno, Czech Republic, 2006, pp.236-241.

.N. Chang, W. H. Kwon, J. Park: Hardware implementation of real time Petri-net-based
controllers. Control Engineering Practice, 1998, Vol.6, No.7, pp.889-895.

.J. Cortadella, A. Yakovlev, G. Rozenberg: Concurrency and Hardware Design. Ad-
vances in Petri Nets, LNCS, Vol.2549, Springer, Berlin, 2002.

. R. David, H Alla: Petri Nets and Grafcet. Prentice Hall Int., USA, 1992.

. P.Eles,K. Kuchcinski,Z. Pen g System Synthesis with VHDL. Kluwer Academic Publishers,
Boston, 1998.

. W Fengler, A. Wendt, M. damski, J.L. Monteiro: Petri Net based Program Design

and Implementation for Controller Systems. Proc. of the 1996 IFAC Triennial World Congress, San

Francisco, CA, USA, 1996, Vol.J, pp.425-429.

J.M. Fernandes, M. Adamski, A. J. Proenga: VHDL Generation from Hierarchical

Petri Net Specifications of Parallel Controllers. TEE Proceedings, Part E: Computers and Digital

Techniques, 1997, Vol.144, No.2, pp.127 137.

L. Gomes, J.P. Barros, A. Costa: Modeling Formalisms for Embedded System Design, In:

R. Zurawski, Embedded Systems Handbook. CRC Press, Inc., 2006, pp.5.1-5.34.

. C. Girault,R. Valk: Petri Nets for System Engineering. Springer, Berlin, 2003.

W. Halang, M. Adamski: A Programmable Electronic System for Safety Related Control

ETQ.

TWK’97,

ication of
or Correct
ex System.
105-410.
ign. Ph.D.
2002 (in

on, 1994,
lin, 2008,

versity of
Synthesis
, Elsevier
versity of

rithms for
ies, 1994,

hesis from
. L. Pe-
pts, Tech-

), LNCS,

nfigurable
e Devices

net-based

esign. Ad-

ublishers,

un Design
oress, Sail

erarchical
1d Digital

design, In:

d Control

Vol. 55 - 2009 PETRI NETS MAPPING INTO RECONFIGURABLE LOGIC CONTROLLERS 181

44.

45.

46,

47.

48.

49.

50.

50

52.

53.

54.

55.

56.

57.

38.

59.

60.

61.

62,

63.

Applications. Proc. of the International Conference on Safety and Reliability, ESREL’97, Lisbon,
Portugal, 1997, pp.349 356.

K. Jensen: Coloured Petri Nets. Basic Concept, Analysis Methods and Practical Use, Volume 1,
Basic Concepts, Springer-Verlag, Berlin, 1992,

J. Kalinowski, T. Luba: Metoda syntezy logicznef uktadow cyfrowych opisywanych sieciami
Petriego. Rozprawy Elektrotechniczne, 1986, T.32, Z.4, pp.1253-1263,

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Systems, Lecture Notes in
Control and Information Sciences, Vol. 356, Springer, 2007.

T Koztowski,E.L. Dagless,J.M. Saul, M. Adamski,J. Szajna: Parallel controller
synthesis using Petri nets. IEE Proceedings, Part E: Computers and Digital Techniques, 1995, Vol.142,
No.4, pp.263-271.

G. Labiak: From UML statecharts to FPGA — the Hicos approach. Forum on Spec. Design
Languages, Frankfurt, 2003,

G. Labiak: The Use of Hierarchical Model of Concurrent Automaton in Digital Controller Design.
Ph.D. Thesis, Warsaw University of Technology, Faculty of Electronics and Information Technology,
Warsaw, 2003 (in Polish).

J.R. Machado,J. M. Fernandes, A.J. Proenca: Specification of Industrial Controllers
with Object-Oriented Petri Nets. Proc. of the IEEE International Symposium on Industrial Electronics,
ISIE’97, Guimaraes, Portugal, 1997, pp. 77-82.

E . Mandado,J. Marcos, S. A. Perez Programmable Logic Devices and Logic Controllers.
Prentice Hall, London, 1996,

P.Miczulski,M. Adamski: Analyses of safeness, liveness and persistence properties of Petri
nets by means of monotype logic functions. In: Discrete-Event System Design 2006, A Proceedings
volume from the IFAC Workshop, DESDes’06, (M. Adamski, L.Gomes, M.Wegrzyn, G.Labiak (Ed)),
pp.137-142, University of Zielona Géra Press, Zielona Gora, 2006.

A. Milik E. Hrynkiewicz Reconfigurable Logic Controller, Architecture, Programming,
Implementation. Proc. of the IFAC Workshop on Programmable Devices and Systems, PDS 2001,
Gliwice, 2001.

P. Minns, . Elliott: FSM based Digital Design using Verilog HDL. John Wiley & Sons, Lid.,
Chichester, England, 2008.

T. Murata: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 1989,
Vol.77, No.4, pp.541-580.

P.S.B. Nascimento,PR. M. Maciel, M.E. Lima, R. E. Santana, A.G.S. Filho:
A Partial Reconfigurable Architecture for Controllers based on Petri Nets. Proc. of the SBCCI 2004,
pp.16-21.

J.Pardey, M. Bolton: Parallel controller synthesis for concurrent data paths. Proc. of the IFIP
Workshop Control Dominated Synthesis From a Register Transfer Level Description, 1992, pp.16-19.
J.Pardey, T. Koztowski,J. Saul, M. Bolton: State Assignment Algorithms for Parallel
Controller Synthesis. Proceedings of the IBEE International Conference on Computer Design, IEEE
Computer Society Press, 1992, pp.316-319.

J. Pardey, A, Amroun, M. Bolton, M. Adamski: Farallel Controller Synthesis for
Programmable Logic Devices. Microprocessors and Microsystems, 1994, Vol.18, No.8, pp.451 458,
E. Pastor,J. Cortadella: Efficient Encoding Schemes for Symbolic Analysis of Petri Nets.
Design, Automation and Test in Burope,1998 | pp.790-795.

E. Pastor, I soCortadella, J. Roi g: Symbolic Analysis of Bounded Petri Nets. IEEE Transactions
on Computers, 2001, Vol.50, No.5, pp.432-448.

M. Patel: Random Logic Implementation of Extended Timed Petri nets. Microprocessing and
Microprogramming, 1990, Vol.30, No.1-5, pp.313-319.

J.Pleyber, M. Silva Software specification language for sequential process. IFAC-IFIP Work-
shop on Real-Time Programming, Eindhoven, June 1977, pp.67-73.

182 MARIAN ADAMSKI, MAREK WEGRZYN ETQ,

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74,

75.

76.

77.

78.

79.

L. Scheffer,L. Lavagno, G. Martin: EDA for IC System Design, Verification, and Testing
(Electronic Design Automation for Integrated Circuits Handbook). CRC Press, Inc., 2005.

A. Yakovlev, L. Gomes, L. Lavagno (Ed)y: Hardware Design and Petri Nets. Kluwey
Academic Publisher, Boston, 2000.

A. Wegrzyn Symbolic Analysis of Logical Control Devices using Selected Methods of Petri Net
Analysis. University of Zielona Gora Press, Zielona Gora, 2003 (in Polish).

M. We¢ g rzy n: Hierarchical implementation of Logic controllers by means of Petri nets and FPGAs,
Ph.D. Thesis, Warsaw University of Technology, Faculty of Electronics and Information Technology,
Warsaw, 1998 (in Polish).

M. Wegrzyn Implementation of Safety Critical Logic Controller by Means of FPGA. Annuy
Reviews in Control, 2003, Vol.27, pp.55-61.

M. We grzy n: Petri Net Decomposition Approach for Partial Reconfiguration of Logic Controllers,
In: Discrete-Event System Design 2006, A Proceedings volume from the IFAC Workshop, DESDes’06,
(Adamski, M., L.Gomes, M.Wegrzyn, G.Labiak (Ed)), pp.323-328, University of Zielona Goéra Press,
Zielona Goéra, 2006.

M. We grzyn: PLD-based implementation of concurrent controllers. Electronics and Telecommu-
nications Quarterly, 1996, T.42, Z.2, pp.235-251 (In Polish).

M. Wegrzyn, M. Adamski: Synthesis of Logic Controller Uisng Standards FPLD Compilers,
Electronics and Telecommunications Quarterly, 1997, T.43, 2.3, pp.353-372 (in Polish).

M. Weggrzyn, M. Adamski: Hierarchical Approach for Design of Application Specific Logic
Controller. Proc. of the IEEE International Symposium on Industrial Electronics, ISIE’99, Bled,
Slovenia, 1999, Vol.3, pp.1389-1394.

M. Weggrzyn M. Adamski,J. L. Monteiro: The Application of Reconfigurable Logic to
Controller Design. Control Engineering Practice, Special Section on Custom Processes, 1998, Vol.6,
No.7, pp.879-887.

M. Wegrzyn, M. Adamski, J. L. Monteiro: The application of reconfigurable logic to
controller design. Control Engineering Practice, 1998, Vol.6, No.7, pp.8§79-887.

M. Wegrzyn, P Woladiski, M. Adamski,J. Monteiro: Field programmable device
as a Logic Controller. Proceedings of the 2" Conference on Automatic Control, Control *96. Oporto,
Portugalia, 1996, Vel. 2, pp. 715-720.

M. WegrzynP. Wolanski,M.A. Adamski,J.L. Monteiro: Coloured Petri Net Model
of Application Specific Logic Controller Programs. TEEE International Symposium on Industrial
Electronics ISIE’97, Guimaraes, Portugal, 07-11.07.1997, Vol.I, pp.SS158-SS163.

P. Wolanski,M. Wegrzyn, M. Adamski: VHDL modelling of industrial control systems.
Proc. of the 42" International Scientific Colloquium, ITWK’97, Ilmenau, Germany, Band 1, 1997,
pp.528-533.

A. Zakrevskij: CAD of discrete devices implementing parallel logical control algorithms. Proc.
of the Second International Symposium on Methods and Models in Automation and Robotics, Mie-
dzyzdroje, Poland, 1995, pp.803-808. ‘

A. Zakrevskij: Parallel Algorithms for Logical Control. Institute of Engineering Cybernetics of
NAS of Bielarus, Minsk, 1999 (in Russian).

- e g

~ S e

In
transis
charac
possib

o
PUR/31
" Ac
wh

ETQ.

and Testing
.
ots. Kluwer

of Petri Net

ind FPGAs.
[echnology,

7A. Annual
Controllers,
DESDes’06,
Gora Press,
elecommu-

Compilers.

ecific Logic
99, Bled,

le Logic to
998, Vol.6,

ble logic to

able device
96. Oporto,

i Net Model
1 Industrial

rol systems.
d 1, 1997,

thms. Proc.
yotics, Mie-

bernetics of

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 183-200

Synthesis of finite state machines for implementation with
programmable structures”

TADEUSZ LUBA, GRZEGORZ BOROWIK, ANDRZEJ KRASNIEWSKI

Warsaw University of Technology
Institute of Telecommunications, Poland
{luba, G.Borowik, andrzej)@tele.pw.edu.pl

Received 2009.01.06
Authorized 2009.04.01

Sensible application of programmable structures to the realization of digital systems
cannot take place without computer aided design systems. It is particularly important when
the design is intended for novel programmable structures containing LUT-based cells and
embedded memory blocks, since traditional methods for technology mapping are oriented
towards gate structures and based on minimization and factorization of Boolean functions.

This article focuses on finite state machine synthesis including logic optimization tech-
niques, the technology mapping techniques, and the techniques that provide the resulting
circuits with concurrent error detection capability. 1t is shown that a considerably more
effective methed of synthesis intended for CPLD and FPGA structures is based on the
decomposition scheme.

Keywords: decomposition, state encoding, sequential circuit, finite state machine, FPGA,
embedded memory block, logic cell, multi-graph

1. INTRODUCTION

In today’s technologies, the density of elements is reaching hundreds of millions of
transistors per digital circuit, and 100 millions of gates per circuit.! Similar densities
characterize programmable structures — up to millions of logic gates. This, along the
possibility of reprogramming and reconfiguration, gives unprecedented possibilities of

* This paper was supported by Ministry of Science and Higher Education financial grants: SINGA-
PUR/31/2006, N517 003 32/0583.
' According to the Altera company, FPGA Stratix devices have from 4 up to 43 million of elements
when converting these into the number of logic gates.

184 TADEUSZ LUBA, GRZEGORZ BOROWIK, ANDRZEJ KRASNIEWSKI ETQ.

implementing digital circuits using such structures. However, sensible application of
programmable structures to the realization of digital systems cannot take place without
computer aided design systems.

For a typical digital system, the design process consists of compilation, translation,
synthesis, logic optimization and technology mapping. Although the final result of that
process is a structure built of standard cells, logic cells, macroblocks and similar com-
ponents, the characteristics of the system (the silicon area, speed, power etc.) depend
considerably on the logic model of the digital system obtained from the translation of
the specification in hardware description language. Therefore, the synthesis and logic
optimization (taking place between compilation technology mapping) has a significant
impact on the quality of the implementation.

This turns out to be especially important in the case of user programmable devices:
CPLDs (Complex Programmable Logic Devices) and FPGAs (Field Programmable Ga-
te Arrays). However, many full custom and semi-custom circuits are also characterized
by a great susceptibility to “logic transformations”. A tendency towards using logic
synthesis not only to minimize logic resources required to implement the circuit, but
also to solve other typical design problems, such as signal delay reduction or power
consumption reduction, can be observed [IP99], [YSLO53].

Embedded Array Block (EAB)

o5 "~ [0
: [l [l

L1

: { e— LogicAma
Column i 1 : g y

Interconnect: :)
: | . LOgic Array
" Block (LAB)
I0E

- }4[IOE
i IOE

4___. Logic Element (LE)

Row ;
Interconnect:

Local Interconnect

Logic

Array : L Lo L
COURUIN F5 U o A U

L] L

Embedded Array

Fig. 1. FPGA with embedded memory blocks

Vol. 5

T
ment:
progr
and ¢

T
ping,
of B
expre
are re
tation

Fc
CPLL
In thi
sed of
the fu
of cor
[LPPY
and p:
sequer
compl
of fun
with u
focuse
e de

fit
e (e

ital

blc

Thi
7€ var
synthe.
we illu
day’s p
blocks.
finite s
Sectior

In 1
mable |
machin

ETQ.

tion of
vithout

slation,
of that
I com-
depend
tion of
d logic
rificant

evices:
rle Ga-
terized
g logic
uit, but
power

ont (LE)

onnect

- Vol. 55 - 2009 SYNTHESIS OF FINITE STATE MACHINES FOR IMPLEMENTATION WITH... 185

The impact of advanced procedures of logic synthesis on the quality of imple-
mentation of digital circuits is particularly significant when the design is intended for
programmable structures (Fig. 1) containing LUT-based cells (LE — Logic Elements)
and embedded memory blocks, such as EABs (Embedded Array Blocks).

This is caused by the problems with the traditional methods for technology map-
ping, oriented towards gate structures and based on minimization and factorization
of Boolean functions {DeM94]. These methods transform sum-of-product Boolean
expressions into multilevel forms of strongly factorized expressions, which only then
are realized in LUT cells. This approach is ineflicient in the case when the implemen-
tation is based on logic cells designed to implement arbitrary logic functions.

For these reasons, a considerably more effective method of synthesis intended for
CPLD and FPGA structures is based on the decomposition of Boolean functions.
In this process a Boolean function is synthesized into a multilevel structure compo-
sed of logic blocks of the LUT type, specified by truth tables. The effectiveness of
the functional decomposition was confirmed in many publications on the synthesis
of combinational circuits [BLO3], [CMSH96], [HK04], [HSB02], [Kan04], [LuS95],
[LPPI6], [PMG99], [RILO1], [SchO1], [SSPOL]. A relatively small number of articles
and papers describe the application of functional decomposition to the synthesis of
sequential circuits [JCO1], [JSCO1], [JS00]. The reason for this is the computational
complexity of functional decomposition procedures. Therefore, an effective application
of functional decomposition in synthesis of finite state machines for implementation
with user programmable devices requires a new design methodology that should be
focused on;

e developing new algorithms for serial decomposition into subfunctions (tables) that
fit embedded memory blocks,

e developing new methods for encoding internal states of sequential machines, su-
itable for implementation using programmable structures with embedded memory
blocks.

The remainder of the paper is organized as follows: In Section 2 we summari-
ze various techniques for sequential logic synthesis. This section contains two-level
synthesis methods and multilevel synthesis methods from the literature. In Section 3,
we illustrate ROM-based FSM synthesis methods which are especially efficient for to-
day’s programmable structures, particularly for FPGA devices with embedded memory
blocks. In the next section we present self-testability and fault tolerance techniques for
finite state machines implemented in considered programmable structures. Finally, in
Section 5 we present our conclusions.

2. SYNTHESIS OF SEQUENTIAL MACHINES

In modern logic synthesis, regardless of the implementation technology (program-
mable devices, Gate Array or Standard Cell structures), the problem of finite state
machine synthesis (in particular — the problem of internal state encoding) is an issue

186 TADBUSZ LUBA, GRZEGORZ BOROWIK, ANDRZEJ KRASNIEWSKI ETQ.

of significant practical importance. The internal state encoding affects both the struc-
ture of the FSM realization (i.e., connections between the combinational block and the
memory block) and the complexity of the combinational block.

Many methods for structural synthesis of FSMs have been reported in the literature,
Their diversity is a consequence of different assumptions taken to simplify calculations,
as well as different types of intended target components. Thus, different methods of
FSM synthesis have been developed for PLA structures [DBSV85], [DeM86], [VSV90],
for ROM memories [Bor04], [RSL05], and for PLD modules [CKO3].

Methods of state encoding that assume an FSM implementation with a PLA struc-
ture (including the case when PLA matrices are used as macrocells of ASIC circuits)
are especially significant. For such a structure, the state (excitation) and output func-
tions are treated as Boolean expressions with possible shared products (terms). In
this case, the solution for state encoding is a binary representation of internal states
of the FSM which results in the smallest total number of product terms in Boolean
expressions (which represent all of its state and output functions). In the case of sequ-
ential machines, when solving this minimisation problem (common in combinational
circuit synthesis) we have an additional degree of freedom in the form of selection of
state encoding. However, due to its computational complexity, this optimization task
is reduced to searching for internal state encodings that result in minimal usage of the
PLA area.

A distinctive feature of traditional methods of FSM synthesis is the application of
logical minimization before the process of state encoding. This minimization is possible
when the inputs and outputs of the combinational part of the sequential circuit is repre-
sented with multi-valued symbolic variables. Unfortunately, such methods are limited
to two-level structures. For other implementation styles different methods are needed.
The research in this area goes into two directions: one concerns the implementation
with multilevel gate structures, while the other embraces implementations with cellular
FPGA and CPLD structures.

In the first case, like for two-level structures, the starting point of the synthesis
process is a structure in which the combinational circuit is connected to the inputs of
a register operating as state memory (Fig. 2a), whereas in the other case, the combi-
national circuit is connected to the outputs of such a register (Fig. 2b).

Until recently, mainly the first model (Fig. 2a) was used in synthesis of sequential
machines. The optimization of the selection of state encoding was done for two-level
or multilevel gate structures and was aimed at the reduction of hardware resources
(silicon area).

The second model (Fig. 2b) was used in microprogrammed control circuits, with the
combinational circuit implemented with ROM memory [AB06]. In the microprogram-
med version of the sequential circuit, the fixed ROM memory was a separate element
— separated from the rest of the circuit. The advantage of this structure was an ability
to program the microcode memory, which was the only possible way to reconfigure
the circuit at that time. These advantages made the capacity of the memory to be a

Vol.

non-
crite
dres
thros
the :
addr

]
niqu
prog
ming
of M
sequ
prog
ROM
emb

I
class
the ¢
® I
® i
e I

ETO.

> struc-
and the

rature,
lations,
10ds of
SVI0],

\ struc-
ircuits)
t func-
ms). In
1 states
Joolean
f sequ-
\ational
tion of
on task
> of the

ition of
ossible
S repre-
limited
needed.
ntation
cellular

mthesis
puts of
combi-

juential
j0-level
sources

vith the
ogram-
lement
ability
nfigure
to be a

Vol. 55 ~2009 SYNTHESIS OF FINITE STATE MACHINES FOR IMPLEMENTATION WITLL.. 187

non-critical factor, although the reduction of this capacity was a common optimization
criterion. A typical approach was to construct the circuit with a special memory ad-
dressing unit called microprogram sequencer, connected to the microprogram memory
through the Address Register (AR). The main function of the sequencer is to determine
the address of the microinstruction to be executed. This address is transferred to the
address register and is used to read the next microinstruction from ROM.

Microprogrammed control has been a very popular alternative implementation tech-
nique for control units. However, as systems have become more complex and new
programmable technologies have appeared, the concept of classical microprogram-
ming has become less attractive for control unit implementations. But the main idea
of Microprogrammed Control Units, i.e. implementation of combinational part of the
sequential circuit with a ROM, has gained new motivation after the appearance of
programmable logic devices [BWO6], [BT08]. In particular, the growing interest in
ROM-based synthesis of finite state machines has been caused by the inclusion of
embedded memory blocks in modern FPGAs.

In this situation, the main research work in the field of FSM synthesis can be
classified into three distinctive areas, corresponding to three implementation styles for
the combinational part of the sequential circuit:

e implementation with a two-level gate (cell) structure,
e implementation with a multilevel gate (cell) structure,
e implementation with a ROM.

combinational
. -1
inputs 3= B outputs
m s
inputs R outputs
current state puls — ¥ outp
p G
0
T w
current state pef E
p|R ‘,

a) b)

| Im—An—omm |

Fig. 2. Two models of a sequential circuit; a) classical, b) with microprogramming capability

Dwo-level synthesis
The two-level synthesis of finite state machines is based on symbolic minimization;
its essence lies in the representation of the logic circuit with multi-valued variables.

188 TADEUSZ LUBA, GRZEGORZ BOROWIK, ANDRZEJ KRASNIEWSKI ET.Q.

In the symbolic (multi-valued) description, the binary realization is obtained only after
the minimization of the multi-valued function, and the minimal multi-valued coverage
determines the relations of minimal-length binary input codes.

The symbolic minimization was introduced by De Micheli in [DBSV85], where
it was applied to encoding of multi-valued inputs symbols (the input encoding). In
[DeM86] a heuristic algorithm is described, which can also consider the limitation
resulting from the encoding of the output symbols. In [CY92], the problem of the
symbolic minimization was reduced to graph coloring. The distinctive feature of this
approach is the concurrent introduction of input and output limitations, which makes
it possible to solve the tasks of input and output encoding. A similar approach was
also introduced in [SB93], where an algorithm for input and output encoding of linear
complexity is presented (the complexity of the algorithms described earlier is at least
on®)).

One of the most important benefits of symbolic minimization is its applicability to
the internal state encoding of FSMs implemented with PLA structures. The essence
of this approach lies in that logic minimization is done before state encoding. This
minimization is possible when the symbolic representation of the combinational part
of a sequential circuit is used.

In this case, a “symbolic coverage” is a set of basic elements called “symbolic
implicants”. A symbolic implicant consists of n > 2 component fields. Each field
corresponds to a multi-valued variable, whose values are sequences of characters. In
sequential circuits, the symbolic implicants have four fields (n = 4) that correspond to
input, current state, next state and output. A symbolic implicant is represented by a
quadruple < x,s,s’,y >, where the first two fields (x, 5) are the inputs of the symbolic
implicant, while the other two (s’, y) are its outputs.

Since only internal state encoding is considered, fields x and y have a binary
representation and only fields s and s” have a symbolic representation — of the current
state and the next state, respectively.

The essence of symbolic minimization lies in grouping together those states, which
— in response to a given input — have the same next state and the same output. Thus, if
the symbolic coverage is an implicant (x, s, 8(x, s), A(x, §)), where s represents a single
state, the minimal multi-valued coverage can contain these symbolic implicants where
s represents a set of states.

In [DNO91], Devadas and Newton presented an exact algorithm for minimization
of the number of terms and the realization of FSM combinational part with a PLA
structure.

An exact algorithm for symbolic minimization with simultaneous input and output
encoding was described in [ADN92]. This algorithm is executed in two stages: first, a
set of generalized prime implicants is determined, and then the coverage of the matrix
of encoding limitations is found.

In [SVBSV94], simultaneous input and output encoding is considered and it is
shown that the problem is NP-hard. A polynomial-complexity algorithm for determi-

Vol.

ning
and
bits

asyl
and
Sy«

of il

ted,

mur
codc
(Bin
mac

Mul
tion:
Dev;
the .
tion)
of ¢
FSM
mize
and
[
the «
form
freqt
1
mani
parti
cond
A
In th
optin
facto
T
FSM
[DN¢
in ad

ETQ.

nly after
coverage

1, where
ling). In
mitation
n of the
e of this
h makes
ach was
of linear
s at least

bility to
essence
ng. This
nal part

ymbolic
ich field
cters. In
spond to
ted by a
ymbolic

1 binary
> current

s, which
Thus, if
a single
ts where

nization
1 a PLA

d output
3 first, a
e matrix

ind it is
determi-

i

Vol. 55— 2009 SYNTHESIS OF FINITE STATE MACHINES FOR IMPLEMENTATION WITH... 189

ning the existence of a solution that satisfies a given set of input and output limitations,
and exact and heuristic algorithms for determining the minimum number of the code
bits, for an encoding that satisfies all the limitations are also presented.

Coudert et al. [Cou98], [CS96] solve the problem of encoding for synchronous and
asynchronous finite state machines. Their method is based on the theory of dichotomy
and yields a safe solution for asynchronous machines and a minimal solution for
synchronous ones.

The symbolic minimization was implemented in NOVA [VSV90] which is a part
of the SIS package [SSL92].

In monograph [TKBSV98] new algorithms for symbolic minimization are presen-
ted, including those for the generation of generalized prime implicants, finding mini-
mum symbolic coverage for given encoding limitations and finding the minimum-length
codes. A distinctive feature of the presented algorithms is the application of BDD
(Binary Decision Diagrams) and their modifications for the description of finite state
machines.

Multilevel synthesis

The problem of internal state encoding for finite state machines whose combina-
tional part is implemented as a multilevel structure was first discussed and solved by
Devadas et al. [DMNSV88]. The main objective of the synthesis is the reduction of
the area of the combinational circuit (when compared to the two-level implementa-
tion). The proposed algorithm for internal state encoding maximizes the the number
of common cubes in the encoded network and minimizes the number of literals in the
FSM combinational part. After encoding of internal states, a multilevel Boolean opti-
mization is carried out. This approach was further examined in [ADN92], [DHLNO91],
and [WKAS89].

Unfortunately, an FSM synthesis considering only the multilevel realization of
the combinational part is not efficient enough; the classic decomposition problem,
formulated back in middle of the 20" century has been revisited increasingly more
frequently to solve this synthesis problem.

The problem of finite state machine decomposition was first formulated by Hart-
manis and Stearns in [HS66]. Their solution was based on the theory of partitions; in
particular, the introduction of the closed partition allowed for the formulation of the
conditions of existence of parallel and serial decompositions of finite state machines.

A good application of decomposition to FSM synthesis was presented in [DN89].
In this paper, Devadas and Newton proposed a method of FSM synthesis targeting the
optimization of the area and performance of the final circuit. This method is based on
factorization of finite state machines.

The idea of the factorization of a finite state machine is to separate some of the
FSM components and implement them as separate sequential machines — factors. In
[DN89] algorithms for finding factors for a given FSM transition graph are given;
in addition the concept of accurate factorization is introduced — the one yielding the

190 TADEUSZ LUBA, GRZEGORZ BOROWIK, ANDRZEJ KRASNIEWSKI ETQ.

smallest number of states and transitions. Methods for internal state encoding aimed

at two- and multilevel realizations of FSMs are also shown. Argume

In monograph [DeM94] several methods for multilevel synthesis are presented — devices
both for combinational and sequential circuits. Most of these methods were imple- ROM-t
mented in Mustang [DMNSV88], JEDI {LN89] and other parts of the SIS package - requi

[SSL.92]. in the
Recent years have brought a noticeable progress in methods for finite state machine require;
synthesis targeting CPLD and FPGA devices. ‘ also ex:
In [CKO5] and [CKKO06] a method of FSM internal state encoding is presented Thus, tl
which considers the number of macrocell terms of the PAL structure. This method is Cle.
based on assigning binary representations that differ on a single bit position to certain newer |
pairs of states. Additionally, the most common next states are assigned codes containing there w

more bits corresponding to disabled output states. availabl
One of the most common concepts leading to a reduction of realization comple- Inc
xity of FSMs implemented with PLD structures is the application of output flip-flops inastru

available in PLD macrocells as FSM memory components. This method is applicable of RQN
to Moore sequential machines with output vectors identical to their corresponding modific
internal states. A method for synthesis of such machines intended for PAL structures The
with registers was shown in [Sol97]. A distinctive feature of the proposed algorithm decomp
is the use of unspecified values of output variables for solving the problem of internal j‘;”‘?h an
state encoding. If this approach does not make it possible to encode all of the FSM in [Bor

internal states, then a minimal number of additional memory elements is used. This F he
method yields efficient results when applied to the synthesis of complex finite state position
machines with a large number of outputs. A similar idea is presented in [For95]. address

In [SLBGY4] a method for FSM synthesis, including state encoding and subsequent tion of
optimization for implementation with FPGA structures is presented. In this approach ROM r
Multi-ROBDD diagrams are used to describe a sequential machine. In [RSLS06], lmple_m‘
Rawski et al. present a method for FSM synthesis targeting FPGA architectures with combin
LUT structures. Their approach relies on symbolic functional decomposition. Encoding
algorithms based on cover algebra presented in [BLO3] facilitate the search for efficient
decompositions.

3. ROM-BASED SYNTHESIS

Although the methods discussed above can be effectively used for synthesis of FSM
implemented with gates and flip-flops, they are not efficient for today’s programmable
structures, particularly for FPGA devices with embedded memory blocks. Such im-
plementations would benefit from a structure with a separate memory block which is
common in microprogrammable circuits. However, an advanced apparatus for design
of address modifier is required to support the synthesis based directly on the FSM
transition table.

ETQ.

1g aimed

sented -
e imple-
package

machine

resented
nethod is
0 certain
ontaining

comple-
flip-flops
pplicable
sponding
tructures
lgorithm
(internal
the FSM
sed. This
iite state
95].

bsequent
approach
SLS06],
res with
“ncoding
“efficient

s of FSM
ammable
such im-
which is
¢ design
he FSM

AR

Vol. 55 - 2009 SYNTHESIS OF FINITE STATE MACHINES FOR IMPLEMENTATION WITH... 191

A limited size of embedded memory blocks available in FPGA devices is the main
argument behind the application of this structure. For example, Altera FLEX family
devices have 2048-bit EAB memory blocks. In [RSLO5] it is demonstrated that the
ROM-based implementation of an example sequential circuit — the tbk benchmark
- requires 16,384 bits of memory; this considerably exceeds the resources available
in the FLEX 10K device. An alternative implementation of this circuit with LUTs
requires 895 logic cells (a result from the Altera Quartus II ver. 6.0 spl system); this
also exceeds the resources available in the FLEX 10K device, as it has only 576 cells.
Thus, the tbk implementation with this device must rely on the a new FSM architecture.

Clearly, a considerably larger number and size of embedded memory blocks in the
newer programmable Stratix and Cyclone devices do not eliminate this problem, as
there will always be FSMs whose implementation requires more memory than it is
available in the state-of-the-art programmable devices.

In case when efficient memory utilization is essential, the FSM can be implemented
in a structure that includes an address register and ROM memory, in which the reduction
of ROM memory size is obtained by the introduction of an additional block for address
modification (Fig. 3b).

The address modifier can be synthesized with advanced algorithms of functional
decomposition, applied until recently exclusively to synthesis of combinational circuits.
Such an approach to address modifier synthesis was proposed in [RSLO5] (and extended
in [Bor04], [Bor08]).

The implementation of an FSM shown in Fig. 3b can be seen as a serial decom-
position of the memory block included in the structure of fig. 3a into two blocks: an
address modifier and a memory block of smaller capacity than required for the realiza-
tion of the structure of Fig. 3a. As a result, sequential circuits requiring large-capacity
ROM memories (and thus not implementable in the architecture of Fig. 3a) can be
implemented using a memory block with a smaller number of inputs and an additional
combinational logic block — the address modifier.

inputs
i 7
in?s T
" i’ 4 ADDRESS
l REGISTER] , MODI IEFz
,], address i -
2) b) | REGISTER |
ROM gy wemip
7 — ROM
outputs ¢
. :
outputs

Fig. 3. FSM implementation: a) using ROM memory, b) with the addition of an address modifier

192 TADEUSZ LUBA, GRZEGORZ BOROWIK, ANDRZEJ KRASNIEWSKI ETQ.

Assuming an FSM implementation with an FPGA device, the advantage of the
proposed architecture is that the address modifier can be mapped into a network of
LUT cells or into a PAL matrix, while the memory block can be mapped into the
built-in EAB matrices. The application of this concept (without the optimization of
the state encoding) to the synthesis of the earlier discussed benchmark tbk results in
a design composed of 333 logic cells and a 4096-bit embedded memory block, which
fits entirely in the limited resources of the FLEX structure.

The promising results of other design experiments reported in [Bor04], [RSLO3)
confirm the effectiveness of the architecture of Fig. 3b and indicate the need for further
research. The results of the subsequent studies in this area are presented in [BFL07]
and [Bor08].

Different strategies of decomposition

The idea of FSM synthesis presented above lies in the decomposition of the com-
binational section of the FSM into two modules: an address modifier and a ROM
memory. In general, it is possible to view the address modifier and the memory as
separate combinational blocks and implement them independently, applying different
strategies for decomposition of these two components. In particular, an alternating
application of serial and parallel decomposition has been shown to be an effective
strategy to design a structure with both logic cells and EMBs.

To illustrate this approach, consider the earlier discussed benchmark tbk. In the
first stage, thk is decomposed into two blocks: the address modifier and ROM memory
of 4096 bits. This decomposition results in the address modifier represented in the
form of the truth table with 7 inputs and 5 outputs and the memory with the word
length of 8 with a specified contents. Subsequently each of these two components is
decomposed into a network of embedded memory blocks and logic cells. It is assumed
that the EMB block has a built-in register and it can also be configured as a typical
combinational structure.

Fig. 4a shows an implementation with a programmable device that has EMBs
of 2048 bits. Two EMBs, configured to have the word length of 4 and operating in
parallel, are needed to store the content of the ROM memory. The address modifier is
implemented with a single EMB block configured to have the word length of 8. Some
inputs and outputs of this block remain unused.

Fig. 4b shows another possible implementation of benchmark bk, obtained under
assumption that the programmable device has two types of EMBs with capacity of
512 bits and 4096 bits. Then, it is possible to implement ROM memory using a
single 4096-bit EMB, configured to the word length of 8. For the address modifier,
the parallel decomposition is applied which results in five single-output functions. The
serial decomposition of these functions into logic cells results in the following solution:
first function — one cell, second function — seven cells, third function — five cells, fourth
function — six cells, fifth function — five cells. Finally, combining the second, third,

Vol. 55

fourth
with ¢

Fig.

4. SE]

As
to faul
faults),
soft fan

To
plemer
sed [K
[Qudd¢
that pa
(and n
FPGA

ETQ,

e of the
work of
into the
ation of
sults ip
<, which

RSL03)
r further
BFLO7]

he com-
a ROM
mMory as
different
ernating
effective

. In the
mermaory
d in the
he word
nents is
Assumed
1 typical

s EMBs
rating in
ydifier is
8. Some

>d under
acity of
using a
nodifie,
ons. The
solution:
s, fourth
d, third.

yol. 55 - 2009 SYNTHESIS OF FINITE STATE MACHINES FOR IMPLEMENTATION WITH... 193

fourth and fifth function results in one block implemented with the EMB of 512 bits
with the word length of 4, and the second (first function) with a single logic cell.

XZ X3 X‘S Xf X5 XS XZ X3 X4 Xl XS XG
] //
MzK
T
94
9 ¢
0 0
4 g
i d
q2 q4
C
&
q G
M2K M2K M4K

Vi ¥e ¥ Yi¥e ¥s
a) b)
Fig. 4. tbk benchmark implementation; in programmable device a) with M2K built in memories,
b) with M512 and M4K built in memories

4. SELF-TESTABILITY AND FAULT TOLERANCE FOR FSMS IMPLEMENTED
USING PROGRAMMABLE STRUCTURES

As technology advances, digital circuits are becoming increasingly more susceptible
to faults — both permanent faults (static faults and dynamic faults, including delay
faults), which result primarily from imperfections in the manufacturing process, and
soft faults (transient faults) induced primarily by various types of radiation.

To detect permanent faults various test procedures are applied. For circuits im-
plemented with FPGAs, the concept of application-dependent testing has been propo-
sed [Kras97] (this test strategy is also referred to as configuration-dependent testing
[Qudd99] or application-oriented test [Reno03]). The idea is to thoroughly exercise only
that particular configuration of the FPGA which represents the user-defined application

(and not all possible configurations of a programmable device, as it is done by the
FPGA manufacturer).

194 TADEUSZ LUBA, GRZEGORZ BOROWIK, ANDRZE] KRASNIEWSKI ETQ.

The implementation of application-dependent testing of FPGAs can be based on
externally provided test patterns, as proposed in [Qudd99, Reno03], or on the built-in
self-test (BIST) techniques. The idea of BIST-based application-dependent testing is to
exercise the device in a number of self-test sessions. During each session, a selected part
of an FPGA (configured to implement a user-defined function) is examined using the
remaining portions of the device, temporarily reconfigured into modules that generate
test patterns and analyze responses of the module under test. This strategy does not
involve any circuitry overhead or performance penalty.

In [Kras97], a technique for application-dependent self-testing of FPGAs, based
on the concept of C-exhaustive testing (combinationally-exhaustive testing), has been
proposed. The key part of this technique is the self-test procedure for a sequential
subcircuit that implements an FSM. In [KrasO4a] it was shown how this basic self-test
procedure can be applied to specific implementations of FSMs that include an address
modifier and exploit embedded memory blocks available in FPGAs (the configuration
shown in Fig. 3b). In addition, design guidelines to make such a circuit more suitable
for self-testability were formulated.

The solutions presented in [KrasO4a] provide only a “high-level” test strategy for
the considered class of FSM implementations. Enhancements at the logic level were
subsequently developed, relying on the observation that an appropriate extension of the
memory (ROM) specification produced by the FSM synthesis procedure {specification
of the contents of those memory words which are left undefined by the conventional
FSM synthesis) can significantly improve the testability characteristics of the circuit
(its susceptibility to randomly generated test patterns). In [Kras05a] algorithms for such
testability-oriented optimization of an FSM implemented using embedded memory of
an FPGA are presented. It has been demonstrated that as a result of such an optimiza-
tion, the circuit becomes significantly more easier to test: for the largest of examined
circuits, the self-test session required to achieve an acceptable level of fault detection
for the optimized design, obtained using the proposed procedure, is almost 10° times
shorter than for the non-optimized design. The proposed optimization is essentially
cost-free.

A thorough testing of permanent faults resulting from the manufacturing process
is not sufficient to guarantee reliable operation of a digital circuit. Error failure rates
caused by soft (transient) faults that occur during the normal circuit operation will
soon become unacceptable even for mainstream commercial applications [Cohe99].
Therefore, there is an increasing interest in designing digital systems to make them
fault-tolerant, i.e. to protect them against such soft faults. SRAM-based FPGAs are
particularly vulnerable to soft faults, as single event upsets (SEUs) induced by external
radiation affect both functional memory (flip-flops, embedded memory blocks) and
configuration memory of an FPGA.

There are different ways to make a digital circuit fault tolerant. Some techniques
intended to achieve this goal are based on the concept of error masking and rely on
massive hardware redundancy; therefore, they are very expensive and can be afforded

Vol. 55

only f
errors
concu
M
FSMs
of gat
s maj
error
sequer
- 8
- Sec
Co
logic ¢
niques
progra
A
plemesr
applies
which
modifi
~ the
wit
LU
~ the
mo
The
memor
manent
the circ
that the
the set
pessim
32.2%.
designs
ite typi
fault de
memor
for an
suitable
systems

ETQ,
—
> based op
he built-ip
esting is to
lected part
I using the
At generate
y does not

1A, based
, has been
sequential
ic self-test
an address
nfiguration
re suitable

trategy for
level were
sion of the
ecification
ynventional
the circuit
ns for such
nemory of
1 optimiza-
" examined
t detection
- 10% times
essentially

ng process
ilure rates
ration will
[Cohe99].
nake them
FPGASs are
by external
locks) and

techniques
nd rely on
e afforded

Vol; 55 - 2009 SYNTHESIS OF FINITE STATE MACHINES FOR IMPLEMENTATION WITH... 195

only for critical applications. Alternative techniques are based on an on-line detection of

errors and appropriate “recovery” actions. The key part of such techniques is effective

concurrent error detection (CED).

Most techniques for concurrent error detection in sequential circuits (implementing
FSMs) assume that at some stage of design the circuit is represented by a network
of gates and flip-flips (or equivalent Boolean formulas) and that such a representation
is mapped onto standard cells [AIDM06, BMSS00, DaTo98, ZeSM99]. Concurrent
error detection techniques have also been proposed for alternative implementations of
sequential circuits, in particular for:

- sequential circuits operating as microprogrammed control units [IyKi95, Wong83],

~ sequential circuits implemented with PLAs [BoNT93].

Concurrent error detection techniques for FSMs implemented with programmable
logic components have only recently become a subject of extensive studies. CED tech-
niques intended for FSM implementations based on LUTs and flip-flops, available in
programmable logic cells of FPGA devices have been proposed in [LOKS06, LeSi99].

A different group of CED techniques have been developed for sequential circuits im-
plemented with memories embedded in FPGAs. The technique presented in [KrasO4b]
applies to the simplest FSM structure shown in Fig. 3a. For the FSM structure in
which the combinational logic is divided into two parts: memory (ROM) and address
modifier (as shown in Fig. 3b), two techniques have been proposed:

- the solution presented in [Kras06] is applicable when the ROM is implemented
with embedded memory blocks and the address modifier is implemented with
LUT-based programmable logic components;

- the solution presented in [Kras08] is applicable when both the ROM and the address
modifier are implemented with embedded memory blocks.

The concurrent error detection schemes applicable to FSMs implemented with
memories embedded in programmable devices have been proven to detect each per-
manent or transient fault associated with a single input or output of any component of
the circuit that results in its incorrect state or output. The experimental results show
that the circuitry overhead associated with concurrent error detection is quite low. For
the set of benchmark circuits examined in [Kras08], the overhead calculated under
pessimistic assumptions is in the range of 20.7% to 63.8%, with an average value of
32.2%. This compares favourably with the solutions applicable to conventional FSM
designs based on gates and flip-flops for which an overhead exceeding 100% is qu-
ite typical. The overhead can be further reduced at the expense of the efficiency of
fault detection — a design trade-off is possible [Kras05b]. These results indicate that
memory-based structures of FSMs, obtained using dedicated synthesis tools, intended
for an implementation in FPGAs with embedded memory blocks, are much more
suitable for concurrent error detection, and thereby for applications in highly reliable
Systems, than conventional designs based on gates and flip-flops.

196 TADEUSZ LUBA, GRZEGORZ BOROWIK, ANDRZEJ KRASNIEWSKI ETQ.

5. CONCLUSION

In modern digital circuit design, the problem of finite state machine synthesis is
an issue of significant practical importance. The concept of FSM provides an excellent
model for designing of complex Control Units. Many methods for structural synthesis
of FSMs have been reported in the literature. Their diversity is a consequence of
different styles of implementation. There is a large variety of logic building blocks that
can be exploited in modern technologies. The standard cell libraries contains various
types of gates; a lot of complex gates can also be generated in (semi-)custom CMOS
design; and the field programmable logic families include different types of (C)PLDs
and FPGAs.

This article summarizes various techniques for sequential logic synthesis, including
logic optimization techniques, the technology mapping techniques, and the techniques
that provide the resulting circuits with concurrent error detection capability. These
techniques vary considerably in terms of quality and efficiency, and different techniques
may be suitable for different types of design and/or different optimization objectives.
We hope our systematic classification and review of these techniques will help the
reader to choose the best combination of these techniques for a given application, and
to develop new techniques to overcome the limitations in the existing technologies.

For FPLD technology, sequential logic synthesis is a very important step in design
automation. However, the opportunities created by modern microelectronic technology
are not fully exploited because of weaknesses in traditional logic design methods.
Commercially available tools are immature and do not allow the designer to take
advantage of all the architectural features available in modern programmable structures.

We believe that high-quality logic synthesis tools will play an increasingly more
important role in FPLD design systems and their integration with the tools used for
other steps in the design process may be a key to success in digital designing.

6. REFERENCES

[ABO6] M. Adamski, A. Barkalov: Architectural and Sequential Synthesis of Digital De-
vices University of Ziclona Géra Press, 2006.

[AIDMO6] S.Almukhaizim,P. Drineas, Y. Makris:tionEntropy-driven parity-tree selecc
for low-overhead concurrent error detection in finite state machines, IEEE Trans. on CAD
vol. 25, no. §, pp. 1547-1554, Aug. 2006,

[ADN92] P. Ashar, S. Devadas, A. R. Newton: Sequential Logic Synthesis, Kluwer Aca-
demic Publishers, 1992, Boston, MA, USA.

[BMSS00] C. Bolchini, R. Montandon, F. Self-Checking Finite Salice, D.
Sciuto: Design of VHDL-Based Totally -State Machine and Data Path Descriptions,
IEEE Trans. on VLSI Systems, vol. 8, pp. 98-103, Feb. 2000.

[BFLO7] G. Borowik, B. Falkowski, T. Luba: Cost-Efficient Synthesis for Sequential
Ciruits Implemented Using Embedded Memory Blocks of FPGA’s, Proc. of 10th IEEE Work-
shop on Design and Diagnostics of Electronic Circuits and Systems (2007), Krakéw, Po-
land, 11-13 April 2007.

Vol. 55

[BLO3]

[Bor04]

{Bor08]

(BWO6]
[BWO6]

[BoNT¢

[Cohe9t

[CKO5]

[CKKO¢

[CMSH

[Cou98}
[CS96]
[CY92]
[DaTo9§

[DBSVE

[DeM86

[DeM94

[DHLNC

[DMNSY

ETQ,

ynthesis is
n excellent
| synthesis
quence of
hiocks that
ns various
m CMOS
f (C)PLDs

, including
techniques
lity. These
techniques
objectives.
I help the
>ation, and
ologies.

» in design
lechnology
. methods,
er to take
structures,
ngly more
s used for
ng.

f Digital De-

ty-tree selecc
ans. on CAD

Kluwer Aca-

Salice, D
escriplions,

r Sequentiol
1 [EEE Work
Krakéw, Po-

yol. 55— 2009 SYNTHESIS OF FINITE STATE MACHINES FOR IMPLEMENTATION WITH... 197

[BLO3]

[Bor04]

[Bor08]

[BW06]
[BWO6]

[BONTO3]

[Cohe99]

(CKO3]

[CKKO6]

[CMSH96)

[Cou98]
[CS96]
[CY92]
[DaTo98]

[DBSV35]

[DeM86]

[DeM94]

(DHLN9 1]

[DMNSVSS]

JLA. Brzozowski, T. Lub a: Decomposition of Boolean Functions Specified by Cu-
bes, Journal of Multi-Valued Logic and Soft Computing vol. 9 (2003), 377-417, Old City
Publishing Inc., Philadelphia 2003.

G. Borowik: Synthesis of Memory Addressing Circuits in FPGA-based Sequential Ma-
chines, Proc. of V International Conference on Computer-Aided Design of Discrete Devices
(2004), 31-38, Minsk, Belarus, 16-17 November 2004.

G. Borowik: Improved State Encoding for FSM Implementation in FPGA Structures
with Embedded Memory Blocks, Electronics and Telecommunications Quarterly, vol. 54,
no 1, 9-28, March 2008.

A. Barkalov, L. Titarenko: Logic Synthesis Jor Compositional Microprogram
Control Units, Springer, 2008.

A. Barkalov,M. Wegrzyn: Design of Control Units with Programmable Logic,
University of Zielona Géra Press, 2006.

M. Boudjit,M. Nicolaidis, K. Torki: Automatic generation algorithms, experi-
ments and comparisons of self-checking PLA schemes using parity codes, Proc. European
Design Automation Conf., pp. 144-150, 1993.

N. Cohen et al.: Soft error considerations Jor deep-submicron CMOS circuit applica-
tions, Dig. IEDM Int. Electron Devices Meeting, pp. 315-318, 1999,

R. Czerwinski, D. Kania: State Assignment Jor PAL-based CPLDs, Proc. of 8th
Euromicro Conference on Digital Systems Design, Architectures, Methods and Tools,
IEEE Computer Society, Christophe Wolinski (Ed.) (2005), 127-134, Porto,

Portugal, 30 August — 3 September 2005.

R.Czerwidski,D. Kania, J. Kulisz FSMs State Encoding Targeting at Logic
Level Minimization, Bulletin of the Polish Academy of Sciences vol. 54 (2006), no. 4.
S.C. Chang, M. Marek-Sadowska, TT. Hwan g: Technology Mapping for
TLU FPGAs Based on Decomposition of Binary Decision Diagrams, IEEE Trans. on CAD
vol. 15 (1996), no. 10, 1226-1236, October 1996,

O. Coudert: A New Paradigm for Dichotomy-based Constrained Encoding, Proc. of
Design, Automation and Test in Europe (1998), 830-834.

O. Coudert, C.J.R. Shi: Exact Dichotomy-based Constrained Encoding, Proc. of
the Int. Conf. on Computer Design (1996), 426-431.

M.J. Ciesielski,. Y Plade: A Two-stage PLA Decomposition, IEEE Trans. on
CAD vol. 11 (1992), no. 8, 943-954.

D. Das, N.A. Touba: Synthesis of Circuits with Low-Cost Concurrent Error Detection
based on Bose-Lin Codes, Proc. VLSI Test Symp., pp. 309-315, 1998.

G.De Micheli,R.K. Brayton A. Sangiovanni-Vincentelli: Optimal
State Assignment for Finite State Machines, IEEE Transactions on CAD vol. CAD-4 (1985),
no. 3, 269-284.

G. De Micheli: Symbolic Design of Combinational and Sequentional Logic Circuits
Implemented by Low-level Logic Macros, IEEE Transactions on CAD vol. CAD-5 (1986),
no. 4, 597-616.

G. De Micheli: Synthesis and Optimization of Digital Circuits, McGraw-Hill, New
York, 1994,
X.Du,G. Hachtel, B. Lin,R.A. Newto n, MUSE: A Multilevel Symbolic Enco-
ding Algorithm for State Assignment, IEEE Transactions on CAD vol.10 (1991), no. 1,
28-38.

S. Devadas, HHK. Ma, R. Newton, A, Sangiovanni-Vincentelli
MUSTANG: State Assignment of Finite State Machines Targeting Multilevel Logic Imple-
mentations, IEEE Transactions on CAD vol. 7 (1988), no. 12, 1290-1300.

198

TADEUSZ LUBA, GRZEGORZ BOROWIK, ANDRZE] KRASNIEWSKI ETQ.

[DN89]

[DN91}]

[For95]

[HKO04]

[HS66]

[HSBO2]

[TP99]

[IyKi95]

(ICo1]

{3800]

[JSCO1]

[Kan04]

[Kras97]

[Kras04a]

[Kras04b]

[Kras0O5a)

[Kras05b)

[Kras06]

[Kras08]

S. Devadas, R. Newton: Decomposition and Factorization of Sequential Finite State
Machines, 1EEE Transactions on CAD vol. 8 (1989), no. 11, 1206-1217.

S. Devadas, R. Newton: Exact Algorithms for Outpur Encoding, State Assignment
and Four-level Boolean Minimizaiion, TEEE Transactions on CAD vol. 10 (1991), no. 1,
13-27. .

J. Forrest, ODE: Output Direct State Machine Encoding, Proc. of the European Design
Automation Conference (1995), 600-605.

E. Hrynkiewicz D. Kania: Mefody syntezy dedykowane dla struktur FPGA typu
tablicowego (in Polish), Kwartalnik Elektroniki i Telekomunikacji nr 50, z. 3 (2004),
325-342.

J. Hartmanis, R.E. Stearns: Algebraic Structure Theory of Sequential Machines,
Prentice-Hall, New York, 1966.

S. Hassoun, T. Sasao, R. Brayton (Eds.): Logic Synthesis and Verification,
Kluwer Academic Publishers, 2002, New York.

S. Iman, M. Pedram: Logic Synthesis for Low Power VLSI Designs, Kluwer Academic
Publishers, 1999.

V.S. Iyengar, L. L Kinney: Concurrent Fault Detection in Microprogrammed Con-
trol Units, IEEE Trans. on Computers, vol. C-34, pp. 810-821, Sept. 1985.
L.J6Zwiak, A. Chojnacki: Effective and Efficient FPGA Synthesis through Func-
tional Decomposition Based on Information Relatinship oMeasures, Proc. of Euromicro
Symposium on Digital Systems Design (2001), 30-37, Warsaw, Poland, 4-6 September
2001.

L.Jé6zwiak, A. Slusarcz yki A new state assignment method targeting FPGA
implementations, Proc. of the 26th Euromicro Conference vol. 1 (2000), 50-59, Maastricht,
The Netherlands, 5-7 September 2000.

L. J6zwiak A. Slusarcz vk, A. Chojnacki: Fast and Compact Sequential
Circuits through the Information-Driven Circuit Synthesis, Proc. of Euromicro Sympo-
sium on Digital Systems Design (2001), 46-53, Warsaw, Poland, 4-6 September 2001.
D. Kania: The Logic Synthesis for the PAL-based Complex Programmable Logic Devi-
ces (in Polish), Zeszyty Naukowe (2004), 16-19, Politechnika Slqska, Gliwice 2004.

A. Krasniewski: Design for Application-Dependent Testability of FPGAs, Proc. Int.
Workshop on Logic and Architecture Synthesis, pp. 245-254, Grenoble, Dec. 1977.
Self-Testing of Sequential.

A. Kra$niewski: Circuits Designed for Implementation in FPGAs with Embedded
Memory Blocks, Proc. IEEE Workshop on Design and Diagnostics of Electronics Circuits
and Systems, pp. 75-82, Tatranska Lomnica, April 2004.

A. Kras§niewski: Concurrent Error Detection in Sequential Circuits Implemented
Using FPGAs with Embedded Memory Blocks, Proc. IEEE Int. On-Line Testing Symp.,
pp. 67-72, Funchal (Madeira), July 2004,

A. Kras$niewski: Cost-Free Enhancement of Testability for Sequential Circuits Imple-
mented Using Embedded Memory Blocks of FPGA’s, Proc. IEEE Workshop on Design and
Diagnostics of Electronics Circuits and Systems, pp. 61-68, Sopron, April 2005.

A. Kras$niewski:A Pragmatic Approach to Concurrent Error Detection in Sequential
Circuits Implemented Using FPGAs with Embedded Memory, Proc. IEEE Int. On-Line
Testing Symp., pp. 197-198, San Raphael, July 2003

A. Kras$niewski: Low-Cost Concurrent Error Detection for FSMs Implemented Using
Embedded Memory Blocks of FPGAs, Proc. IEEE Workshop on Design and Diagnostics
of Electronics Circuits and Systems, pp. 180-185, Praha, April 2006.

A. Kra$niewski: Concurrent Error Detection for Finite State Machines Implemented

Vol. 55 -

[LeSi99]

[LOKSO:

[LN89]

[LPP96]

[LuS95]

[PMGY9]

[Qudd99]

[Reno03]

[RILOI]

[RSLO5]

[RSLS06]

[SBY3)

[SchO1)

[SLBGY4:

[Sol97]

[SSL92]

[SSPOI]

ETQ,

T T —
nite State

ssignment
), no. 1,

in Design

PGA typy
3 (2004,

Wachines,
rification,
Academic
med Con-

1gh Func-
Juromicro
eptember

ng FPGA
Taastricht,

equential
> Sympo-
2001,
gic Devi-
004.
Proc. Int.
ec. 1977

‘mbedded
s Circuits

nlemented
ng Symp

its Imple:
esign and

Sequential ~ |

In-Line

ited Using
iagnostics

plemented

Yol. 55 2009 SYNTHESIS OF FINITE STATE MACHINES FOR IMPLEMENTATION WITH... 199

[LeSi99]

[LOKSO06]

[LN89]

(LPPO6]

[LuS95]

[PMG99)]

[Qudd99]

{Reno03}

[RILOI]

[RSLO5]

[RSLS06)

[SB93]

[SchO1]

[SLBGY4

[Sol97]

[SSL92]

1SSPOI|

with Embedded Memory Blocks of SRAM-Based FPGAs, Microprocessors and Microsys-
tems, vol. 32, no. 5-6, pp. 303-312, August 2008.

L Levin,V. Sinelnikov: Self-checking of FPGA-based control units, Proc. 91
Great Lakes Symposium on VLSI, pp. 292-295, 1999,

L Levin, V. Ostrovsky, O. Keren, V. Sinelnikov: Cascade Scheme for
Concurrent Errors Detection, Proc. 10™ EUROMICRO Conf. on Digital System Design,
pp. 359-368, 2006.

B. Lin, R.A. Newton: Synthesis of Multiple Level Logic Symbolic High-level Des-
cription Languages, Proc. of the Int. Conf. on VLSI (1989), 187-196.

Y. T. Lai, K. R.R. Pan, M. Pedram: OBDD-Based Functional Decomposition:
Algorithm and Implementation, TEEE Trans. on CAD vol. 15 (1996), no. 8, 977-990,
August 1996,

T. Luba, H. Selvaraj: General Approach to Boolean Function Decomposition and
its Applications in FPGA-based Synthesis. VLSI Design. Special Issue on Decompositions
in VLSI Design, vol. 3, Nos. 3-4, 289-300, 1995,

M. Perkowski, R. Malvi, S. Grygiel, M. Burns, A. Mishchenko:
Graph coloring algorithms for Fast Evaluation of Curtis Decompositions, Proc. of Design
Automation Conference (1999), 225-230, New Orleans, 1999,

Quddus, W, JTas, A, Touba, N.A.: Configuration Self-Test in FPGA-Based Recon-
JSigurable Systems. Tn: Proc. ISCAS’99, 1999, pp. 97-100.

M. Renovell: Some Aspects of the Test Generation Problem for an Application-Oriented
Test of SRAM-Based FPGAs, Journal of Circuits, Systems, and Computers, vol, 12(2003),
no. 2, pp. 143-158.

M. Rawski, L. J6Zwiak, T Luba: Functional Decomposition with an Efficent
Input Support Selection for Sub-functions Based on Information Relationship Measures,
Journal of Systems Architecture 47 (2001), 137-155, Elsevier Science B.V,, 2001.

M. Rawski, H. Selvaraj, T. Luba: An Application of Functional Decomposition
in ROM-based FSM Implementation in FPGA Devices, Journal of Systems Architecture
vol. 51 (2005), 424-434, Elsevier 2005.

M. Rawski, H Selvaraj, T. Luba P. Szotkowski: Multilevel Synthesis of
Finite State Machines Based on S ymbolic Functional Decomposition, International Journal
of Computational Intelligence and Applications, Vol. 6, No. 2, June 2006, pp. 257-271,
Imperial College Press 2007.

C.J. Shi,J. A, Brzozowski: An Efficient Algorithm for Constrained Encoding and
Its Applications, IEEE Trans. on CAD vol, 12 (1993), no. 12, 1813-1826.

C. Scholl: Functional Decomposition with Application to FPGA Synthesis, Kluwer
Academic Publisher, 2001, Boston.

G. Sarwary, E.P. Lopes, L. Burgun, A. Greiner: FSM Synthesis on FPGA
Architectures, Proc. of 7th Annual 1EEE International ASIC Conference and Exhibit
(1994), 178-181.

V. V. Solovjev: Sintez konechnyh avtomatov na programmiruemyh matricah logiki, Av-
tomatika i Vychislitelnaya Tehnika No. 2 (1997), 65-74.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A,
Saldanha, H. Savoj,P.R Stephan, R K. Brayton, A. Sangiovanni-
-Vincentelli, SIS: A System Jor Sequential Circuit Synthesis, Memorandum, no. UCB/ERL
M92/41, Electronics Research Laboratory, Department of Electrical Engineering and Com-
puter Science, University of California, Berkley, 1992.

P Sapiecha H. Selvaraj, M. Pleban: Decomposition of Boolean Relations
and Functions in Logic Synthesis and Data Analysis, Rough Sets and Current Trends
in Computing, Springer Verlag, W. Ziarko, Y. Yao (Eds.) (2001), 487-494, Berlin 2001.

200

TADEUSZ LUBA, GRZEGORZ BOROWIK, ANDRZEJ KRASNIEWSKI ETQ.

[SVBSV94|

[TKBSV98]

[VSV90]
[WKAS89)]
[Wong83]
[YSLOS]

[ZeSM99]

A. Saldanha T Villa, R.X. Brayton, A. Sangiovanni-Vincentel-
11 Satisfaction of Input and Output Encoding Constraints, IEEE Trans. on CAD vol. 13
(1994), no. 5, 589-602.

T. Villa,T. Kam R. K Brayton, A. Sangiovanni-Vincentelli: Syn-
thesis of Finite State Machines: Logic Optimization, Kluwer Academic Publishers, Boston,
1998.

T Villa, A, Sangiovanni-Vincentelli, NOVA: State Assignment for Opti-
mal Two-level Implementations, IEEE Transactions on CAD vol. 9 (1990), no. 9, 905-924,
W. Wolf,K. Kautzer J. Akella: Addendum to A Kernel Finding State Assignment
Algorithm for Multilevel Logic, IEEE Transactions on CAD vol. 8 (1989), no. 8, 917-920.
CY. Won g etal.: The Design of a Microprogram Control Unit with Concurrent Error
Detection, Proc. Fault Tolerant Computing Symp., pp. 476-483, 1983

S.N. Yanushkevich, V.P. Shmerko, S. E. Lyshevski: Logic Design of
NanolCs, Detection, CRC Press, 2005.

C.Zeng, N. Saxena, E. J. McCluskey: Finite State Machine Synthesis with
Concurrent Error Detection, Proc. IEEE Int. Test Conf., pp. 672-679, 1999

Opti

The
of the
impleme
prise the
4l and e
an arbitr
memory
(CU) the
tion of 1
solution
because

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 201214

ETQ.

centel-
D vol. 13

i Syn-
s, Boston,

f-g’ors()gl;f* Optimization of compositional microprogram control unit by

) -924,

(ssignment modification of microinstruction format

L, 917-920.

rent Error

LARYSA TITARENKO, JACEK BIEGANOWSKI

Design of

University of Zielona Gora

hesis with Institute of Computer Engineering and Electronics
ul. Podgorna 50, 65-246 Zielona Géra

Email: (L. Titarenko, J.Bieganowski)@iie.uz.zgora.pl

Received 2009.01.05
Authorized 2009.03,19

The methods of hardware amount decrease are proposed oriented on implementation
ol compositional microprogram control unit with PAL macrocells and embedded memory
blocks of CPLD — based SoC. First method is based on introduction of additional microin-
structions. Second method is based on expansion of the format of microinstructions. In both

cases amount of EMBs is minimal one. The examples of application of proposed methods
are given.

Keywords: compositional microprogram control unit, flow-chart of algorithm, CPLD, mi-
croinstruction

I. INTRODUCTION

The progress in microelectronics has resulted in appearance of integrated circuits
of the “system-on-a-chip” (SoC) type [1]. The functional power of SoC is enough to
implement a complex digital system using single chip [2]. The modern SoC can com-
prise the programmable array logic (PAL) macrocells based on CPLD conception [3,
4] and embedded memory blocks (EMB). The PAL macrocells are used to implement
an arbitrary logic of digital system and EMBs implement the tables, such as control
memory [5]. One of the most important blocks of any digital system is control unit
(CU) that coordinates the cooperation of all system blocks [6, 7, 8]. The minimiza-
tion of number of PAL macrocells in the circuit of CU is an actual problem and its
solution permits to decrease the chip area occupied by this circuit [4]. It is important
because the disengaged resources can be used to increase the power of the system.

%
&
|
|
-
§
.

202 LARYSA TITARENKO, JACEK BIEGANOWSKI ETQ.

The characteristics of both control algorithm to be implemented and logic elements in
use should be taken into account to minimize hardware amount in the circuit of CU
[9]. In this article we propose some methods of this task solution oriented on both
linear control algorithms [9] and CPLD-based SoC. The peculiarities of CPLD are
wide fan-in and very limited number of intermediate terms in its macrocells [3, 4].
Therefore, one of the ways of hardware optimization here is the decreasing of number
of terms in the disjunctional normal forms (DNF) of implemented Boolean functions
[10, 11]. The peculiarity of linear control algorithms is existence of long sequences
of unconditional transitions between the microinstructions. In this case the model of
compositional microprogram unit (CMCU) perfectly fits to implement such transitions
[12]. In this article we propose the method of optimization of PAL macrocells in the
circuit of CMCU, when interpreted control algorithm is represented as linear flow-chart
of algorithm [13].

2. BACKGROUND OF CMCU

Let a control algorithm be represented as flow-chart of algorithm (FCA) I' = I
(B, E), where B = {by,bg} U E{UE, is set of the nodes, £ = {{(b;,b,) | b;, b, € B} is set
of the edges. The set B includes an initial node by, a final node by, the operational nodes
b, € E; and the conditional nodes b, € E,. The node b, € E; contains set Y(b,) C Y,
where ¥ = {y,...,yn} is set of microoperations of data path of digital system [7, §].
The node b, € E, contains single element of the set of logic conditions X = {xy,...,x.}.
The FCA T is named as linear FCA (LFCA), if number of its operational nodes M is
not less than 75% from total number of the nodes [9], where M =| Ey |.

Let C = {aj,..., a,} be a partition of the set £; and «, € C be an operational
linear chain (OLC) of LFCA I'. The OLC a, € C is a sequence of operational nodes
(bgise .. bgrg), such that an edge (b, byi1) € E exists for each pair of its adjacent
nodes (i = 1,...,F,~ 1) [12]. An OLC «, € C can have an arbitrary number of inputs
and only one output O, € O(I'), where O(I') is set of the outputs of OLC «a, € C. Let
node b, € E; correspond to microinstruction MI, with address A(b,) and let A(b,)
have bits.

R = |log,M| (D

Let us execute the natural addressing of microinstructions [6, 12] to satisfy the
following condition:

A(bgH[) = A(bg,) +1, (2)

where i = 1,...,Fg-1; g = 1,...,G. In this case LFCA I" can be interpreted by CMCU U
(Fig. 1).

The
of the fi
loaded
is set uj
CT con
microoj
of CT :
by com
flip-flop

where 7
A(by) a
yn € Y(l
terminas

In ¢
cells an
Ul is n
known s
circuit (
finite-ste
as a rul
transitio
can be r
(POLC)

The
of the s¢

ETQ

ments ip
it of CU

on both
PLD are
Is [3, 4].
f number
functions
equences
model of
ansitions
11s in the
low-chart

) I'=T
B} is set
nal nodes
(by) C Y,
m |7, 8].
£ SRS ,XL}‘
des M is

%
:
.(;
|
5

yerational
nal nodes
adjacent
of inputs
€ C. Let
let A(b,)

(1)
atisfy the

2)
MCU U,

.
%

Vol. 55 — 2009 OPTIMIZATION OF COMPOSITIONAL MICROPROGRAM CONTROL... 203

+1
o v |
X/>J e | Yo
! @ 1T Y
g] - | .

Clock] J—Dﬂz’“‘:{ TF Fetch
Start
i ,%_y S

Fig. 1. Structural diagram of the CMCU

The CMCU U operates in the following manner. If pulse Start = 1, then an address
of the first microinstruction (MI) of microprogram MP(I') corresponding to LFCA T is
loaded into counter of microinstruction address CT. In the same time the flip-flop TF
is set up and Feich = 1. It permits the fetching of the MIs from control memory CM. If
CT contains an address A(by), where b, ¢ O(I"), then signal Yo is formed together with
microoperations Y(b,) C Y. If yy = 1, then pulse Clock causes increment of content
of CT and it corresponds to mode (2). If yy = 0, then transition address is formed

by combinational circuit CC that implements the system of excitation functions of the
flip-flops of CT

D = O(T, X), 3

where T = {T'y,...,T} is the set of address variables, | @ |= R. If CT contains an address
Alb,) and <b,,bg) € E, then variable ye is formed together with microoperations
Yn € Y(by). If yg = 1, then flip-flop TF is reset, ye = 0 and operation of CMCU U is
terminated.

In case of CPLD-based SoC the circuit CC is implemented using PAL macro-
cells and control memory CM is implemented using EMBs. The positive feature of
Uy is minimal number of the outputs of the circuit CC in comparison with other
known structures of CMCU [12]. Tt gives a potential possibility of optimization of the
cireuit CC in comparison to other models of CMCU. But CC and CT form Moore
finite-state-machine (FSM) [1] of microinstruction addressing. Tt is well-known that
as a rule Moore FSM has more transitions, than equivalent Mealy FSM [1]. Each
transition corresponds to one term of the system (3). The minimization of this number
can be reached due to partition of the set C by the classes of pseudoequivalent OLC
(POLC) that correspond to pseudoequivalent states of Moore FSM [14].

The OLC a;, « j € C are named POLC, if their outputs are connected with the input
of the same node of LFCA T [9]. Let ¢’ c C and let ag € C',if (O, bg) ¢ E. Let us

204 LARYSA TITARENKO, JACEK BIEGANOWSKI ETQ..

form the partition I1¢ = {B1,...,B;} of the set C’, such that B, is the class of POLC (;
= 1,...,.I). Let us encode the classes B; € Il¢ by binary codes K(B;) with

Ry = Jlog.1] 4) §; Let us

bits and let us use the variables 7, € T = {ry,..., Tr1} for such encoding. One of the ways
of hardware optimization of the circuit of U} is usage of address transformer AT [5]

that forms code of B; € Il on the base of address A(b,), where b, = Oy, @, € B;. But In this
this approach drawback is a need of some chip resources to implement circuit of AT. of outp
It has sense, if total number of macrocells in both CC and AT is lower, than number Let
of macrocells in circuit CC of CMCU U,. In this article we propose the methods of that sat
optimization of the circuit CC based on modification of microinstruction format of Ay =11

CMCU U,. Let us

3. MAIN IDEAS OF PROPOSED METHODS

bits anc
The main idea of proposed methods is the usage of redundant resources of EMBs the clas
to implement the transformation of the addresses A(b,) into the codes K(B;). The
microinstruction format of CMCU U is shown in Fig. 2, a.
bits anc
a) | Yo FY b)| 0 FB c)| 0 | FY | FB the CM

Fig. 2. Microinstruction format of CMCU U, (a) and proposed modifications (b, ¢)

The field FY contains the microoperations Y(b,) and variable yz, where b, € Ej.
We propose two approaches of microinstruction format modifications, when field FB
is in use. The field FB contains the code K(B;), where B; € Tl¢.

In first case an additional node O, is inserted as a last component of OLC «a, € B,.
This node corresponds to MI with format (Fig. 2, b). In second case each node b, = O,
corresponds to MI with format (Fig. 2, ¢). The first bit of those formats corresponds
to variable yo. There are two new structures of CMCU (U,, U3) and both use format
(Fig. 2, a) with yp = 1. The CMCU U, uses also format (Fig. 2, b) with yo = 0. The
CMCU Ujs uses also format (Fig. 2, ¢) with yo = 0. Let us discuss these modifications
in details.

The control memory of CMCU U(I") has

A[? = 2R -M (5)

. In CMC
free cells, here U(I';) means that LFCA I'; is interpreted by CMCU U;. We propose

to insert Ar additional MI with format F1 (Fig. 2, b) into microprogram MP(I'). Let
Gy be amount of OLC a, € C’ for the classes B; € I1¢ such that condition holds.

"POLC

4
f the ways
er AT [5]
& B[. BUI
uit of AT
n number
iethods of
format of

of EMBs
(By1). The

| F8]

)

.
0

C bq € k.
n field FB

C &, € B
le b, = 0,
rresponds
1se format
) = 0. The
difications

()

‘e propOSﬁ
AP(). Let
holds.

Vol. 55 — 2009 OPTIMIZATION OF COMPOSITIONAL MICROPROGRAM CONTROL... 205

1Bl > 1 (6)

Let us discuss a case, when condition holds.

G, > A (N

In this case we propose to combine the modification of OLC @, € C’" and transformation
of output address.

Let us represent partition Ils as A; U A,, where set A, contains the classes B;
that satisfy to (6) and let /; =|A|| is as nearer to Ay as it is possible. It is clear that
A =TlcAMol= 1, =1 - 1,.

Let us encode each class B; € Ay by binary code C(B;) with

Ry = Jlog,)| (8)
bits and let us use the variables z, € Z = {z,,....zgs} for such encoding. Let us encode
the classes B; € A, by binary codes K(B;) with

Ry = |log,h| 9

bits and let us use the variables 7, € T = {ry,..., Tg3} for such encoding. In this case
the CMCU U, (Fig. 3) is proposed to interpret the LECA T,

| S
ZLﬁ 4

X " Yo

T) T . Y

Yb

I - > .
Clock A A-Ij | & [R [T |Feteh

Start

] Start g

Fig. 3. Structural diagram of CMCU U,

In CMCU U, an address of transition is formed by functions

O =0Z,1,X,yp), (10)

206 LARYSA TITARENKO, JACEK BIEGANOWSKI ETQ.

where variable yp points out the source of the code of the class B; € Il¢. Let us point
out that variable yp can be formed by any block of CMCU (CC, AT, CM). In case
under discussion block AT forms both variable yp and variables 7, € 7:

T = T(T), (11)

yp = yp(T). (12)

Let us point out that amount of inputs of PAL macrocells increased in CMCU U, in
comparison with CMCU U,. But it does not affect the hardware amount because of
wide fan-in of CPLD [3, 4].

The drawback of CMCU U, is an appearance of idle cycles of data-path, when
microinstruction with format F1 is executed. It leads to increase of the time of control
algorithm interpretation. If such increase is undesirable, then microinstruction format
F2 (Fig. 2, c¢) can be used to optimize the hardware amount.

The information in the field F'Y can be encoded using different strategies: one-hot
encoding of microoperations, maximal encoding of the collections of microoperations,
encoding of the fields of compatible microoperations [0, 12]. Let us discuss the one-hot
case, when bit capacity of the field FY is determined as

m, =N+ 1. (13)

If yp = O (format F2), then transition address is formed by functions

@ = (1, X), (14)

where |®|= R). Such approach permits to minimize hardware amount for circuit CC
without decrease of performance of digital system.

The drawback of F2 is the increase of bit capacity of MI by R; bits that can lead to
increase of the amount of EMBs in CM in comparison to CMCU U, . If such increase
is undesirable, then the following approach is proposed.

Let output word of EMB have f; bits and let number of these words be not lower,
than M. In this case

ny = [1N +2)/tu(] (15)

EMBEs is enough to implement the control memory of CMCU. In this case

Ay =nyty —N =2 (16)

bits of the word can be used to represent the field FB. If condition

é
5
:

e

Vol. 55 -

holds,
collect
Let the

bits of
()’g E Cwl

holds, t
bits of
represe!

bits are
the mos

ok

;rﬁ

In th
cases the
of OLC
a3 = <[:
ag = (b
where B
clear tha

We prop

ETQ,

e

et us point
D. In case

(1)

1CU U, ip
because of

path, when
- of control
fion format
es: one-hot

operations,
the one-hot

(13)

(14)

circuit CC

can lead to
ch increase

> not lower,

R A s i

b

7
]
g:
:
:
:

yol. 55 - 2009 OPTIMIZATION OF COMPOSITIONAL MICROPROGRAM CONTROL.... 207

holds, then free bits of EMB word can be used to keep the field FB. Otherwise the
collections of microoperations Y(b,) should be analyzed, where by=0Ogand @, € C'.
Let their microoperations form the set Y' C ¥, where [Y|= Ny. It means that

Ay=N+1-N, (18)

bits of the field FY are not in use, when microinstructions M1, are executed (b, = O,,
o, € C). If condition

A+ Ay > R (19)

holds, then field FB can be represented by A,, free bits of EMB word and by (Ry —~A,)
bits of the field FY. If condition (19) is violated, then A,, + Ay bits of K (B;) are
represented by EMB word and

Ry =Ry - A, — A, (20)
bits are formed by AT. In this case 7 = 7! U 7%, where [7'|= A + Ay and [7?] = Ry, In
the most common case we propose CMCU Us (Fig. 4) to interpret the LFCA T.

. b

X CC D p CT j T j‘ CM =Y

| Clook & 4 AT | ;(’L__y Y5, /R [TF [Feton
St | - Start |

* T s

Fig. 4. Structural diagram of CMCU U,

In this article we propose the methods of design of both CMCU U, and Us. In both
cases the proposed methods are illustrated using LFCA 'y with Ey = {by,...,b»;}. Let set
of OLC be formed, such that C = {ay,...,ar } wherea; = (b, b)), ay = (b3, by, bs),
@3 = (b, b7), a4 = (bg,bo,b10),as = (bi1,b12), 6 = biz, b4, bis), a7 = (big, b17),
@ = (big), a9 = (brg, by0), 1o = (ba1, b,y = (ba,....ba7). Let Il = {B1,....Bs},

whete By = {a), B, = {aa,a3), By = {ay,as), By = las, a7, a3}, Bs = {ag, i}, it is
clear that oy, ¢ C.

4. SYNTHESIS OF CMCU U,

We propose the following method of synthesis of CMCU U,:

208 LARYSA TITARENKO, JACEK BIEGANOWSKI

Construction of the set C of LFCAT. Th
Construction of the partition Ilc, and sets AjA;. reCO}‘f‘»‘
Modification of OLC a, € C’. vy (if
Natural addressing of microinstructions. sense
Encoding of the classes B; € Ay U A,. symbc

Construction of the content of control memory.
Construction of the table of transitions of CMCU.
Construction of the table of address transformer AT.
Implementation of the logic circuit of CMCU.

A Al S

In the example under discussion we have M = 27, R = 5, Ap = 32-27 =5, Gy =9,
Therefore, only Ar =5 OLC can be modified. It is clear that set A, includes class B,
and one of the classes By, B3, Bs. Let Ay = {By, B4}, Ay = {B, B3,Bs}, I} = 2, Ry=],
Z ={z1}, I, =3, R3s = 2, v = {11, 72}. Let us modify the OLC ay, a3, a¢, @7, a3 € B;,
where B; € Aj, in the following manner: a; = (b3, by, bs, 02), az = (bg, b7, 03),
e = <b13,b13,b15,06>, a7 = <b16,b17,07>, g = <b18»08>- The application of the
methods from [12] leads to addresses of microinstructions of CMCU U,(I"y) (Fig. 5

T 2T,
T\ 000 001 010 011 100 101 110 111

00| by | bs | O3 Dbqq bis O7 | b | b2

01, b2 | Oz | bg | b12| Og | big| bar | bos

10| bz | bg | bg | b1z big| Os by | b

11 bs | by | bio| b1a| biz | b1g | baz | bar

Fig. 5. Addresses of microinstructions of CMCU U,(I"))

Let us encode the classes B; € A; U A; in the following manner: K(B;) = 00, This s;
C(By) =0, K(B3) =01, C(By) = 1, K(Bs) = 10. The content of CM should be formed columt
in the following manner: has H
e if (b, by) € E, then variable yg is written in the cell with address A(by);
e cell with address A(b,) contains microoperations y, € Y(b,);

o if OLC a, € B; was modified, then yp = 1 for all microinstructions corresponding
to nodes b, € Ey, from this OLC;
s the cells corresponding to additional nodes contain code C(B;) and yg = 0, where

B; € Ay
Let set ¥ of LFCA T’y include N = 5 microoperations and let these microoperations
be distributed as the following: Y (b)) = Y(bg) = Y(byy) = {y1, »2}; Y(by) = Y(b11) =
Y(bag) = {ysh; Y(b3) = Y(b12) = Y(bps) = {ya}; Y(bs) = Y(b13) = Y(b24) = {y1, ys); V(b5
= Y(b14) = Y(b23) = {y2. yah; Y(be) = Y(bi5) = Y(bp) = {y1,y3, 5} Y(b7) = Y(bis) =
Y(ba1) = {y2, 33} Y(bs) = Y(b17) = Y(bao) = {y2,¥5}; Y(bo) = Y(b1g) = Y(b19) = {ys!

Nt

5, Gy =9,
es class By
- 2, RQ'—:],
V7, g € B[,
bs, by, 03),
ion of the
1) (Fig. 5).

(By) =00,
be formed

);

responding
= (), whete
»operations
= Y(by1) =
,yshs Y(bs)

= Y(b]ﬁ) =
9) = {ys)

.
|

A

vol. 55 — 2009 OPTIMIZATION OF COMPOSITIONAL MICROPROGRAM CONTROL.... 209

The first 8 cells of control memory of CMCU U,(T'y) are shown in the Table 1. The
record “yi/z,” means that this bit of the output word represents either microoperation
y; (if yo = 1), or variable z; (if yg = 0). For MIs with format F1 only field FB has
sense and other bits are ignored and they can have arbitrary values. It is shown by
symbol “*” in the Table 1. '

Table 1
Fragment of control memory of CMCU U,(I'))

Address |y FY/FB Remarks
YEYEYIYE Wz | y2 | vs | va|ys | ve | bo/O,] B
00000 I i 11070 [0,0]| b |B
00001 0/ 0 {(0/1]0]0]0O by | B
00010 1 0 |[0j0|1]0]0O by B,
00011 1 i 0|0{0{11!0 by | B,
00100 1 0 110j1[0]0 bs | B,
00101 0] 0 O N N 0O, | B,
00110 1 1 071101110 bs | By
00111 1 0 Li1{ol0|0 b, | B,

Let system of formulae of transitions [13] be formed for
bq & O(Fl)

node by and nodes

bo had bl;

by — x1b3 VvV x5 X2b4 V X1 X5 bg;

bs,b7 —>)C3bg V X3)C4b9 V X3 X4 b]l;

b0, b1y = xoxi3 V % x3b16 V 5 K3 big;
bi5.b17,b1g — x3b14 V X3 x5b19 V X3 Es boy;
b0, boa — xsbog V X6 bay; by — bp.

2D

This system is the base to form the table of transitions of CMCU U,, that has the
columns B;, K(B;), C(B,), by, A(By), yp, Xu, @y, h. In case of CMCU U,(I'y) this table
has Hy(I';) = 14 lines and the first 6 lines are represented by the Table 2.

Table 2
Fragment of the table of transitions of CMCU Uy)(T'))

B | K(B) | C(B) | by | Ab) |vn | X, D, |A
Bi| 00 — [b3 [00010] 1 | x Dy |1
b4 00011 1 XiXo D4D5 2
b |00110] 1 | %%, | DaDs |3
Byl — 0 | bg [0100T) O] x3 | DoDsl4d
b() 01010 0 .)E}X4 D21)4 5
by {01100 0 | 5%, | DaDs | 6

210 LARYSA TITARENKO, JACEK BIEGANOWSKI ETQ.

The yp = O corresponds to classes B; € A; and yp = 1 corresponds to classes
B; € A,. This table is the base to form the system (10). One can form from the table 1,
for example, the following DNF: D3 = 3, 772X %2 V ypZi¥3%4. Let us point out that
table of transitions of CMCU U (I"y) has H{{I'; 1) = 28 lines. It means that the amount
of terms in the system (10) is 2 times lower, than the amount of terms in the system (3).

The address transformer AT forms variables 7, € v and yp as functions of the
addresses of the outputs of OLC «, € B;, where B; € A,. The table of AT includes
the columns b,, A(b,), Bi, K(B;), 7, yp, q. In case of CMCU U, (I') this table has
H%:.(['y) = 5 lines (Table 3).

Table 3

Table of address transformer of CMCU U,(T'y)

b, | A, | B[KB | |y
by 100001 | B} 00 |-
bip 01011 B3| 01
b2 | 01101 B3| O1
by | 11000 | Bs| 10
by | 11010 Bs| 10

— o
—_ =] —
nlrlwlin|—|<

This table is the base to form the systems (11)-(12). After minimization we can get
from Table 3 the following DNFs: 7| = T1T273T5 , Ty = T} T2T3T4T5 \4 T1T2T3T4T5.
It is clear that variable yp can be expressed using equations for 7, € 7. In our case we
have: yp =7 V1 V T'1 T2T3T4T5.

The implementation of the circuit of CMCU U, is reduced to implementation of the
systems (10)-(12) using CPLD and implementation of control memory using EMBs:
These methods are well-known [3, 4] and they are out the scope of our article.

Let us point out that additional Mls correspond to idle cycles of data path of digital
system with CMCU U,. To work it out, it is enough to ban the synchronization of data
path, if MI with format F1 is read out the CM. Let it correspond to some variable
ye = 1. If condition

A, >l (22)

holds, then free bit of EMB can be used to keep yc. If condition (22) is violated, then
variable yc can be formed as

yc = Joyp- (23)

As a preliminary conclusion, we can point out that the proposed modification of micro-
instruction format permits to decrease the number of PAL macrocells in the circuit CC
in comparison to equivalent CMCU U;. The number of PAL macrocells in the circuit

holds

I N o
Z

Co
Im
In casc
classes
An
only b
output:
that tw
we can
It mea
variabl
The af
structic
The co
o if /
of
Yn ¢
e if ¢
The

O

ETJ,
e
to classes =
he table |,
nt out that
he amount
System (3),
ons of the
T includes
5 table hag

Table 3

§
%

we can get
1T2T3T4T5.
YUr case we

ation of the
ing EMBs.

ticle. ‘
th of digital
tion of data
ne variable:

22)

olated, then

(23)

yn of micro-
» circuit CC
1 the circuil

Vol. 55 — 2009 OPTIMIZATION OF COMPOSITIONAL MICROPROGRAM CONTROL... 211

AT can be lower, than in other models of CMCU [12]. But this hardware optimization
is connected with decrease of performance of digital system. Let us point out that
block AT can be eliminated, if condition

Ar < Gy 24)
holds and variable yp, is formed either by CC or CM.

5. SYNTHESIS OF CMCU U;

The proposed method of synthesis of CMCU Us(I") includes the following steps.
Construction of the set C of LFCA T".

Construction of partition I1-.

Encoding of the classes B; € 1.

Calculation of the values of parameters A,,, Ay, Ry.

Natural addressing of microinstructions.

Construction of content of control memory.

Construction of the table of transitions of CMCU.

Construction of the table of address transformer AT.

9. Implementation of the logic circuit of CMCU.

In case of CMCU Us(I')) we have I = 5, R, =3, 1 = {t1, 72,73}, Let us encode the
classes B; € [l in a trivial way: K(B;) = 000,..., K(Bs) = 100.

An analysis of the collections ¥ (by), where b, € O('}), shows that ¥ =Y and
only bit yz of the field FY can be used to keep the variables 7, € 7. Let number of
outputs ty = 4 for EMBs in use, therefore, expression (15) gives us n; = 2. It means
that two EMBs form the control memory of CMCU U;(I'y), Thus, according to (16),
we can get A, = 1. Condition (19) is violated because Ay =1, A, +Ay =2 <R, =3,
It means that circuit of CMCU U;(I"y) should include AT and Ry = 1. Let AT form
variable 7, € v* and let variables Ty, T3 €T kept in CM.

The application of the methods from [12] gives the following addresses of microin-

structions: A(by) = 00000, A(b;) = 00001,..., A(by7) = 11010.

The content of control memory is formed in the following manner:

o if b, € O("), then field FB of microinstruction M1, contains (R; — R4) junior bits
of the code K(B;), where by = 04, ay € By, field FY contains nicrooperations

Yn € Y(by);

* ifb, ¢ O), then yo = |, FY = Y(b,), FB = @;
The first 8 cells of control memory of CMCU Us(T'y) are shown in the Table 4.

B A e i S

212 LARYSA TITARENKO, JACEK BIEGANOWSKI ETQ.

Table 4

Fragment of control memory of CMCU Us(I'y)

Address | yp FY FB | Remarks
T\ TsT4Ts Yilya |y yaiys|yele| T3 |by| B
00000 111130100, 0 * b B
00001 001011100, 0 |0 b B
00010 110[0|01 1[0 0 | * |bs| By
00011 1110} 0|0] 1} O | * |byy By
00100 010[1|0]1]|0O| O |1 ibs| By
00101 1o L|jo | O | * |bs| By
00110 0|01 |1{0|0O] O |1 |b| B2
00111 1{O]|Li0|O(L] O | * |bg| B

The table of transitions of CMCU U5 includes the following columns: B;, K(8;),
by, A(by), Xu, ®p, h. This table is constructed on the base of the system of formulae
of transitions for nodes b, € O(I'). Let us point out that transition from initial node by
is executed using pulse Starr. If this transition is conditional one, then additional node
b, € E, should be inserted into LFCA T'. In the same time the edge (b, b;) should be
included into set E. This step is named as transformation of initial LFCA [6]. Such
transformation should be executed for CMCU U, — Us, but in case of LFCA T} this
step is eliminated. Another peculiarity of CMCU is execution of transition (b, bg),
using yg = 1. Because of it the table of transitions reflects only transitions for the
outputs of OLC a, € C’. To form this table the outputs of OLC @, € C” should be
replaced by classes B; € I, where @, € B;. In case of CMCU Us(T'y) this table has
H;(I"y) = 14 lines. The first 6 lines of this table are shown in the Table 5.

Table 5

Fragment of the table of transitions of CMCU Us(I'y)

B; |[K(B)| b, | Aby) | Xy (08
by | 00010 | x| Dy
By | 000 | by |00011 |x1x0 | DuDs
be | 00100 | £, %, Dy
by |00 | x3 | D3DyDs
By | 001 | by | 01000 | T3x4 D,
by 01010 | B384 | DDy

N BN —

This table is the base to form the system (14). For example, we can form from the
Table 4 the expression D3 = F|T2T3x 1% V T1T273x3. As in case of CMCU U,(I'y), the
number of the terms in system 14 is twice less, than in case of CMCU U;(I'y).

Vol. 55 -

Th
Here tl
K(B) 1
and tat

Thi

For ex:
The i
system:
This st
variabl
This de

where |
is used
PAL m

The
ase the
achieve
of the
based ¢
to impl
be usec
some ¢
lower tf
AT is e

If a
digital

ETg

Table ¢4

!
|

Bi, K(By),
f formulae
ial node b
tional node
» should be
\ [6]. Such
CA T’y this
on <bq,bE>,
ons for the

should be
s table has

A B 5 o s

Table 5

m from the
Up(I'y), the
Tr.

Vol. 55 — 2009 OPTIMIZATION OF COMPOSITIONAL MICROPROGRAM CONTROL.., 213

The table of address transformer AT has the columns by, A(by), B, K(B)), T, m.
Here the column 7, includes the variables 7, € 77, that are equal to 1 in the code
K(B;) from the m-th line of the table. In case of CMCU Us(I') v = {13, 13}, 72 = {7y}

and table of AT has HzT:: (I'1) = 2 lines (Table 6).

Table 6
Table of address transformer of CMCU Ux(T"})
bc[A(bq) B[K(B,) T m
bz() 10011 BS 100 Ty
1)22 10101 Bs 100 T 2
This table is the base to form the system
% = 7X(D). (25)

For example, from the table 5 we can get 7, = T\ToT3T4Ts vV T\ ToT5T4Ts.

The implementation of the circuit of CMCU Us is reduced to implementation of the
systems (14) and (25) using PAL macrocells and implementation of CM using EMBs.
This step is out the scope of this article. If some bits of the field FY are used as
variables 7, € !, then corresponding microoperations should be formed , if yy = 1.
This dependence is expressed by formula

Yn:YOFYb’nJ (n::l)'~"N)5 (26>

where FY[y,] is a bit of the field FY corresponding to y, € ¥ U {y£}. If such approach
is used, then time of cycle of CMCU Us is increased on the propagation time of one
PAL macrocell in comparison to the time of cycle of equivalent CMCU U,.

6. CONCLUSION

The proposed methods of modification of microinstruction format permit to decre-
ase the number of PAL macrocells in the addressing circuit of CMCU. This effect is
achieved due to the decrease of amount of terms in the system of excitation functions
of the flip-flops of the counter of microinstruction addressing. The optimization is
based on existence of free cells or free bits of embedded memory blocks that are used
o implement the control memory of CMCU. In this case an address transformer can
be used to form either the part of the code of the class of pseudoequivalent OLC or
some codes of these classes. In both cases the hardware amount in the circuit of AT is
lower than for known models of CMCU [6, 12]. If some conditions satisfy, then block
AT is eliminated from CMCU. The volume of CM is the same for CMCU U, — Us.

If additional microinstructions (format F 1) are in use, then performance of resulted
digital system is decreased due to idle cycles of data path. If additional field FB is used

214 LARYSA TITARENKO, JACEK BIEGANOWSKI ETQ.

(format F2), then the number of cycles for both CMCU U, and Uj are the same, but
time of cycle of CMCU U; can be more than in case of CMCU Uj. Thus, hardware
amount and time characteristics of CMCU depend on both control algorithm to be
implemented and parameters of elements in use.

Our research showed that the best solution permits up to 18-26% decrease of
hardware amount in comparison with CMCU U;. Here term “the best” means “the
best for given conditions”. In this article we have discussed only case of field FY
organization with one-hot encoding of microoperations. The proposed methods should
be modified if some other strategy is used for field FY. The practical sense has such
strategies as maximal encoding of the collections of microoperations and encoding of
the fields of compatible mircrooperations [12].

7. REFERENCES

l. C. Maxfield: The design warrior's guide to FPGAs. Academic Press, Inc., Orlando, FL, USA,
2004.

2. R.I. Grushnitsky, A. H. Mursaev, E.P. Ugrjumov: Design of the systems using the
microchips of programmable logic. BHV, Petersburg, 2002, (in Russian).

3. D. Kania: Logic synthesis for Programmable PAL-based Structures. Zeszyty Naukowe Politechniki
Slaskiej, Gliwice, 2004.

4. V. V. Solovjev: Design of digital systems using the programmable logic integrated circuits. Hot
line — Telecom, Moscow, 2001, (in Russian).

5. A. A. Barkalov: Syathesis of control units on PLDs. Donetsk National Technical University,
2002, (in Russian).

6. M. Adamski, A. Barkalov: Architectural and sequential synihesis of digital devices. Univer-
sity of Zielona Goéra Press, 2006.

7. G. De Micheli: Synthesis and optimization of digital circuits. McGraw-Hill, 1994.

D. Gajski: Principles of digital design. Prentice Hall, New York, 1997.

9. A. Barkalov, M. Wegrzyn: Design of control units with programmable logic. University of
Zielona Goéra Press, 2006.

10. E. McCluskey: Logic design principles. Prentice Hall, Englewood Cliffs, 1986.

11. A.D. Zakrevski, U V. Pottosin, L.D. Chermisinova: Background of logic design.
Book 2. Optimization in Boolean space. National Academy of Science of Belarusian, 2004.

12. A.A. Barkalov, A. V. Palagin: Synthesis of microprogram control units. IC NAS of Ukraine,
Kiev, 1997, (in Russian).

13. S. 1. Baranov: Logic synthesis of control automata. Kluwer Academic Publishers, 1994.

14. A. A. Barkalov: Principles of optimization of logic circuit of Moore FSM. no. 1, 1998, (in
Russian)

&

St

A ¢
[1,2,3.4
as com
controll
System -

Mo
finite-st
ore or M
of devic
one dig:

ETQ,

same, but
hardware
hm to be

crease of
eans “the
field FY
ds should
has such
coding of

), FL, USA,
ns using the
Politechniki
circuits. Hot
1 University,

ices. Univer-

University of

Hogic desigh.
004.
S of Ukraine,

(994,
1, 1998, (in

z

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 215-241

Structural decomposition of microprogrammed controllers

REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV

University of Zielona Géra
ul. Podgorna 50, 65-246 Zielona Géra, Poland
e-mail: R Wisniewski@iie.uz.zgora.pl
A.Barkalov@iie.uz.zgora.pl

Received 2009.01.07
Authorized 2009.03.24

The paper focuses on the structural decomposition of control units. Bight methods of
compositional microprogram control units are described and compared. Proposed solutions
can be divided into two main groups. The first one deals with CMCUs with mutual memory,
where the internal code of the controller is recognized by the microinstruction address. The
second group of presented methods is based on control units with sharing codes, where the
microinstruction address is formed as a concatenation of codes generated by the counter and
by the register. The aim of all proposed solutions is to reduce the number of logic blocks
of the destination programmable device.

Keywords: Control Units, Microprogrammed Controllers, Compositional Microprogram
Control Units, Programmable Devices, Field Programmable Gate Arrays

1. INTRODUCTION

A control unit (CU) is one of the most important part of any digital system
[1,2,3,4,5]. It can be found in almost all devices that contain microelectronics; such
as computers (central processor unit, CPU), cellular phones, cars and even remote
controllers. The control unit is responsible for managing all modules of the designed
system — it sends adequate microinstructions that should be executed [6].

Most of control units that are available on the market are created as a single-level
finite-state-machine (FSM). This means that the control unit is formed as a simple Mo-
ore or Mealy automaton [7,8]. Such a solution was good for small systems. But the size
of devices grows very fast, and now complex digital systems can be implemented using
one digital board such as system-on-a-chip (SoC) or system-on-a-programmable-chip

216 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETQ.

(SoPC). Especially SoPC systems, where logic functions are realized using program-
mable logic devices (PLDs), complex programmable logic devices (CPLDs) or field
programmable gate arrays (FPGAs) are very popular nowadays. Such devices compacts
all elements of the design on a single chip that contains built-in logic and dedicated
memory blocks [9,10]. Therefore, traditional methods of control units prototyping evo-
lve. One of effective methods of the CU realization is an application of the model of
the compositional microprogram control unit (CMCU).

The compositional microprogram control unit is a multi-level device, where the
control unit is decomposed into two main units [11,12,13]. The first is responsible
for addressing of microinstructions that are kept in the control memory. It is a simple
finite-state-machine. The role of the second part is to hold and generate adequate
microinstructions. Such a solution may lead to minimization of the number of logic
elements that are used for implementation of the CU. Therefore, wider areas of the
target device can be accessed by other modules of the designed system. The CMCU
memory can be implemented using either logic elements or dedicated memory blocks
of a chip [9,14,15].

2. CURRENT STATE OF THE ART

A digital system may be represented by a composition of the control unit (CU) and
operational unit (OU) also known as a data-path [1,6,16]. The idea of such a defined
digital system is illustrated in the Fig. 1.

[l l Function lData

X cu Y o ou
¢ O ¢Results

Fig. 1. The model of the digital system

A

Based on the set of input values (I) and set of logic conditions (X), the CU sends
proper microoperations (Y) to the OU. Additionally, a set of output values (O) is
generated. The set of inputs (I) and set of outputs (O) are used for communication
with the environment of the digital system [17,18].

The operational unit executes microoperations (Y) by processing proper input (Data)
and generating results (Results). Additionally the OU generates logic conditions (X)
for the control unit.

i
@
(|
-
: |

S AR A i

Vol. 55 —

The
(FSM) a
model o
and set ¢
vector:

Figur
are two n
values (m
is in char

The FSM
bed as M
Microinstr

where ¥, r
FSM. The
control uni
while inpu

ETQ,
- program-
s) or field
, compacts
dedicated
yping evo-
> model of

where the
esponsible
$ a simple
> adequate
er of logic
eas of the
he CMCU
ory blocks

L
%E
]

t (CU) and
1 a defined

CU sends
ues (O) i$
munication

.
]

iput (Data)
ditions (X)

Vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 217

2.1. SINGLE-LEVEL CONTROL UNITS (FINITE STATE MACHINES)

The most popular realization of control units nowadays is an finite state machine
(FSM) also known as the finite state automaton [3,12,16,19,20,21,22]. The FSM is a
model of behavior that consists of the set of states, set of transitions between states
and set of actions (microoperations). Formally the FSM can be described as a 6-tuple
vector:

M =<8X7Y, f hso>, (D

where:

s S =1{50,50..., 5¢} 1s non-empty finite set of states;

o X ={x0,x1,..., xz} is finite set of inputs;

o Y ={yo,y1,..., yy} is finite set of outputs;

o f:85XX — §is the transition function, this function determines the next state
sy € S depending on the current state s,, € S and on the value of input x; € X;

e h:S5xX — Y is the output function, this function determines the current output
ya € Y, based on the current state (in case of Moore automaton) or depending on
the current state and the current input (in case of Mealy automaton);

o 59 €S is the initial state of automaton.

Figure 2 shows the typical realization of the finite state machine [12,16]. There
are two main units in the FSM. The combinational circuit CC generates proper output
values (microinstruction) and indicates excitation functions for the register RG which
is in charge of holding internal state s,, € S of an FSM.

B Y
X CC D
e — s RG
Q

Fig. 2. The model of the finite state machine

The FSM can be realized as Moore or Mealy automaton. If the control unit is descri-

bed as Moore FSM, then outputs depend on the current state of the automaton [8].
Microinstruction is represented as:

Y= f(sm) 2)

where ¥, means the value of the output and s, € S represents the current state of the
FSM. The main advantage of such a realization is simplification of the behaviour of the
control unit. States are clearly tied with the action generating proper microinstruction
while inputs (conditions) influence only transitions between states.

218 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOVY

The second way of implementation of the FSM is Mealy automaton [7}. The value of
outputs depends not only on the current state but also on input signals:

The main benefit offered by Mealy FSM is the reduction of the number of internal
states of the automaton in comparison with Moore FSM. Both Moore and Mealy
automata are classified as single-level control units.

The optimization of the FSM is one of the most popular tasks nowadays. There are
many ideas focused on improving the prototyping process and encoding of internal
states of the automaton [23,24,25,26,27,28,29,30,31]. Above researches benefited in
appearance of computer-aided design systems, like Sequential Circuit Synthesis, SIS
[32]. It contains algorithms for state assignments (NOVA, JEDI) and state minimization

(STAMINA).

The next subsection deals with microprogram control units where outputs of the con-

Y = fsm, X),

where X is a set of input values (conditions).’

troller are organized in microinstructions.

2.2. MICROPROGRAM CONTROL UNITS

The idea of microprogramming was introduced by M. V. Wilkes in 1951 as an
intermediate level to execute computer program instructions [33,18,19,34,35,36,37,38].
Microprograms were organized as a sequence of microinstructions and stored in the
special control memory (CM). The algorithm for the MCU is usually specified by the
flow-chart (FC) description [11,16]. Such a flow-chart algorithm consists of four main
types of vertices (start, end, operational vertex, conditional vertex) that are interpreted

by the control unit,

X

.._.._»

SQ

 I—

RAMI

Q

v

CM

— Y

Fig. 3. The model of the microprogram control unit (MCU)

Typical structure of the MCU is presented in the Fig. 3. There are three main blocks
that consist of the MCU: a sequencer SQ, a register of the microinstruction address
RAMI and the control memory CM [11,16]. The sequencer is the combinational circuit

that forms the excitation function for the RAMI:

D= f(X,T).

Vol. 55

He
geners
proper
is furt
of mic
addres
is anal
proper

Thi
to pert
the stri

In the N
the cous
long se;
that are
The ma
Outputs
ly repla
memory
Apart fr
not only
microins
dedicate
unit may
The
decompy
States. T'

ETg

S

e value of

3)

of internal
ind Mealy

There are
of internal
enefited in
thesis, SIS
nimization

>f the con-

(951 as an
,36,37,38].
red in the
fied by the
" four main
interpreted

1ain blocks
on address
onal circuit

@

.
.
i
€
¢

i

!
|
|

|
|
:

yol. 55— 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 219

Here X is a set of logic conditions of the system and T is a feedback function
generated by the control memory. Based on this function, the RAMI generates the
proper microinstruction address A. The control memory CM holds microprogram that
is further executed by the operational part of the system. There are different methods
of microinstructions addressing [39,3], however in most cases the CM also keeps
addresses of next microinstructions that should be executed. The feedback function 7'
is analysed by the sequencer which based on the condition from the set X selects the
proper address A.

There are many designing ways of the MCU [11,40]. One of the most popular is
to perform the sequencer as the multiplexer, and the RAMI as the counter [11]. Then
the structure of the MCU may be interpreted as the system shown in the Fig. 4.

X l

COUNTER

v A

CM

cl | L]

X Y

MUX

Fig. 4. The model of the microprogram control unit with counter

In the MCU presented in the Fig. 4, the CM generates two feedback functions — 7" for
the counter and C for the multiplexer. Such a realization is especially fruitful in case of
long segments (chains) of microinstructions [17]. Then the chain of microinstructions
that are not separated by the condition may be replaced by one state (block).
The main advantage of the microprogram control unit is simplicity of its structure.
Outputs of the controller are organized in microinstructions and they can be easi-
ly replaced. Additionally, the control memory may be implemented using dedicated
memory blocks of the FPGA reducing the area of used logic elements.
Apart from its benefits, the MCU has some disadvantages. The control memory holds
not only microoperations but also information for calculation of the address of the next
microinstruction. Very often the size of the control memory exceeds the size of the
dedicated memory block of an FPGA. To eliminate these disadvantages, the control
unit may be decomposed.

The control unit may be decomposed in two ways. The first one is functional
ccomposition. Here the controller is decomposed basing on its internal functions and
states. The second method is structural decomposition where the task of the decompo-

d

220 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETQ. Vol. 55
sition is reached thanks to the modification of the structure of the control unit. Such a
method leads to the compositional microprogram control unit.
, The a
3. FUNCTIONAL DECOMPOSITION OF CONTROL UNITS separa
into tv
Functional decomposition is the process that splits the complex function into the Yo is t
smaller sub-functions [41,11,42,43,44,45,46]. Such a realization is often used as a part has se
of logic synthesis of designs implemented with programmable devices. Functional de- functic
composition is widely expanded especially by academic organizations [32,47,48,49,50].
This paper focuses on the decomposition of control units implemented on the FPGA.
Optimization of SPLDs and CPL.Ds can be found in [51,52,53,42,54,55,43,56,57].
In the FPGA, the limited number of inputs and only one output of LUT elements
make functional decomposition very effective [46,11,29,58,59]. The idea of functional
decomposition is widely used either by commercial (Xilinx, Altera, Synplicity, etc.)
and non-commercial organisations (Universities). It should be pointed out that the
best results are achieved by non-commercial projects such as DEMAIN (Technical
University of Warsaw) or SIS (University of Berkeley).
Functional decomposition may be realized as serial decomposition or parallel de-
composition. In the first one, the set X of input variables is split into two subsets U
and V [3].
|
G
|2
H
Y=F(X)
Fig. 5. The idea of serial functional decomposition
The set V forms inputs for the function G which generates the set of outputs Z = G(V).
Of course the method has sense only if the number of outputs of the function G is ‘
fewer than the number of its inputs. Furthermore, outputs Z generated by G and the S?”ﬂl a
set U form inputs for the function H (Fig. 5). Finally, function F is represented as Joins ?0
follows: step eith

the satis

1 into the

as a part
ional de-
18,49,501.
e FPGA,
6,57].

elements
unctional
city, etc.)
-~ that the
Technical

rallel de-
subsets U

7 = G(V).
tion G 18
7 and the
sented as

Vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 221

F=HUGWV)). (5)

The aim of parallel decomposition is to decompose the initial function F into two
separate sub-functions G and H [11]. The main idea is to split the set of outputs Y
into two subsets Yz and Yy. Here Y is the set of outputs of the function F. Similarly
Y is the set of outputs of the function G and Yy — the set of outputs of H. The method
has sense if cither one of functions G or H has fewer input variables than the initial
function F. The idea of parallel decomposition is illustrated in the Fig. 6.

|

@

Yo

®
I<<i = \,/::x:><

Fig. 6. The idea of parallel functional decomposition

Serial and parallel decompositions are very often combined. Balanced decomposition
joins both methods [11,60,61]. The whole process may be divided into steps. In each
step either serial or parallel decomposition is performed. The process is repeated until
the satisfactory result is reached [11].

222 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETOQ. Vol. 55

Presented methods of decomposition are fruitful for combinational blocks of the
system. However they can also be used in decomposition of control units [11,29,62,63].
The controller may be realized as the sequential circuit shown in the Fig. 7. The
main idea is to use the control memory to hold microinstructions. Such a memory is
implemented with dedicated memory blocks of the FPGA, which reduces the logic
resources of the device.

X
n

Register

n+p

Control Memory

m

% Q
In th
Fig. 7. The control unit realized as the sequential circuit block of
o)) .]) using th
Each microinstruction of the control unit presented in the Fig. 7 consists of two decompc
fields. The first one holds the code Q of internal states of the automaton, while the control 1
second contains output variables from the set Y. The next state of the controller is The |

determined by input variables X and by the current state of the control unit. The width effective,
of the address of the control memory may be calculated as |A| = n+ p, where n means
the number of the input variables and p represents the number of bits that are used
for encoding internal states of the controller [11]. The volume of the control memory
depends on the width of its address. Each additional bit doubles the volume of the
memory. Thus, very often such a volume exceeds the volume of dedicated memory
blocks of the FPGA. The solution to this problem may be functional decomposition of
the control unit (Fig. 8).

blocks of
of logic t
hand, on]

The <
Structures
chart of

ETQ.
ks of the
29,62,63].
g. 7. The
Nemory s

the logic

sts of two
while the
ntroller is
The width
e 71 means
t are used
»] memory
me of the
d memory
position of

%
!
|
|
:

Vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 223
X
ﬂn p
UMA
@W <n+p

Register
ﬂw
Control Memory

G

Y

Fig. 8. Functional decomposition of the control unit

In the system shown in the Fig. 8 the control memory is decomposed into two parts:
block of the address modification (CAM) and smaller memory that may be realized
using the dedicated memory block of the FPGA. There are many variants of such a
decomposition [29,62,63]. The main aim of all methods is to decrease the size of the
control memory using the minimum number of logic blocks of the FPGA.

The main benefit of the functional decomposition of the control unit is very high
effectiveness. The memory may be decomposed in such a way that dedicated memory
blocks of the FPGA are used to the maximum. In the other words the minimum number
of logic blocks are used to realize the circuit of the address modification. On the another
hand, only a part of a microinstruction is held in the memory after the decomposition.

4. STRUCTURAL DECOMPOSITION OF CONTROL UNITS —
COMPOSITIONAL MICROPROGRAM CONTROL UNITS

The structural decomposition of control units lead to the new microcontrollers

structures, known as Compositional Microprogram Control Units (CMCUs). Any flow-
ch

art of algorithm can be interpreted as the compositional microprogram control

224 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ET.Q.

unit {13]. In the CMCU the control unit is decomposed into two main parts. The first
is responsible for addressing microinstructions that are kept in the control memory.
The role of the second part is to hold and generate adequate microinstructions.

Let’s introduce some definitions that will be needed later in order to describe the
CMCU more formally.

4.1. MAIN DEFINITIONS

Let the control algorithm [1] of a digital system [6,16,40] be represented as the
flow-chart I' [12] with a set of operational vertices B = {by,...,bx} and a set of edges
E. Each vertex b; € B contains microoperations Y(b;) € Y, where ¥ = {y,....,yn}
is the set of microoperations. Each conditional vertex of the flow-chart contains one
element from the set of logic conditions X = {xi,..., xz}.

Defininition 1. The operational linear chain (OLC) of the flow-chart [is a finite
sequence of operational vertices ttg = (bgi,. .., bgrg) such that for any pair of adjacent
components of the vector «, there is an edge (b1, byir1) € E, where i is the number
of the component in the vector ¢, (i=1,...,Fg-1).

Defininition 2. The vertex b, € B is called as an input of the OLC «, if there is the
edge (b;,b,) € B, where b, is either initial or conditional vertex of the flow-chart I' or
operational vertex that does not belong to the OLC «,.

Defininition 3. The vertex b, € B is named as an output of the OLC «, if there is
the edge {b,, b;), where b, is either conditional or final vertex of the flow-chart I' or
operational vertex that does not belong to the OLC a,.

Defininition 4. The parameter M, is equal to the number of vertices in the longest
OLC a, of the ﬂow—chart I

Defininition 5. The minimum number of bits required to encode the variable M| is
represented as R and it is equal to: Ry =(logo M.

Defininition 6. The parameter M, is equal to the number of all operational chains
presented in the flow-chart I'.

Defininition 7. The minimum number of bits required to encode the variable M, is
represented as R; and it is equal to: Ry =\log, M,|.

Defininition 8. The parameter M; is equal to the number of all operational vertices
in the flow-chart I'. This parameter also indicates the total number of microinstructions
of the CMCU.

S S o

Vol. 55

Defini
repres:

Le
let C =

Let

where
In this
(Fig. 9)

The;
the regi
circuit g
Sl. Furt)
unit S,
§= {Sl,.
outputs
transitio
from the
function
executed
addresse
{microin

ETQ.

The first
nemory,
S.

ribe the

d as the
of edges

Ioe o 7yN}
ains one

- a finite
adjacent
number

re is the
hart I” or

“there is
rart I or

> Jongest
le M, is
al chains
le M, is

| vertices
tructions

Vol. 55 ~ 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 225

Defininition 9. The minimum number of bits required to encode the variable Ms; is
represented as Ry and it is equal to: Ry =)log, M5[.

4.2. THE CMCU WITH BASE STRUCTURE

Let D? be a set of operational vertices that are included in the chain Ry = a,. Then
let C ={a1,...,a5} be a set of OLCs of the flow-chart I" satisfied to the condition:

D¥N DY =g + 7:8 9 € {1,...,G});
B=D'uD*uU..uUDC; (6)
DY +QB(g=1,..,6).

Let natural addressing of microinstructions is executed for each OLC a, € C:

Albginr) = Aby) + 160 = 1,...,),)

where A(bg) is an address of microinstruction corresponding to the vertex b, € B.
In this case flow-chart I' can be interpreted by CMCU Upgs with mutual memory

(Fig. 9).
v Vo
T o A
X — CT B oM
- cc v
D
B RG Q

Fig. 9. The compositional microprogram control unit with base structure

There are four main modules in the CMCU Ugs: the combinational circuit CC,
the register RG, the counter CT and the control memory CM. The combinational
circuit and the register represent the simplified FSM of microinstructions addressing
St. Furthermore, the counter and the control memory form the microprogram control
unit S,. The RG keeps a code K (an) of the current state s,, € S of the CMCU, where
8= {s1,...,95} is a set of internal states. The register has Tlog, M, flip-flops and their
outputs ¢, € Q are used to encode states s,, € S, here Q =1{q1,..-.qr2}, 10Ol = Ry. The
transition from the state s, € S to the state s, € S is executed by switching the register
from the code K (a,,) to the code K (a,). Such a switching is determined by the excitation
function Q, € Q. The CT keeps the address A(b,) of the microinstruction ¥ (b,) that is
executed by a data-path [13]. Variables a, € A are used for the representation of the
addresses A(by). Microinstructions are kept in the CM having 2%! words. Each word
(microinstruction) has N+2 bits in a case of one-hot encoding of microoperations

226 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETQ.

[64,65]. One of additional bits is used to keep an variable yy to organize the mode
of addressing (7). The second bit keeps a variable yg to terminate the fetching of
microinstructions from the control memory.

The presented CMCU Ugg operates in the following manner: at the beginning the
register is set to the value that corresponds to the initial state of the FSM. Similarly,
the counter is set to the address of the first microinstruction. If transitions are executed
inside the OLC «, € C, then yp = 0 which causes the increment of the CT and forbids
changing the state of the CMCU. When the output of the OLC «, € C is reached
then yp = 1 and the combinational circuit forms the excitation function for the register
setting it into the proper state [66,67,68]. Similarly the counter is set with the proper
value as well:

D = f(Q,X), ()

T = f(Q, X).)
Here X means the set of conditions, Q is the set of internal variables used to encode
the current state of the CMCU, D is a set of variables that form an excitation function
for the register D = {d|,...,dgy} and T is a set of variablesthat form an excitation
function for the counter T = {f1,...,lz2}.

Functions (8) and (9) form a code K(s,,) of the state of the transition in the register
and an address of the input of the next OLC a, € C. If the CT contains the address of
the microinstruction Y (by) such as (b,,b,) € E, then yx = 1. In this case the operation
of the CMCU UBS is finished {69,70,71].

The main benefit of the realization of the controlier as the compositional micro-

program control unit Ups is a possibility of implementation of the circuit CM using
dedicated memory blocks [72]. Other blocks of the prototyping system Upg are im-
plemented with the logic blocks (flip-flops and LUT elements) of the FPGA [3,73,74].
Such an idea lead to reduction of the number of logic blocks in comparison with the
realization of the controller as a traditional finite state machine and thus, the designer
can allocate wider area of the FPGA for another blocks of the prototyping system.
The effectiveness of the CMCU is especially high if the controller interprets the linear
flow-chart. Such flow-chart contains 75% of operational vertices or includes long linear
chains (segments) of operational vertices.
The second advantage of the CMCU is the possibility of selecting the implementation
method of the control memory. The designer can decide if the circuit CM should be
realized with logic blocks or with dedicated memory blocks. It is important especially
incase of designs, which consumes large area of the memory. Then the whole CMCU
is implemented with logic blocks of the FPGA.

In opposition to functional decomposition, structural decomposition of a control
unit permits to apply the idea of partial reconfiguration [14,75,76]. In this case, only
a part of the controller (the control memory) can be replaced while the rest of the
system remains untouched.

s

Vol. 55

Th
There
counte

Distinc
tional ¢

where .
by the
the con
the CM
register
reduced
In t
med in
generat
The cor
correspe
microin
the incr
unit, W
the exci
state of
controlle
Y = 1.

The
of the (7

¢ the mode
fetching of

ginning the
(. Similarly,
re executed
and forbidg
" is reached
the register
| the proper

®)

)
d to encode
on function
n excitation

the register
> address of
\e operation

onal micro-
t CM using
Jps are im-
A [3,73,74].
on with the
he designer
ing system.
ts the linear
 long linear

lementation
1 should be
it especially
10le CMCU

yf a control
s case, only
rest of the

|

R A A RIS

!
§
%

yol. 55 ~ 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 227

4.3. WITH THE CMCU MUTUAL MEMORY
The structure of the CMCU Uy with mutual memory is presented in the Fig. 10.

There are three main blocks in the CMCU Umm: the combinational circuit CC, the
counter CT and the control memory CM [77].

| yo

X T A
CM

cC > ¢ >

Fig. 10. The structure of the CMCU with mutual memory

Distinct from the CMCU Upgg with base structure, in the CMCU Uy, the combina-
tional circuit generates the excitation function only for the counter:

T = f(Q,X). (10)

where X means the set of conditional vertices and A means the code that is determined
by the counter. Such a code is also the address of the microinstruction that is kept in
the control memory. The number of logic functions is decreased in comparison with
the CMCU Upgg, because the circuit CC doesn’t generate the excitation function for the
register. Thus the number of logic blocks of the destination programmable device is
reduced [40,78,79,80].

In the CMCU Uy, transitions between internal states of the controller are perfor-

med in the different way than it is in the CMCU with base structure. Here the address
generated by the counter is used to recognize the proper state of the control unit.
The controller operates as follows: at the beginning, the counter is set to the value that
corresponds to the initial state of the FSM which is equal to the address of the first
microinstruction. If transitions are executed inside the a, € C, then yp = 0. It causes
the incrementation of the CT and forbids changing the current state of the control
unit. When the output of the @y € C is reached, yp = 1 and the circuit CC forms
the excitation function for the counter (10). This function forms the code K(s,) of the
state of transition and the address of the input of the next OLC a, € C as well. If the
controller reaches an address of the microinstruction ¥ (by) such as (b, bg) € E, then
Yk = 1. In this case, operation of the CMCU U, is finished.

4.4. THE CMCU WITH FUNCTION DECODER

The microprogram control unit with function decoder U Fp is an extended structure
of the CMCU with mutual memory [78,81]. In comparison to the controller Uy, there

228 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETQ.

is additional circuit (function decoder, FD) introduced. Figure 11 illustrates the CMCU
with function decoder.

Yo

z T >
cc FD cT M

)4
v

v

Fig. 11. The structure of the CMCU with function decoder

The main idea of the method is to reduce the number of logic blocks of the destination
FPGA due to the usage of additional block (function decoder) which may be imple-
mented using dedicated memories. Therefore, fewer LUT elements are used during the
realization of the control unit in comparison with the CMCU with mutual memory.
In the CMCU Upgp variables that form excitation function for the counter are
encoded with the minimum number of bits. To solve this task all inputs of operational
linear chains ought to be encoded. Now the circuit CC generates the function Z:

Z = f(X, A). (1)

Function Z contains encoded addresses E({) of all inputs in the set of OLCs. They are
further decoded by the circuit FD which indicates the proper code for the counter:

T = f(Z). (12)

The number of bits that are required to encode all inputs can be calculated as
Rz = llogogMy[, where M, = |I| is equal to the number of all inputs in the set of
OLCs.

Presented solution permits to reduce the number of outputs generated by the circuit CC.
Additional block of the function decoder is implemented with dedicated memories of
FPGAs. Therefore, the number of logic elements that are needed to implement whole
controller is reduced.

4.5. THE CMCU WITH OUTPUTS IDENTIFICATION

The structure of the CMCU Uy, with outputs identification is illustrated by the
Fig. 12. The main idea is to use the part of the address A for the identification of the
internal states of the control unit. Now the set of variables O (Q C A) represents the
code of the current state of the controller [80,82].

Vol. 55

In the ¢
the cur
linear
microir
functio

The
a conju
address
of the s

I

To impr
and U()[,
excitatio

where X
QCAis
proper ac

ETg

he CMCU

Yo

>\

destination
be imple-
during the
Memory.
ounter are
yperational
on Z:

(1)

5. They are
ounter:

(12)

culated as
the set of

AR S

circuit CC.
emories of
nent whole

ited by the
tion of the
resents the

vol. 55~ 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 229

l :

X —b T A
cc [—® CT Bl oM

I a

Fig. 12. The structure of the CMCU with outputs identification

In the CMCU Uy, the set of feedback variables A that are used for the identification of
the current state of the controller is reduced to the minimum. Outputs of the operational
linear chains may be recognized using Ry, bits thanks to the special encoding of

microinstructions [83,84,85,86,87]. Therefore, the combinational circuit generates the
function T" for the counter [83,88]:

T = f(X, Q). (13)
4.6. THE CMCU WITH OUTPUTS IDENTIFICATION AND FUNCTION DECODER
The CMCU Upp with outputs identification and function decoder (Fig. 13) is

a conjunction of two structures presented in previous sections. There is a special

addressing of microinstructions used in the CMCU Uop. Moreover, maximal encoding
of the set of variables A is performed as well.

l "
X —»]

CC I @ — cT oM

Fig. 13. The structure of the CMCU with outputs identification and function decoder

To improve the reduction of LUT elements of the implementation of CMCUs U

and Uy,, both methods may be combined. Now the combinational circuit generates the
excitation function Z for the circuit FD:

Z=fX, 0. (14)

where X means the set of input variables of the CMCU (conditional vertices) and

0 € As a feedback function generated by the counter. The function decoder generates
Proper addresses of microinstructions:

230 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETQ.

r=f(Z). (15)

where T means the set of variables that form the excitation function for the counter.

4.7. COMPOSITIONAL MICROPROGRAM CONTROL UNITS WITH SHARING CODES

In a CMCU with sharing codes the microinstruction address is determined by both
codes generated by the counter and by the register. The aim of such a method is the
reduction of logic blocks of the FPGA. Figure 14 shows the CMCU Ug¢ with sharing
codes [89,90,91,92]. The main idea is to use both codes generated by the counter and by
the register to form the microinstruction address. Therefore, the number of variables
that are used for encoding of the excitation functions for the counter is reduced in
comparison to the CMCU Ugg.

v v,
T A J
X —p EEEE— CT
cC CM

LA

—pY

Fig. 14. The structure of the CMCU with sharing codes

In the CMCU with sharing codes the microinstruction address A(b,) is represented as
a concatenation [39]:

A(br) = K(ag) K(by). (16)

Here K(a,) is a code of the OLC « € C with R, =]log;M;[bits, where M, defines
the number of OLCs in the initial flow-chart I'; K(b,) is a code of a component of the
OLC a4 € C corresponding to the vertex b, € B. Code K(b;) has R;= 1log,M/[bits,
where M; is equal to the maximum amount of components in the OLC a, € C. Sign
(*) in (15) is used for concatenation operation.

In the CMCU Ugc¢ the combinational circuit CC generates excitation functions for
the counter CT and for the register RG:

I'= f(X,0), amn

D= f(X.,0), (18)

Vol. 55

The R(¢
an upp
active
of the

The
The m:
to the e
the nun
addition
and for
blocks.

In tt
counter
are ence
all inpui
excitatio

Function
further d
for the r

ETQ,

(15)

counter,

ODES

d by both
10d is the
th sharing
ter and by
“variables
educed in

>sented as

(16)

1, defines
ent of the
2M1|— bitS,
€ C. Sign

ctions for

(17

(13)

Vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 231

The RG is in charge of holding the code of the current OLC. Additionally it generates
an upper part of the microinstruction address. The CT keeps only the number of the
active component (block) in the current OLC. Therefore it determines the lower part
of the microinstruction address.

4.8. THE CMCU WITH SHARING CODES AND FUNCTION DECODER

The CMCU Usp with sharing codes and function decoder is shown in the Fig. 15.
The main idea is to reduce the number of outputs of the combinational circuit thanks
to the encoding of the excitation functions for the counter and the register. Therefore,
the number of logic blocks required for implementation of the CMCU is reduced. The
additional block — function decoder — decodes and sends proper values for the counter
and for the register. Function decoder can be implemented with dedicated memory

blocks.
Y J V,
X — i B CT A

cc » FD —»| CM
L RG Q

Fig. 15. The CMCU with sharing codes and function decoder

—p Y

In the CMCU Usyp, the set of variables that form the excitation function T for the
counter and the set of variables that form the excitation function D for the register
are encoded. Similarly to the CMCUs Upyp and Uor shown in the previous section,
all inputs of the set of OLCs are encoded. The combinational circuit generates the
excitation function Z for the function decoder:

Z=[X0), (19)

Function Z contains encoded addresses Q of all inputs / in the set of OLCs. They are

further decoded by the circuit FD which indicates the proper code for the counter and
for the register:

= [, (20)

D = f(2), 2D

232 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETQ.

4.9. THE CMCU WITH ADDRESS CONVERTER

The method of sharing codes makes sense only if the size of codes generated by
the register RG and by the counter CT is equal to the width of the microinstruction
address [13]. Then the following condition is fulfilled:

Ry +Ry; =R5. (22)

In most cases the total number of bits generated by the register and by the counter
exceeds the width of the microinstruction address. The condition (22) is violated be-
cause R; + Ry > R3 and the volume of the control memory grows drastically. The
minimum volume of the memory can be calculated as:

Sem = (N +2) %28, (23)

where Scy means the total volume of the control memory, N+2 counts the total number
of microoperations kept in the control memory (N is the number of microoperations
while two additional bits are formed by vy and yg), and R3 defines the minimum
width of the address. It is clear that each additional bit in the microinstruction address
doubles the total volume of the memory.

To solve such a problem the CMCU with address converter can be used. The
method is based on the application of the additional block (address converter) in the
CMCU structure (Fig. 16). Such an approach has sense only if the condition (22) is
violated and the total quantity of codes generated by the register and by the counter is
greater than the width of the address of the control memory.

Y Y
A
> > o | ca D cm
| cc > Ly
D
» RG Q

Fig. 16. The structure of the CMCU with address converter

Let K(a,) be the state code of the register and K(b,) the state code of the counter.
According to the (14), the microinstruction address A(b,) is calculated as the concate-
nation of these codes:

A(by) = K(ag) * K(b,).

R A

Vol 55 -

In the (
by the
Now th

and the

Here V
Present
with ba
e min

witl
e min
It is cle
of the
destinat

This
codes tl
function
Applica
if the co
logic el

The
Fig. 17.
with the
excitatio

ETQ.

erated by
1struction

(22)

€ counter
vlated be-
sally, The

(23)

al number
yperations
minimum
n address

used. The
ter) in the
on (22) is
counter is

Yo

e counfer
e concate-

Vol. 55 = 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 233

In the CMCU U¢, the address generated by the register and by the counter is converted
by the address converter.
Now the circuit CC forms the system of functions:

T = f(X,0), (24)

D= f(X,0Q), (25)

and the circuit CA converts generated addresses, forming the new function V:

V=V(QX), (26)

Here V = {v,,...,vg3} is the set of addresses of the control memory.

Presented solution permits to combine the positive features of the traditional CMCU

with base structure (Ugs) and with sharing codes (Ugc) such as:

» minimal number of inputs and outputs of the combinational circuit CC (compared
with the Ugc);

e minimal width of an address of the control memory (in comparison with the Ugc).

It is clear that application of a given method makes sense only if the implementation

of the CMCU with additional address converter requires fewer memory blocks of the

destination FPGA than CMCUSs based on the standard structure Usc.

4.10. THE CMCU WITH ADDRESS CONVERTER AND FUNCTION DECODER

This section presents the last method of synthesis of the CMCU with sharing
codes that is proposed in the paper — the CMCU Ucp with address converter and
function decoder. Such a controller combines two ideas presented in previous sections.
Application of the address converter permits to minimize the volume of control mermory
if the condition (22) is violated, while the additional function decoder reduces required
logic elements for implementation of the CMCU.

The CMCU U¢p with address converter and function decoder is shown in the
Fig. 17. Excitation functions 7' for the counter and D for the register are encoded
with the minimum number of bits. Now the combinational circuit CC generates the
excitation function Z for the function decoder:

Z=fX,0), 27)

234 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETO.
+ Yo
T A
X P z B CT B vV,
| cc » FD —» CA MLy

P rRe |9

Fig. 17. The CMCU with address converter and function decoder

Function Z contains encoded addresses Q of all inputs / in the set of OLCs. They are
further decoded by the circuit FD which indicates the proper code for the counter and
for the register:

T=f2), (28)
D = f(2), (29)

Finally the address indicated by the counter and by the register is converted via the
circuit CA:

V = f(T, D), (30)

5. RESULTS OF EXPERIMENTS

This section presents results that were achieved during the logic synthesis and
implementation of CMCUs. All synthesis methods were verified with over 70 bench-
marks. Additionally, there was an FSM model prepared for each test. The automaton
was created according to the rules presented in [93,94]. It should be pointed out that
all FSMs were prepared in such a way, that during implementation, all microoperations
were realized with dedicated memory blocks of the FPGA.

The prototyping process for each benchmark was similar. Based on the flow-chart
description (.fc file), the controller was structurally decomposed with all 8 synthesis
methods presented in the article. Additionally, there was an equivalent FSMproduced.
Achieved Verilog codes were finally synthesised and implemented with the Xilinx XST
tool.

Table 1 presents average results of the CMCU implementation designed with the
particular synthesis method in comparison to the FSM and to the traditional CMCU
with mutual memory. As the destination, the FPGA XC2VP30 (Xilinx Virtex-II Pro
family) was selected. The device contains 27392 Flip-Flops, 27392 LUTs (13696 Slices)
and 136 dedicated memory blocks (Block-RAMs). The device was selected because

Vol. 55 -

of its «
Zielon:

1c

The me
e FSN
MM
FD

Ol -
Ob
func
SC -

® & @ e

decc

decc

The
blocks ¢
tied witl

In c:
with once

. They are
ounter and

(28)

(29)

ed via the

(30)

thesis and
70 bench-
automaton
ed out that
operations

flow-chart
3 synthesis
Iproduced.
(ilinx XST

d with the
1al CMCU
rtex-J1 Pro
596 Slices)
>d becaust

i
§
§
%
§

Vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 235

of its structure (it can be partially reconfigured) and its availability at University of
Zielona Goéra.

Table 1

Average results of experiments

FPGA Designing method
resources FSM MM FD Of OD SC SD CA D
Slices 100% 91% 73% 76% 60% 57% 5% 53% 50%
Comparison FF 100% 100% 105% 102% 108% 120% 127% 122% 125%
to the FSM LUTs 100% 91% 71% 78% 60% 57% 50% 54% 49%
BRAMs 100% 100% 136% 102% 126% 279% 320% 151% 186%
Comparison Slices 110% 100% 82% 84% 68% 62% 57% 60% 57%
to the CMCU FF 100% 100% 105% 102% 108% 120% 127% 122% 125%
with mutwal — LUTs 110% 100% 81% 86% 68% 63% 57% 62% 57%
memory BRAMs 100% 100% 136% 102% 126% 279% 320% 151% 186%

The meaning of abbreviations:

¢ FSM - realization of the controller as the FSM;

¢ MM - realization of the controller as the CMCU with mutual memorys;

o FD - realization of the controller as the CMCU with function decoder;

* OI - realization of the controller as the CMCU with outputs identification;

¢ OD - realization of the controller as the CMCU with outputs identification and

function decoder;

SC ~ realization of the controller as the CMCU with sharing codes;

* SD - realization of the controller as the CMCU with sharing codes and function
decoder;

» CA - realization of the controller as the CMCU with address converter;

¢ CD - realization of the controller as the CMCU with address converter and function
decoder.

6. CONCLUSIONS

The detailed analysis of results of investigations shows, that the number of logic

blocks that are required for implementation of the controller in the FPGA is strongly
tied with the number of microinstructions that are held in the control memory.

In case of relatively small devices where the control memory may be implemented

with one dedicated memory block, the realization of the controller as the CMCU Usp

236 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETQ.

with sharing codes and function decoder gives the best results. Firstly, it requires
average the fewest number of logic blocks among all presented methods. Furthermore,
the control memory is implemented with one dedicated memory block, thus there is
no need for application of the address converter. Obviously application of the function
decoder is optional — its usage reduces the number of logic blocks but increases the
number of dedicated memories.

According to the (21), if the total number of bits generated by the register and
counter exceeds the width of the microinstruction address, the CMCU Uqp with address
converter and function decoder ought to be selected. It should be pointed out that
results gained during realization of the controller as the CMCU Ugp are similar to
the values achieved for the CMCU Uc¢p. The number of required logic blocks for
implementation of both controllers are almost the same. However, in case of control
units that contain memories that ought to be decomposed (their volume exceeds the
volume of one dedicated memory block), the CMCU with address converter requires on
average by 46% fewer dedicated memory blocks than the CMCU with sharing codes.
These results prove the effectiveness of application of the address converter in case of
CMCUs, where the address indicated by the counter and by the register is wider than
the minimum number of bits needed for microinstructions addressing.

The CMCU Ugp, with address converter and function decoder consumes the fewest
number of logic blocks of the destination FPGA in case of controllers where the
control memory is decomposed (which means that more than one BRAM is used).
Such a realization requires only 49% LUTS in comparison to the FSM and 57% in
comparison to the CMCU with mutual memory. It means that the proposed synthesis
method with address converter and function decoder reduces the number of logic
blocks that are used for implementation of the controller over two times in comparison
to the traditional automaton. On the other hand, there are more dedicated memory
blocks required for realization of the control unit. The number of dedicated memory
blocks increases on average by 86%, therefore the CMCU Ucp is the best solution
for implementation of the controller in FPGAs that contain enough dedicated memory
blocks. Finally, among controllers that produce more than 150 microinstructions, the
CMCU Upp with outputs identification and function decoder gives the best results. In
this case, such arealization on average requires the fewest dedicated memory blocks
and usually the fewest logic blocks as well.

The criteria of all experiments were to reduce the number of logic blocks that
are required for the controller implementation. The detailed analysis of the results of
experiments showed that selection of the proper synthesis method may be tied with the
structure of the CMCU. There are three typical situations when the proper synthesis
algorithm can be proposed:

o In case of relatively small systems (where the number of microinstructions does
not exceed 150 and the control memory can be implemented with one dedicated
memory block), the CMCU with sharing codes and function decoder seems 0
be the best solution. However, it should be pointed out that such a realization

i
|

Vol. 55

col
nui
ide

e In

me
few
bes

e In¢

CM

11
12.

13.
14.

S
OO = A] € ONA DT e D v A et ot e e

]
-~

&
I one 1

19.

2w ~o

o
=

ETg,
SR
L requires
thermore,
s there ig
> function
reases the

oister and
th address
1 out that
similar to
locks for
of control
cceeds the
equires on
ing codes,
in case of
vider than

the fewest
where the
| is used).
d 57% in
- synthesis
r of logic
ymparison
1 memory
d memory
st solution
d memory
ctions, the
results. In
ry blocks

Jocks that
results of
d with the
- synthesis

tions does
dedicated
- seems {0
realization

|

vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 237

consumes at least two dedicated memory blocks of the FPGA. Therefore, if a
number of available dedicated memory blocks is limited, the method with outputs
identification should be used.

In case of controllers where the volume of the control memory exceeds the volu-
me of one dedicated memory block and the total number of microinstructions is
fewer than 150, the CMCU with address converter and function decoder gives the
bestresults.

In case of controllers where the total number of microinstructions exceeds 150, the
CMCU with outputs identification and function decoder ought to be selected.

7. REFERENCES

. G. De Micheli: Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York,
1994.
2. A Clements: The principles of computer hardware. Oxford University Press, New Jersey,
2000.
3. T. Luba: Synteza ukladdw cyfrowych. WK, Warszawa, 2003.
4. M. Bolton: Digital Systems Design with Programmable Logic. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.
5. D. Bursky: Embedded logic and memory find a home in FPGAs. Electronic Design, 1999,
vol. 47, no 14, pp. 43-56.
6. D. Gajski: Principles of Digital Design. Prentice Hall, New Jersy, 1997,
1. G. Mealy: A method for synthesizing sequential circuits. BSTJ, 1955, vol. 34, pp. 1045-1079.
8. E. Moore: Gedanken experiments on sequential machines. In C. E.Shannon and J. McCarthy,
editors, Automata Studies, 1956, pp. 129-153.
9. Altera: Embedded memory in Altera FPGAs. Altera,
http://www.altera.com/techno]ogy/memory/cmbedded/mem—embcdded.hlml, 2006.

10. X ilinx: Using Block SelectRAM+ Memory in Spartan-II FPGAs.
www.xilinx.com/bvdocs/appnotes/xapp130.pdf, 2000.

1. T. Louba: Synteza uktadéw logicznych. Oficyna Wydawnicza PW, Warszawa, 2005.

12. S. L. Baranov: Logic Synthesis for Control Automata. Kluwer Academic Publishers, Boston,
1994,

13. A, Barkalov: Synthesis of Control Units on PLDs. DonNTU, Donetsk, 2002.

4. R. Wisniewski: Czesciowa rekonfiguracia mikroprogramowanych uktadow sterujgeych im-
plementowanych z wykorzystaniem struktur FPGA. Proceedings of PTETIS, 2005, Vol.21, ss.
239-242.

I5. Xilinx: Two flows for partial reconfiguration.
http://dirccl.xilinx.Com/bvdocs/appnoles/xapp290.pdf, 2004.

6. A, Barkalov,M. Wegrz y n: Design of Control Units with Programmable Logic. University
of Zielona Géora Press, Zielona Géra, 2006.

7. T Luba: Synteza uktadéw logicznych. WSISIZ, Warszawa, 2001,

8. M. Mo lski: Modutowe i mikroprogramowalne uklady cyfrowe. WKL, Warszawa, 1986,

9. W. Traczyk: Uklady cyfrowe. Podstawy teoretyczne [metody syntezy, WNT, Warszawa, 1982,

200 M. Adamski, M. W cgrzyn A. Wegrzy n: Safe reconfigurable logic controllers design.

In ed. by J. Korbicz, editor, Measurements models systems and design, WKL, 2007, pp. 343-370.

238 REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ETO.
21, M. Adamski and M. Wegrzyn: Reprogrammable controllers for reactive embedded
systems. Proceedings volume from the 26th IFAC/IFIP/IEEE Workshop, Elsevier, Oxford, 2003,

pp. 39-44.

22. M. Adamski: Programowane asynchroniczne uklady sterujgce z samosynchronizacjg.
KKA'80, 1980, Szczecin, Polska, ss. 203-208.

23. E. Sentovich, K.J. Singh, Cho W. Moon, H. Savoj, R. K. Brayton, A L.
Sangiovanni-Vincentelli: Sequential circuit design using synthesis and optimization.
Proceedings of the ICCD *92, 1992, Washington, DC, USA, pp. 328-333.

24. E. Hrynkiewicz K. Pucher, D. Kania: The input partitioning and coding problem
in PAL -based CPLD s. XX National Conference Circuit Theory and Electronic Networks, 1997,
pp. 145-152.

25. P. Ashar, S. Devadas, A. R. Newton: A unified approach to the decomposition and
re-decomposition of sequential machines. Proceedings of the 27th ACM/IEEE conference on
DAC, New York, NY, USA, 1990, pp. 601-606.

26. P. Ashar, S. Devadas, A. R. Newton: Sequential Logic Synthesis. Kluwer Academic
Publishers, Norwell, MA, USA, 1992,

27. H. Kubatova: Finite state machine implementation in FPGAs., Design of Embedded Control
Systems, Springer, New York, 2005, pp. 177-187.

28. M. Perkowski, L. JéZzwiak, W. Zhao: Symbolic two-dimensional minimization of
strongly unspecified finite state machines. Journal of Systems Architecture, Vol. 47, 2001, pp.
15-28.

29. M. Rawski, H Selvaraj, T. Luba An application of functional decomposition in
rom-based fsm implementation in FPGA devices. Proceedings of the DSD *03, Washington, DC,
USA, 2003, p. 104.

30. A. Barkalov: Principles of optimization of logical circuit of Moore finite state-machine.
Cybernetics and System Analysis, no. 1, 1998, pp. 65-72.

31. 1. Ahmad, F. Ali, and R. Ul-Mustafa: An Integrated State Assignment and Flip-Flop
for Selection Technigue FSM Synthesis. Microprocessors and Microsystems, 2000, pp. 141-152.

32, BE.M. Sentovich, K. . Singh, L. Lavagno, C. Moon, R. Murgai, A, Sal-
danha H Savoj,P.R Stephan R. K. Brayton,and A. Sangiovanni-Vin-
centelli: SIS: A system for sequential circuit synthesis. Technical Report UCB/ERL M92/41,
U.C. Berkeley, 1992.

33. M. V. Wilkes: The best way to design an automatic calculating machine. Manchester Univer-
sity inaugural conference, Manchester, England, 1951.

34, S.S. Husson: Microprogramming — Principles and Practices. Prentice Hall, New York, 1970.

35. L. Kravcov, G. Chernicki: Design of microprogram control units. Energia, Leningrad,
1976 (in Russian).

36. P. Misiurewicz: Podstawy techniki cyfrowej. WNT, Warszawa, 1982.

37. Ch. A. Papachristou A scheme for implementing microprogram addressing with program-
mable logic arrays. Digital Processes, vol. 5, no. 3-4, 1979, pp. 235-256.

38. W. Stalings: Computer organization and architecture. Prentice Hall, New Jersey, 1996.

39. A. Barkalov. A. Palagin: Synthesis of Microprogram Control Units. IC NAC of Ukraine,
Kiev, 1997.

40. M. Adamski, A. Barkalov: Architectural and Sequential Synthesis of Digital Devices.
University of Zielona Géra Press, Zielona Gora, 2006.

41. D.KanialJ Kulisz, A, Milik,R. Czerwiefski: Modele dekompozycji przeznaczone
dla struktur matrycowych. RUC 2005, ss. 77-84, 2005.

42. S. Devadas, A.R. Wang, AL.R. Newton, and A. L. Sangiovanni-Vincen-

tel1i: Boolean decomposition of programmable logic arrays. CICC 88, 1988.

Vol. 55

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

ol

0 e NN e MY € e i g

62.

63.

Mo IND S Ln e

64.

o0

L

ETQ,

embedded
ord, 2003,

acjq.

on, A L.
imization,

g problem
rks, 1997,

sition and
erence on

Academic
>d Control

ization of
2001, pp.

osition in
igton, DC,

2-machine.
Flip-Flop
. 141-152.
A, Sal-
ni-Vin-
L. M92/41,
ter Univer-
‘ork, 1970.
Leningrad,

h prograni-

, 1996.
of Ukraine,

al Devices.
z7e7RacIone

Vincen-

Vol. 55

~2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 239

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

T. Sasao: Totally undecomposable functions: Applications to efficient multiple-valued decom-
positions. ISMVL *99: Proceedings of the ISMVL 99, Washington, DC, USA, 1999, p. 59.

E. McCluskey: Logic design principles. Prentice Hall, Englewood, 1986.

M. Rawski, T. Luba, Z. Jachna P Tomaszewicz The influence of functional
decomposition on modern digital design process. Design of Embedded Control Systems, Springer,
Boston, 2005, pp. 193-206.

C. Scholl: Functional decomposition with application to FPGA synthesis. Kluwer Academic
Publishers, 2001.

D. Kania, J. Kulisz: Logic syathesis for PAL-based CPLD-s based on wo-stage decompo-
sition. J. Syst. Softw., 80(7), 2007, pp. 1129-1141.

D. Kania: A new approach to logic synthesis of multi-output boolean functions on PAL -based
CPLD s. Proceedings of the GLSVLSI *07, New York, NY, USA, 2007, pp. 152-155.

T Luba, M. Rawski, Z. Jachna: Functional decomposition as a universal method of
logic synthesis for digital circuits. Proceedings of the MixDes’02, Wroctaw, Poland, 2002, pp.
285-290.

M. Rawski, .. Jé6Zwiak, T. Lub a: Functional decomposition with an efficient input sup-
port selection for sub-functions based on information relationship measures. Journal of Systems
Architecture, vol. 47, 2001, pp. 137-155.

D. Kania: Synteza logiczna przeznaczona dla matrycowych struktur programowalnych typu
PAL. Zeszyty Naukowe Politechniki Slqskiej, Gliwice, 2004.

D. Kania: Two-level logic synthesis on PAL-based CPLD and FPGA using decomposition.
Procedings of 25-th Euromicro Conference. IBEE Computer Society Press, 1999, pp. 278-281.
M. Ciesielski, S. Yang: PLA de: a two-stage PLA decomposition. IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 11(8), 1992, pp. 943-954,

S. Devadas, A, Wang, R. Newton, and A, L, Sangiovanni-Vincentelli
Boolean decomposition in multilevel logic optimization. IEEE Journal of solid-state circuits, 1989,
pp. 399-408.

V. Muthukumar, R.J. Bignall, H. Selvar aj. An efficient variable partitioning
approach for functional decomposition of circuits. J. Syst. Archit., no. 53 (1), 2007, pp. 53-67.
E.M. Sentovich: Sequential Circuit Synthesis at the Gate Level. PhD thesis, 1993. (Chair-Ro-
bert K. Brayton).

V. Solovjev: Design of the Functional Units of Digital Systems Using Programmable Logic
Devices. Bestprint, Minsk, 1996,

J.Lach, E. Sapiecha,B. Zbierzchowski: Synteza uktadow sekwencyjnych w struk-
turach FPGA z wbudowanymi blokami pamieci. Przeglad Telekomunikacyjny i Wiadomosci Te-
lekomunikacyjne, nr 2-3, 2003, ss. 81-86.

J.Pasierbidski,P. Zbysifiski: Uktady programowalne w prakiyce. WKL, Warszawa,
2001.

M. Rawski,P. Tomaszewicz H. Selvar aj, T. kouba: Efficient implementation of
digital filters with use of advanced synthesis methods targeted FPGA architectures. Proceedings
of DSD *05, Washington, DC, USA, 2005, pp. 460-466.

- H Selvaraj, T. Lbuba: A balanced multilevel decomposition method. Proceedings of EDTC

'95, Washington, DC, USA, 1995, p. 594.

G. Borowik: Synteza uktadow sekwencyjaych w sieciach whudowanych matryc logicznych
struktur FPGA. Proceedings of OWD’04, vol. 19, Wisa, Polska, 2004, ss. 361-366.

G. Borowik: FSM coding for optimal serial decomposition. Proceedings of OWD’05, vol.
21, Wisa, Polska, 2005, pp. 243-248.

A. Barkalov,L. Titarenko,R. Wisniewski: Synthesis of compositional micropro-
gram conirol units with transformation of the numbers of inputs. Proceedings of CADSM 2005,
Lviy — Polyana, Ukraina, 2005, pp. 181-184,

240

REMIGIUSZ WISNIEWSKI, ALEXANDER BARKALOV ET.Q.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

A.Barkalov,R. Wisniews ki Design of compositional microprogram control units with
maximal encoding of inputs. Radioelektronika i Informatika, no 3, 2004, pp. 79-81.

A. Barkalov,R. Wisniewski: Design of compositional microprogram control units with
transformation of the number of transactions. Proceedings of MIXDES 04, Szczecin, Polska,
2004, pp. 172-175. :

A. Barkalov, R. Widniewski, R. Babakov: Optimizacija kompozicionnogo mikro-
programnogo ustrojstva upravienija s elementarnymi operatornymi linejnymi celjami. Naukovi
Praci DNTU: Obcisljuval'na Technika ta Avtomatizacija, nr 77, 2004, pp. 210-216 (in russian).
A. Barkalov, R. Wisniewski: Oprimization of compositional microprogram control
unit with elementary operational linear chains. Upravljuscije Sistemy i Masiny, no. 5, 2004, pp.
25-29.

A. Barkalov, R. Wisniewski: Synthesis of compositional microprogram control units
with transformation of the numbers of inputs. Proceedings of DESDes’ 04, Zielona Géra, 2004,
pp. 145-148.

A.Barkalov,R. Wisniewsk i Design of control units with transformation of the number
of transaction. Radiotechnika, Charkivskij nacionalnij universitet radioelektroniki, Charkiv, no
138, 2004, pp. 110-113.

A. Barkalov,A. Bukowiec, R. Widniewski: Sintez mikroprogrammnogo aviomata é
s predstavieniem termov funkcij vozbuzdenija kak par mikrokomand. Radiotechnika, Charkivs'kij
nacional’nij universitet radioelektroniki, Carkiv, 2005, no 142, pp. 92-96.

R. Wisniewski: Projektowanie uktadéw mikroprogramowanych z wykorzysianiem whbido-
wanych blokéw pamieci w matrycach programowalnych. Proceedings of KNWS’ 03, Ziotniki
Lubanskie, Polska, 2005, ss. 33-38.

X i1inx: Using Block RAM in Spartan-3 Generation FPGAs.
www.xilinx.com/bvdocs/appnotes/xapp463.pdf, 2005.

Altera: Altera Devices Website. http://www.altera.com/products/devices/dev-index.jsp, 2008,
A. Barkalov,M. Wegrzyn, R Wiéniewski: Partial reconfiguration of compositional
microprogram control units implemented on FPGAs. Proceedings of PDeS 2006, Brno, Czech
Rep., 2006, pp. 116-119.

D. Mesquita, F. Moraes,J. Palma, L. Moller,N. Calazans: Remote and partial
reconfiguration of FPGAs: Tools and trends. Proc. Of IPDPS’03, 2003, pp. 177-185.

A. Barkalov, L. Titarenko, R. Wiéniewski: Optimization of the amount of
LUT-elements in compositional microprogram control unit with mutual memory. Proc. of EWDTW
’05, Odessa, Ukraine, 2005, pp. 75-79.

R. Wisniewski, A. Barkalov: Synthesis of compositional microprogram control units
with function decoder. Proc. of IWCIT 2007, Ostrava, Czech Rep., 2007, pp. 229-232.

A. Barkalov, M. Wegrzyn, R. Wisniewski: Optimization of LUT-elements amo-
unt in cotrol unit of system-on-chip. Proceedings of DESDes '06, Rydzyna, Poland, 2006, pp.
143-146.

R. Widniewski, A. Barkalov, L. Titarenko: Syathesis of compositional micropro-
gram control units with OLC output identification. Proceedings of CAD DD 2007, vol 2, Minsk,
Belarus, 2007, pp. 81-86.

A. Barkalov,L. Titarenko, R. Wi§niews ki: Syathesis of compositional micropro-
gram control units with function decoder for telecommunication systems. Radiotehnika: Problemy
telekommunikacij, no 151, Charkivskij nacionalnij universitet radioelektroniki, Charkiv, 2007, pp:
106-111. ~

A. Barkalov, R. Wi§niewski: Optimization of compositional microprogram control
units with sharing of codes. Avtomatizacija proektirovanija diskretnych sistem, vol L, Minsk,
Bialorus, 2004, pp. 16-22.

i
!

Vol. 5

8¢

87

88

89

90.

91.

92.

93.
94.

ETQ.

——

(nits with

nits with
, Polska,

20 mikro-
Naukovi
russian),
n control
2004, pp.

trol units
ra, 2004,

e number
arkiv, no

avtomata
arkivs’kij

n whudo-
, Ztotniki

sp, 2008,
positional
10, Czech

nd partial

imount of
"EWDTW

itrol units

ents amo-
2006, pp.

micropro-
2, Minsk,

micropro-
Problemy
2007, pp.

m control
1, Minsk,

vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF MICROPROGRAMMED CONTROLLERS 241

83.

84.

86.

&7.

88.

89.

90.

9L

92.

93.
94.

R. Wisniewski, A, Barkalov, L. Titarenko: Optimization of address circuit of
compositional microprogram unit. Proceedings of EWDTW ’06, Sochi, Rosja, 2006, pp. 167-170.
A. Barkalov, L. Titarenko, R. Widniewski Optimization of the circuit of com-
positional microprogram control unit with mutual memory. Proceedings of CADSM 2007, Lviv
-Polyana, Ukraina, 2007, pp. 251-255.

- A-Barkalov,K. Efimenko,R. Widniewski: Optimizacia shemy adresacii kompozi-

cionnogo ustrojstva upravienia. Naukovi Praci DNTU: Problemi Modeljuvannja ta Avtomatizacii
Procktuvannja Dinamicnich Sistem, Doneck, Ukraine, no 5, 2006, pp. 156-161.

A. Barkalov, R. Widniewski: Optimization of compositional microprogram control
units implemented on system-on-chip. Informatyka Teoretyczna i Stosowana, no 9, 2005, pp.
7-22.

R. Wisniewski: Design of compositional microprogram control units with elementary ope-
rational linear chains. Proceedings of DESDes *06, Rydzyna, Polska, 2006, pp. 191-194,

A. Barkalov,R. Wi§niewski, S. Kovalyov, K. Efimenko: Optimizacia eisla
LUT-elementov v ustrojstve upravienia sistemy na kristalle. Sbornik tradoy XIII medunarodnoj
naueno-tehnieeskoj konferencii, vol 1, Sevastopol, Ukraine, 2006, pp. 75-80.

A. Barkalov, R. Widniewski: Optimization of compositional microprogram control
units with sharing of codes. Avtomalizacija proektirovanija diskretnych sistem: materialy pjatoj
mezdunarodnoj konferencii; vol. 1, Minsk, Bialorus, 2004, pp. 16-22.

R. Wisniewski: Design of compositional microprogram control units with sharing of the
codes. Proceedings of OWD 2004; vol. 19, Wista, Poland, 2004, pp. 217-220.

R. Wisniewski: Synteza mikroprogramowanych uktadoéw sterujgcych ze wspdtdzieleniem
koddw z wykorzystaniem dekodera adreséw. Pomiary Automatyka Kontrola, no 6, 2006, ss.
38-40.

R. Widniewski, AL Barkalov, L. Titarenko: Synthesis of compositional micro-
program control units with sharing codes and address decoder. Proceedings of MIXDES 2006,
Gdynia, Polska, 2006, pp. 397-400.

IEEE Standard Verilog Hardware Description Language 1364-2001. New York, 2001.

D. Thomas, P. Moorby: The Verilog hardware description language. Kluwer Academic
Publishers, Norwell, MA, USA, 5th edition, 2002,

S

The
in appe
lity to 1
ble-Chi
and a ¢
tunity fi
(P Cor
only a ¢

%t
|

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 243267

Structural decomposition of finite state machines

ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV

Institute of Computer Engineering and Electronics, University of Zielona Gora,
Podgorna 50, 65-246 Zielona Géra, POLAND,
E-mails: a.bukowiec@iie.uz.zgora.pl, a.barkalov@iie.uz, zgora.pl

Received 2009.01.09
Authorized 2009.03.25

New architectures of FPGA devices combine different type of logic elements like
look-up tables. flip-flops and memory blocks. But standard synthesis methods utilize only
look-up tables and flip-flops and it makes that device utilization is not optimal one. Me-
thods of synthesis and implementation of Mealy finite state machines into FPGAs there are
presented in this article. Synthesis methods are based on the architectural decomposition
of logic circuit of FSM and multiple encoding of some its parameters. Architectures of
such designed structures are based on existence of decoders as second-level circuits. There
is also proposed hardware implementation into FPGAs of developed multi-level structures.
The hardware implementation is based on an implementation with use of look-up tables and
memory blocks together. The combinational circuit and the register are implemented with
use of logic blocks, like in standard realizations. While, decoders are implemented with
use of memory blocks. Such realization leads to balanced and rational usage of hardware
resources of modern FPGA devices.

i
|
|
i
:
§

Keywords: control unit, decomposition, FSM, FPGA, synthesis

I. INTRODUCTION

The silicon product development grows very fast. This rapid evolution has resulted
inappearance of very large scale integration (VLSI) chips and circuits. It makes possibi-
lity to implement a complex digital system in a single chip as a System-on-Programma-
ble-Chip (SoPC) [21], [28]. Such digital system can be also represented as a data path
and a control unit [7], [23]. The representation with this decomposition gives oppor-
tunity for reuse of early designed components or for use of intellectual property cores
(Ip Cores), that are available on the silicon market, for data processing. It means, that
only a control unit has to be designed from the beginning.

244 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

Finite state machines (FSMs) [4], [23] are still one of the most popular ways of
realization of an algorithm of a control unit. Because a control unit is a part of almost
any digital system, optimization of a synthesis process of its digital circuit is a very
important subject of many works. ,

Nowadays, FPGA devices are one of the most popular for realization of whole
digital devices as SoPC. It creates new needs of fit a control unit into available hardware
resources after implementation of a data patch. Because new FPGAs have different kind
of logic elements, like look-up tables (LUTS), registers, and embedded memory blocks,
it makes that not only reduction of hardware resources required for implementation of
a finite state machine is a goal but also possibility to balanced usage of different types
of resources.

The methods of synthesis proposed in this article are based on the structural de-
composition of FSM logic circuit and multiple encoding of some parameters of FSM
divided into subsets based on a current state or a currently executed microinstruction
[17], [19]. This encoding allows to decrease a number of logic functions implemen-
ted by the combinational circuit of an FSM. Internal parameters are decoded in the
second level circuit based on the multiple code and the code of a current state or the
code of a currently executed microinstruction. Because this system is regular it can
be implemented with embedded memory blocks. It leads to decreasing a number of
LUTS required for implementation of a logic circuit of an FSM and balanced usage of
different resources of an FPGA device.

2. MAIN DEFINITIONS

2.1. FINITE STATE MACHINE DEFINITION

A finite state machine is a mathematical model of behavior composed of a finite
set of input symbols, a finite nonempty set of states, a finite set of output symbols,
transitions and actions [1], [4]. This model can be represented as six tuple:

S=(XY,A ay,0,w) N

where:

» X is a finite set of input Boolean variables, X = {x1,...,x.};

e Y is a finite set of output Boolean variables, called microoperations (nO),
Y=1{y,....on};
A is a finite, nonempty set of states, A = {ay,...,au};
ay is the initial state of the FSM, a; € A;
§ is a transition function, defined as a function of a state and affirmation or negation
of some input variables:

§:AXX > A; @

?
.
§
§

Vol. 5!

a

In

Su
DST i
and it
state ¢
bits, tl
ds 18 1
transit
clemei
transit
to 1l
flip-flo
becaus
line, A

The

This sy
of Mez
implem
in FPG
of thes
possibil
FSM ax
structur
the stru
circuit |

ETQ.

ways of
f almost
S a very

f whole
ardware
-ent Kind
y blocks,
tation of
>nt types

tural de-
of FSM
struction
iplemen-
>d in the
e or the
ar it can
imber of

usage of

f a finite
symbols,

Q)

ns (1O,

r negation

@

i

Vol. 55 — 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 245

e (w is an output function, and in case of Mealy model it is defined as a function of
a state and affirmation or negation of some input variables:

\ WIAXX Y 3)
In case of Moore model it is defined only as a function of a state:

w:A->Y. 4)
2.2. DIRECT STRUCTURAL TABLE DEFINITION

Such defined a Mealy FSM can be set up by a direct structural table (DST) [4].
DST is a one-dimensional state transition table extended with some additional columns,
and it has following columns: a,,, K(a,,), a,, K (as), Xy, Yy, Dy, h. Here a,, is a current
state of an FSM, a,, € A;K(a,,) is a binary code of the state a,, with R = [log, M
bits, the internal Boolean variables ¢, € Q = {q1,....qr} are used to encode states a,,;
as is the next state, a; € A; K(ay), is a code of the state as; Xy 18 a condition of
transition {a,,, ay), it consists of conjunction of affirmation or negation of some logic
elements from the set X; Y, is the microinstruction (ul) which is formed during the
transition (@, a,), ¥, CY;®y, is the set of memory excitation functions that are equal
to 1 to switch an FSM from K(a,,) to K(a,), ®, C D = {D1,....,Dg} as a rule D type
flip-flops are used to form a memory — there are considered only D type flip-flops
because typical FPGAs are build only from such flip-flops; £ is a number of the DST
line, h = 1,....H.

2.3. SINGLE-LEVEL STRUCTURE
The DST table is used as the base to form the system of functions:
Y =Y(Q, X), 4)

O = O(Q, X). (6)
This system corresponds to functions (3) and (2) and it describes a single-level circuit
of Mealy FSM (Fig. 1). This structure is called P Mealy FSM. Here the circuit P
implements system of functions (5), (6) and it is implemented with the use of LUTs
in FPGA technology. The number of required LUTs strongly depends on complexity
of these systems and possibility of its functional decomposition [25] and there is no
possibility to correctly estimate this value. The register RG represents the memory of
ESM and it is build from R D type flip-flops. The RTL schematic of this single-level
Sttucture for FPGA technology is presented in Figure 2. One of the drawbacks of
the structure P is a big number of LUTS required for implementation of combinational
circuit P, It is caused also by big number of logic functions implemented by this circuit:

n,(P) =N +R. N

246 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

X Y

—Pp
]
r RG
o |

Fig. 1. Structural diagram of P Mealy FSM

v

X L Y
=>4 [~} —
et | o
o o g
CLK poaQ
L > >
RST

Fig. 2. RTL schematic of P Mealy FSM
2.4. BASE DOUBLE-LEVEL STRUCTURE

One of the known methods of decreasing the number of required LUTs is applica-
tion of analytical methods of a functional decomposition [24], [27]. This decomposition
operates on Boolean functions obtained during the synthesis process and it is prefor-
med in its final phase of synthesis. These algorithms do not affect the total number of
functions realized by a combinational circuit of an FSM.

In other ways, the decreasing of number of required LUTs can be achieved by
reduction of the number of implemented logic functions. This reduction can be made
by application of structural decomposition [4], [6] of logic circuit of an FSM. The
structural decomposition follows on a system level and it is applied in early stage
during the synthesis process. It refers to the process by which a complex circuit is
broken down into parts that are easier to implement. In case of finite state machine
it splits the combinational circuit into several circuits which together have the same
function but each of them has different nature. The system after decomposition has
a multi-level nature because data is processed serially and passed from one circuil
to next one. It means that the both decomposition methods should not be treated as
competitive ones and, what more, they can be applied together in the synthesis process.

Let the DST contain 7 different microinstructions Y, € Y. Encode microinstructions
with maximal encoding method by assigning to each set ¥, the binary code K(¥}) with
Ny = [log,T7 bits (r = 1,...,T). Use variables z, € Z = {2152, } for representation of
these codes. In this case a Mealy FSM can be implemented as double-level circuit (Fig.
3) named as PY Mealy FSM [7]. The register RG is exactly the same as in single-level
structure. The circuit Y implements the system of functions:

%
g
i
-

Vol. 55 -2

and transf
built from
can be ef]
implemen

it is imple
of double-

This st

But this nu
big numbe:;
this structu
usage of en
maximal e

The applic:

ETo Vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 247

Y

Xy 4
_@—»RG

o — |

Fig. 3. Structural diagram of PY Mealy FSM

Y =¥@) |)

and transforms the code K(Y,), represented by variables z,, into the microinstruction Y, /s
built from microoperations y,. Because system (8) has a regular structure this circuit
can be effectively implemented using embedded memory blocks. Now the circuit P
implements systems (6) and:

Z=2Q.%), ©)

it is implemented with use of LUTS like for single-level structure. The RTL schematic
of double-level PY structure for FPGA technology is presented in Figure 4.
is applica-

. e
omposition) . v
it is prefor- - 1 7 e
: = Y
l nun]ber Of E . ak © LK DO‘—G
pdRST
et WE
RG
ichieved by § l CLK 2S5 GRR
an be made | =
- FSM. The z |
e : RST
early stage |

X circuit i3
e maching
ve the same
hosition has
one circuil
e treated as
2518 Process:
\instructions
 K(¥) with
sentation of
circuit (Fig:
single—level

Fig. 4. RTL schematic of PY Mealy FSM

This structure permits to reduce the number of Boolean function to:

n,(PY) = Ny +R. 10)

B‘Ul this number is still relatively big and it makes such a structure need still relatively
bxg number of LUTS for implementation of the circuit P. It makes that application of
this siructure in a process of an FPGA implementation is not grateful. Additionaly the
US‘ag.c of embedded memory blocks of FPGAs is not effective because of application of
}]{;zi)(l‘lllal.cn?()ding 11.1¢thod. Howcyer it does not disqualify structural decomposition.
¢ application of different encoding method gives prospective results.

248 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

3. STRUCTRURAL DECOMPOSITION WITH MULTIPLE ENCODING

The double-level structure and method of its synthesis, presented in previous sec-
tion, can be adopted into an FPGA technology. It required application of special me-
thods of encoding [10], [11] and modification of a logic circuit structure. Proposed
methods are based on a multiple encoding [15] of some parameters of a state machine,
The structure of logic circuits depends on which parameter is multiple encoded and
which parameter is used as a partial code.

A multiple encoding can be applied for some parameters of a state machine, like
microinstructions or internal states [14]. The set of these parameters is partitioned
into several subsets. Then parameters are encoded separately in each subset. The same
codes are used for different subsets. The partition into subsets is made base on other
parameter, like a current state or a currently exccuted microinstruction. The logic circuit
of such designed state machine required special structure. Type of blocks and their
connections depend on which parameter is multiple encoded and which parameter is
used as a partitioning set. Generally, such circuit is realized in a double-level structure
with a combinational circuit on a first level and a decoder on a second level,

3.1. MULTIPLE ENCODING OF MICROIMSTRUCTIONS

The method with a maximal encoding of microinstructions can be modified by ap-
plying the multiple encoding for a set of microinstructions [8], [13], [14]. Let partition
a set of all microinstructions T = {¥{,...,Y7} into subsets based on a current state a,,.
It Jeads to existence of M subsets Y{(a,) € Y and a microinstruction ¥, € Y{a,,) if it
is executed during any transition from the state a,,. Let

Ty = T(am)| (11)

and

To = max (Ty,...., Tw). (12)

Let encode each microinstruction Y; € Y(a,,) by a binary code K, (¥;) with bits.

N; = [log,To] (13)

Because Y(a,) CY(To<T) then N, <N,. But for typical control algorithm
Y(a,) ¢ Y and Ty < 7 and in this case also N, < N; and this condition has
to be satisfied for benefits from application of this method [14]. Let use variables
W, € ¥ = {Y,...,.¢n,} for representation of codes K, (Y;). In this case the code of
a microinstruction K(Y,) is represented by concatenation of the multiple code of the
microinstruction K,,{Y;) and the code of the current state K{(a,,):

K(Yy) = Ki(Y1) * K(ap). (14

R

Vol. 55

A
structu
presen
circuit

(6) anc

It has (¢
logic fu

where]
current -

The
ted DST
® amt
® a for
e a for
® a for

ETQ k Vol. 55 — 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 249

G A digital circuitof an FSM with such encoding can be implemented as a double-level

structure PYqo (Fig. 5). The RTL schematic of this structure for FPGA technology is
ous Sec presented in Figure 6. This structure permits to decrease the number of outputs of the
bcbizil me circuit P in comparison to the structure PY. Here the circuit P implements the system
roposed (6) and the system '
nachine.

X ¥
ded and Lp b
P Y H»

. . (4}
ine, like RG
rtitioned
"he same o
on other . ;)
ic circuit Fig. 5. Structural diagram of PY, Mealy FSM
and their ‘

ameter is

p i(r Y
structure E:X}__L P
00K Y
| o = ST - |
=t
CLK
| .
ar o
ed by ap-
partition R
state ay,.
(a,,) if it Fig. 6. RTL schematic of PY, Mealy FSM
.
(11) § ¥ =YX, Q. (15)
% It has to implement
§ : n,(PYq) =R + N, (16)

logic functions. The circuit Y implements a decoding system

| |
©F | Y =Y(¥,Q), (17)
aleorithm | where the variables from the set ¥ are used to detect a adequate microinstruction for
jit%on has current state that is identified by variables from the set Q.
variables The entering point for synthesis process with structural decomposition is a format-
ard

ted DST and it consists of the following steps:

a multiple encoding of microinstructions,

a formation of the transformed direct structural table,
a formation of the system of Boolean functions,

a formation of the decoder table,

e code of
yde of the

9
]
L 4
L 4

(14)

250 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

e an implementation of the logic circuit of the FSM.

The multiple encoding of microinstructions is based on binary encoding of micro-
instructions Y, in each subset T(a,,). It means that if one microinstruction ¥, belongs
to several subsets T(a,,) it also receives several codes K, (¥;).

The formation of the transformed divect structural table is base for formation of
systems (6) and (15). It is created from the original DST by replacing the column
¥, by the column W, The column ¥, contains variables ¢, € ¥ (n = 1,...,Ny), that
are equal to 1 in the code K, (Y;) of the microinstruction Y; from the A-th line of the
original DST.

The formation of the system of Boolean functions is base for obtaining systems (6)
and (15). The system (6) is defined as:

o) \
D, = h\:/l((/rh A [(h)a (18)

where r = 1,...,R ; C,, is a Boolean variable equal to 1 iff the A-th line of a DST
contains the function D, in the column Oy;

by, = Aﬁ; A X, (19)

where A’,ﬁt is a conjunction of internal variables @, € Q corresponding to the code
K(a,,) of the state a,, € A from the h-th line of the DST

4]l — R [I?W
Am - /\1 Qr ’ (20)

where [,,, € {0, 1} is a value of the r-th bit of the code K (a,,): Q? = @r and Q,l. =0,
[5]. Based on the similar way system (15) is defined as:

H
Wn == IzYI(Cnh A Fh)a (21)

where n = 1,...,Ny ; C,, is a Boolean variable equal to 1 iff the h-th line of the
transformed DST contains the function i, in the column ¥y,
The formation of the decoder table. This step forms the table that describes behavior
of the circuit Y based on the system (16). This table has four columns:
e K(a,) is a binary code of the current state d,,;
e K, (Y,) is a binary code of the microinstruction ¥; from the subset Y(a,,);
e Y is a binary representation of the microinstruction Yy, y, = 1, iff y, € Y, and y, =0
Ty, ¢ ¥, n=1,.N;
® [y is a number of the line, #y = 1,...,2%: T
The implementation of the logic circuit of the FSM in FPGA. The combinational
circuit P, represented by systems (18) and (21), is implemented by LUTS, and the
register RG is implemented by D flip-flops. The decoder Y is implemented using an
embedded memory blocks (Fig. 6) with 22 words of N bits and the content of
the memory is described by the decoder table where the concatenation of a binary

%
%
%

Vol. 5!

code

and tl
assigr
conca
synch
registe
It cau
clock
Such 1
operat
logic ¢

The
applies
[15] or

In f
subsets
and an

and

Let ence

Ih a theo
Aay)
for benef
or repre:
represent
code of]

Vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 251

éf
!

ETQ.
R
code of a current state and a binary code of a microinstruction (13) is an address
of micro and the binary representation of a microinstruction is a value of word. There can be

assigned any (don’t care) values for addresses omitted in decoder tables because such
concatenations of both codes are never used. Memory blocks in popular FPGAs are
synchronous ones [2], [30]. The clock signal for memory blocks is the same as for the

Y, belongs

‘mation of

e column register but memory blocks are lriggéd by opposite edge (in .this case falling gdge).
NS, that It cause that dgla is r§ady o @ad after one .c?/cle and there is no need (o walt. one
line of the clock cyc.le until data is stgble [17]. They additionally work also as an output regm@r.

Such registers are needed in each digital system with Mealy’s outputs to stabilize its
ystems (6) operation [7], [21]. Other input signals of memory blocks are connected to logic 1 or

logic 0, according to specification [30], (o satisfy read-only mode.

(18) 3.2. MULTIPLE ENCODING OF INTERNAL STATES

of a DST The synthesis method with multiple encoding of internal states [9], [11], [19]
applics multiple encoding for the set of internal states. In this case, current states [13],
[15] or microinstructions [14] can be treated as a partitioning set,

(19)

o the code 3.2.1. CURRENT STATES AS A PARTITIONING SET
In first approach, let partition the set of internal states a; € A = {ay,...a,,} into

20) subsets based on a current state a,, € A. It leads to existence of M subsets Ala,) C A
and an internal state a; € A(a,,) if it is the state of transition from the state an. Let

1d Q;l = Qr
§ M, = |A(ay)] (22)
.
% and
21)
=
line of the % M{ = max(M?{,... ML), (23)

s behavior Let encode each internal state a, € Ala,,) by a binary code K,,(a;) with bits,
Ry = [log,M{ (24)
m);

dy =0 In a theoretical case A(a,,) C A (M{ <M)= R, <R.Butina typical state machine
¢ anG y, =

Ala,) ¢ A and M(’)“ < M and of course R, < R. This condition has to be satisfied
or benefits from application of this method. Let use variables 7, € T = TR,
or representation of K (as) codes. In this case the code of internal state K(ay) is
epresented by concatenation of the multiple code of the internal state K,,(a,) and the
¢ode of the current state K {an):

mbinational
Ts, and the
ed using an
. content of

of a binaty K(as) = Km(as) * K(am)‘ (25)

252 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

A digital circuit of a FSM with such encoding can be implemented as the double-leve]
structure PAY (Fig.7). The RTL schematic of this structure for FPGA technology is
presented in Figure 8. Here the circuit P implements the system (9) and the system

. , Y
....—:P
g T

f"co-‘?’»RG

9

Fig. 7. Structural diagram of PAY Mealy FSM

yee
p Y
X 1 7 BRAMS
wrs DOR Y
ab ° o _O;NLLK DO"—G
T cc -
BRAMS
CLK AR RG
i £ BGK PO L2t o e
il —t GRD
ar
GRD
Q
RST

Fig. 8. RTL schematic of PAY Mealy FSM

T = T(X, O, (26)
and it implements

ny(PAY) = Ry + Ny. 27
Boolean functions. The circuit Y implements a decoding of microinstructions system
(8). There is additional circuit CC that decodes internal states and generates a excitation
functions;

O = (T, Q), (28)

where the variables from the set T are used to detect a next state for current state that
is identified be variables from the set Q.

The starting point for synthesis with structural decomposition is the formated DST
and it consists of the following steps:

Vol. 55

e an
® ar
e afi
e a fi
e a fi
e a fi
e an
The
Let us
The
to inter
The
system
Y, by |
columr
variabl
of the |
The
and (2¢

and the

where
of the t
variable
the colt

The
describ
o K(Y
e Vis

iff y
e s

The
that des
* K(a
® Km(‘
e D s

the]

ET g Vol, 35 — 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 253
e, !
| ¢ an encoding of microinstructions,
ouble-leve] B - ‘,
hnology i« o a multiple encoding of internal stares,
;e tgy s ¢ a formation of the transformed direct structural table,
syste
ysiem o 2 formation of the system of Boolean functions,
o a formation of the microoperation decoder table,
¢ a formation of the internal state code converter table,
o an implementation of the logic circuit of the FSM,

The encoding of microinstructions is based on a (rivial way of a binary encoding.
Let us encode each microinstruction ¥, € Y by a binary code K(Y;) with N, bits.

The multiple encoding of internal states is based on assigning a binary code K,,(a;)
(o internal states a, in each subset A(ay,).

The formation of the transformed direct structural table is base for formation of
systems (9) and (26). It is created from the original DST by replacing the column
¥, by the column Z;, and columns K(a,) and @, with columns K, (as) and Ty. The
column K,,(a;) contains the multiple code of the internal state. The column T, contains
variables 7, € T, r = 1,...,Ry, that are equal to 1 in the code K, (a,) from the same line
of the DST.

] ~ The jormation of the system of Boolean functions is base for obtaining systems (9)
and (26). The system (9) is defined as:

H
in = hyl (Con AN F) (29)

and the system (26) is defined as:

H
Tr = hyl(crk A Fy), (30)

where n = 1,..,Ny; r = 1,.,R;; C,;, is a Boolean variable equal to 1 if the A-th line
of the transformed DST contains the function Z, in the column Z,; C,;, is a Boolean
variable equal to 1 if the A-th line of the transformed DST contains the function 7, in
the column T},

The formation of the microoperation decoder table. This step forms the table that
describes behavior of the Y circuit. This table has three columns:

(26)

o S R A A
s B e S
A - e

@7 ¢ K(¥,) is a binary code of the microinstruction Y

* Yis a binary representation of the microinstruction Yoy, =1iffy,eY,and y, =0
ity,¢Y, n=1,.,N:

1 is a number of the line, ¢ = 1,..,7T.

ctions gysten
g a excitation

The formation of the internal state code converter table. This step forms the table
that describe behavior of the circuit CC. This table has four columns:

K(a,) is a binary code of the current state s

Kn(ay) is a binary code of the internal state as from the subset A(a,,);

b is a binary representation of excitation functions that switches the memory of
the FSM from K(a,,) to K(as), in case of D type flip-flops D, = QF, r = 1,....R;

(28)

]
T
rent state tha .

L i
G e e i 5

ormated DST

254 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

e g is a number of the line, mg = 1,..., Zﬁf:lM,ﬁ\;.

The implementation of the logic circuit of the FSM. The combinational circuit P
is implemented with LUTs and the register RG with D type flip-flops (Fig. 8). The
decoder Y is implemented using embedded memory blocks as for the structure PY. The
internal state converter CC is also implemented with embedded memory blocks with
2R wwords of R bits and the content of the memory is described by the internal state
code converter table where the concatenation of the binary code of the current state and
the binary code of the internal state (25) is an address and the binary representation
of excitation functions is a value of the word. There can be assigned any (don’t care)
values for addresses omitted in the table because such concatenations of both codes are
never used. Becouse memory block is trigged by opposite edge of clock the next state
is latched in the register RG exactly after the same numer of cycles like for single-level
structure [19].

3.2.2. MICROINSTRUCTIONS AS A PARTITIONING SET

In second approach, let partition the set of internal states a; € A = {d1,...,a,} Into
subsets based on currently executed microinstruction ¥, € ¥. It means that there is also
required application of the maximal encoding of microinstructions because a usage of
microinstructions codes only makes sense — set of microoperations create too long
vector, It leads to existence of T subsets A(Y,) € A and the internal state a, € A(Y,) if
it is the state of transition when the microinstruction Y, is executed. Let

M} =AY 31)

and

My = max(M{,..., M¥). (32)

Let encode each internal state a; € A (¥;) by a binary code K,(a,) with bits,

Ry = [log, MY (33)

In theory A(Y;) € A and (Mg < M) = R, < R, but for implementation of typical
algorithms A(Y;) ¢ A and Mg < M and it leads to R, < R. This condition has to
be satisfied for the benefits of application of this method. Let use variables 7, € T =
{7T1,...,Tr,} for representation of codes K;(A,). In this case the code of the internal state
K (ay) is represented by concatenation of the multiple code of the internal state K, (a;)
and the code of the currently executed microinstruction Y;:

K(as) = Ki(a,) = K(Yy). (34

A digital circuit of a FSM with this encoding can be implemented as a double-level
structure PYY (Fig. 9) [14]. The RTL schematic of this structure for FPGA technology

Vol. 55

is pres:
realize:

logic func
There is a
function S}

where the
microinstry

The sta
and it cons;
$ an enco
a multiy
a forma
a format
a format

® @ @ @

ETg

—e

1 circuit p
g. 8). The
re PY. The
locks with
(ernal state
1t state ang
resentation
don’t care)
1 codes are
> next state
ingle-level

sl 1O
1ere 18 also
a usage of
e too long
c €AY if

G

(32)

(33)

of typical
tion has (0
s 1, €T =
ternal state
tate K; (as)

(34)

ouble-level
technology

S A R S i

Yol. 55 — 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 255

is presented in Figure 10. Here the circuit P implements systems (9) and (26) and it
realizes

PR e B e
Xy |z

Tl_;
CC 1% RG

0

Fig. 9. Structural diagram of PYY Mealy FSM

X P vee
e 3 I [
r...l o f e 2 BRAMS
¥ee ¢C
: BRAMs

CLK £ooR RG

L ::}L‘u« o] D Q
«ig —b
an
o
Q

RST

{

Fig. 10. RTL schematic of PYY Mealy FSM

no(PYY) = R, + Ny (35)

logic functions. The circuit Y implements a decoding of microinstruction system (8).
There is also the circuit CC that decodes internal states and generates an excilation
function system:

® = OT,Z), (36)

where the variables from the set T are used to detect a next state for currently execute

microinstruction that is identified by its code represented by variables from the set Z.
The starting point for synthesis with structural decomposition is the formatted DST

and it consists from following steps:

* an encoding of microinstructions,

a multiple encoding of internal stares,

a formation of the transformed direct structural table,

a formation of the system of Boolean functions,

a formation of the microoperation decoder table,

8
L]
@
L]

256 - ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ. Vol. 35 -

a formation of the internal state code converter table,

an implementation of the logic circuit of the FSM.

The encoding of microinstructions. This step is exactly the same as for the previous
method of synthesis. _

The multiple encoding of internal states is based on assigning a binary code K; (a;)
to internal states «, in each subset A(Y;).

The formation of the transformed direct structural table is base for formation
of systems (9) and (26). It is created from the original DST by replacing the co-
lumn Y;, by the column 7, and columns K(a,) and @), with columns K, (as) and Ty,
The column K;(ay) contains the multiple code of the internal state for the microinstruction
Y,. The column T}, contains variables 7, €T, r = 1,...,R,, that are equal to 1 in the code
Ki(as). C

The formation of the system of Boolean functions is base for obtaining systems (9)
and (26). These systems are defined as (29) and (30).

The formation of the microoperation decoder table. This step is exactly the same
as for the previous synthesis method.

The formation of the internal state code converter table. This step forms the table
that describes behavior of the circuit CC. This table has four columns:

e K(Y,) is a binary code of the microinstruction Y;;
e K,(a,) is a binary code of the internal state a; from the subset A(Y});
e @ is a binary representation of excitation functions that switches the memory of a -

FSM from K(a,) to K(ay), in case of D type flip-flops D, = O;, r = 1,..,R;

e 15 is a number of the line, tp = 1,..., Z;{ZIM[Y.
The implementation of the logic circuit of the FSM. The idea of implementation

is similar to implementation of a logic circuit where current states are used as the . In th

partitioning set. The only difference is a size and an addressing method of a memory {Cimpler
block implementing the circuit CC (Fig. 10). There are 2R words of R bits and the
content of the memory is described by the internal state code converter table where

the concatenation of the binary code of the microinstruction and the binary code of Boolean

the internal state (34) is an address. system (.

and it ge

3.3. MULTIPLE ENCODING OF MICROINSTRUCTIONS AND INTERNAL STATES The s

Because internal states can be used as a partitioning set also for the multiple and it co

encoding of microinstructions and the multiple encoding of internal states this two en- * & mul
codings can be applied together in one method of synthesis [15]. It leads to existence of * 4 1}1ul
the structure PAY, (Fig. 11). The RTL schematic of this structure for FPGA technology | * t‘or :
is presented in Figure 12. The partitioning and the encoding of microinstructions are E : fl {or 5
exactly the same as for the method with the multiple encoding of microinstructions and § . (‘1 Ior 2
the partitioning and the encoding of internal states are also exactly the same as for the a i(?m
method with the multiple encoding of internal states with current states as partitioning * an im
set. It means that the code of the microinstruction K(¥;) is represented as (14) and the Stmé :‘Z‘; e, U

code of the internal state K(ay) is represented as (25).

ETQ.

> previous
de K, (a,)

formation
g the co-
y) and Th.
nstruction
n the code

ystems (9)
/ the same

s the table

>mory of a
VS

ementation
1sed as the
a4 memory E
vits and the
able where |
ry code of %

!

Vol. 55 - 2009

STRUCTURAIL DECOMPOSITION OF FINITE STATE MACHINES

X b4
TL>
CcC 1B RG
f -

Hig. 11. Structural diagram of PAY, Mealy FSM

Voo
« P [v
LUTs 1 hd & BRAMs
T L DOR
h ; vee i
xee OPCLK DO
T ce =i
___$ BRAMs
CLK ADDR RG
Cebok oo LD] [y
RST =
WE - 6N
GNo
Q
RST

Fig. 12. RTL schematice of PAY, Mealty FSM

257

In this structure the combinational circuit P implements systems (15) and (26) and

it implements

YZP(PAY()) =Ry + N,

(37)

Boolean functions in total. The circuit Y implements a decoding of microinstruction

system (17) and the circuit CC implements the decoding system of intarnal state (28)

ATES ’g
%
he multiple i .
his twoer- |
existence Of)
%
:

“technology
ructions ar¢
-uctions and
ye as for the
partitioning
(14) and the

and it generates the excitation functions,

The starting point for synthesis with structural decomposition is the formatted DST

and it consists of the following steps:

a multiple encoding of microinstructions,
a multiple encoding of internal stares,

a formation of the transformed direct structural table,
a formation of the system of Boolean functions,

a formation of the decoder table,

a formation of the internal state code converter table,

an implementation of the logic circuit of the FSM.

The multiple encoding of microin
Structure PY,,.

structions. This step is exactly the same as for

the

258 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

The multiple encoding of internal states. This step is exactly the same as for the
structure PAY.

The formation of the transformed direct structural table is base for formation of
systems (15) and (26). It is created from the original DST by replacing the column Y,
by the column YW, and columns K(«;) and @, with columns K,,(a,) and T),.

The formation of the system of Boolean functions is base for obtaining systems (15)
and (26). These systems are defined as, respectively, (21) and (30).

The formation of the decoder table. This step is exactly the same as for the structure
PY,.

The formation of the internal state code converter table. This step is exactly the
same as for the structure PAY.

The implementation of the logic circuit of the FSM. The idea of implementation
is the same as for previous methods with the multiple encoding. Based on the same
rules of clocking of memory blocks there can be drawn the RTL schematic for FPGA
architecture (Fig. 12).

3.4. MULTIPLE SHARED ENCODING OF MICROINSTRUCTIONS AND INTERNAL STATES
WITH COMMON MEMORY

Shared multiple encoding of microinstruction and internal states is a further impro-
vement of the multiple encoding of theses parameters [16]. In this approach systems
(15) and (26) are replaced by one system

Y =YX, O), (38)

which is used for encoding of microinstructions and internal states, represented by
identifiers, and it is implemented by the combinational circuit P.

Becouse now, deocoder Y and CC have exactly the same input signals they can be
replaced by one decoder YCC. It leads to existence of a new structure PAY g¢ (Fig. 13).
The RTL schematic of this structure for FPGA technology is presented in Figure 14.

X

< = LY Y Y,
cC % RG
@)

Fig. 13. Structural diagram of PAYsc Mealy FSM

Vol. 55 -

Cre:
and Y; i
create a
base on
leads to
from th
transitio

and

And eac

Now, th

logic fur
rations a

Both cod
of the m

ETQ.

as for the

mation of
olumn v,

tems (15)
> structure
xactly the
mentation

the same
for FPGA

 STATES

1er impro-
h systems

(38)

sented by

ey can be
- (Fig. 13).
figure 14,

vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 259

RST

Fig. 14. RTL schematic of PAY s¢ Mealy FSM

Create the identifier /! that represents the pair (a;, ¥;) where a;, is an internal state
and ¥, is a microinstruction executed during the transition to this state. All identifiers
create a set of identifiers /. The set of identifiers should be partitioned into subsets
base on a current state «,, € A in order to make suitable encoding of identifiers, It
leads to existence of M subsets I(a,,) C I and identifier I! € I(a,,) if there is transition
from the state a,, to the state a; and the microinstruction Y, is executed during this
transition. Now, '

U, = H(am) (39)
and

Uy = max(Uy, ..., Uy). 40)

And each identifier 7! € I(a,,) can be encoded by a binary code K, (/") with bits,

R3 =[log, Uy 41)

Now, the combinational circuit P implements only

ny(PAY s¢) = R3 (42)

logic functions. In this case, the decoder YCC is used for decoding of both microope-
rations and internal states and it implements systems:

Y =Y(Q,W), (43)
D =D(Q, V). 44

Both codes, of microinstructions and of internal states, are represented by concatenation
of the multiple code of the identifier K(I') and the code of the current state K (ctp):

i e
R A

K(Yt) = Km([D * K(am)’ (45)

260 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

“K(ay) = K, (ID) = K(ay). (46)

The starting point for the synthesis with structural decomposition into the structure
PAYsc is the formatted DST and it consists of the following steps:

e a multiple encoding of identifiers,

e a formation of the transformed direct structural table,
e a formation of the system of Boolean functions,

e a formation of the common decoder table,

s an implementation of the logic circuit of the FSM.

The multiple encoding of identifiers. In application of this method of synthesis the
simple binary encoding can be used.

The formation of the transformed direct structural table is base for formation of
the system (38). It is created from the original DST by replacing columns a;, K(a,),
Y, and @, by columns [}, K,,(I%) and ;. The column ¥, contains variables ¢, € ¥
that are equal to 1 in the code K,,(I")from the h-th line of the transformed DST.

The formation of the system of Boolean functions is base for obtaining the system
(38). This system is defined as (21).

The formation of the common decoder table. This table describes the behavior of
the circuit YCC. It includes columns:

o K(a,) is a binary code of the current state «,,;

e K,(I!) is a binary code of identifiers I! from the subset I(a,,) ;

e Y is a binary representation of the microinstruction ¥;, vy, =l iff y, € Yy and y, =0
ify, ¢Y,,n=1,..N;

@ is a binary representation of excitation functions that switches the memory of
the FSM from K(a,,) to K(ay), in case of D type flip-flops D, = Q7, r = 1,...,R;

e my is a number of the line,

The implementation of the logic circuit of the FSM. The idea of the implementation
is the same as for previous methods with the multiple encoding. The decoding memory,
built up of memroy blocks, is trigged by opposit edge of clock signal like in previous
cases. It leads to existance of RTL schematic presented in Figure 14.

4. AUTOMATA SYNTHESIS SYSTEM

There was designed a prototype of system for structural synthesis of FSMs with use
of proposed methods of synthesis. In order to apply these synthesis methods the design
flow for FPGAs have to be modified (Fig.15). This system is named the Automata
Synthesis (AaS) [17], [18], [19]. In case of future implementation of discussed methods
in commercial synthesis systems the design flow does not have to be modified and
proposed method of structural synthesis can be included in the synthesis step.

In the proposed design flow the entry point for the structural synthesis step is the
behavioral description of an FSM in the KISS2 format [32]. The output of the logic
synthesis step is the structural description of FSM. It is represented by the set of files in

Vol. 55 -

Verilog
into se
of one
circuit
is desc
register
typical
on stru
selecto
of the
memor
is syntl
attribut:
it is igr
supplie:
type of

Specifice
(KISS!

ETgQ

(46)

€ structure

nthesis the

rmation of
s as, Kay),
les , € ¥
DST.

the system

behavior of

and y, =0

memory of
=1,..K,

lementation
ng mMemory,
in previous

Ms with us¢
s the design
e Automald
sed methods
odified and
step.

s step is the
of the logic¢
et of files in

.

|
.
.

Vol. 55 — 2009 STRUCTURAL DECOMPOSITION OF FINITI? STATE MACHINES 261

Verilog. Then these files can be the entry point for further synthesis and implementation
into selected FPGA device with use of comercial tools. The set of these files consists
of one top-level module (Fig.16) — it describes connections between blocks of the logic
circuit — and group of files that describe particular blocks. The combinational circuit
is described as a set of Boolean equations using continue assignments (Fig.17). The
register is described as R-bit D type flip-flop with asynchronous reset (Fig.18) using
typical synthesis template [22], [31]. Decoders (circuits Y, CC and YCC - depends
on structure) are described using case statement (Fig.19). The address is placed as a
selector of the case statement and the content of the memory is described by choices
of the case statement [29]. Because it should by synthesized as synchronous ROM
memory this statement is placed in always block. To ensure that such described module
is synthesized as a memory block it is required o set a value of special synthesis
altribute bram_map to “YES” [31]. This is synthesis attribute of Xilinx devices and
it is ignored in case of synthesis into other vendors FPGA devices. But each vendor
supplies similar attributes or directives, for example, the attribute romstyle specify the
type of memory block to be used in Altera devices [3]

Structural
Synthesis $|
{AS System)

Structural
Deseription
{Verilog)

Netlist
(EDIF,
NGC)

Specification Synthesis—jis|

(KiSS2)

Implementatiorges|
BitStream

Device Library

Fig. 15. The design flow for FPGAs with use of the AS System

module dk14 (clk,
input clk, res;
input [1:3] x;
output [1:5]
wire [1 d;
wire

res, x, y);

wire
wire

dk14

[1
[1
[1

RG

dk14 p

dki4 v

dk1l4 CC
endmodule

Fig. 16. The top-level module of the Mealy FSM dki4 with the structure PAY,

1
3
3
2
3

uD

Up
Uy
uc

]
]
]
]

g/
psi;
tau;

Lclk(clk)

-0

(g

.res{res),

.D(dy,

LQ(q))

) 14

.psi(psi),

.tau (tau)) ;

elk(clk),

(
(.x(x),
(
(.clk{clk),

-psi(psi),
.tau(tauy),

Q) ,
Q(a),

¥
D

(

Y
d

)
)

)
)

’

I

262 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

module dkl4_P (x, Q, psi, tau);
input [1:3] x;
input [1:3] 0O;
output [1:2] psi;
output [1:3] tau;

assign psill] = x[1] & x[2] & ~x[3] & Q[1] & ~QI[2] & ~QI[3]
P xI1] & x[2] [[& ~Q[2] & Q[3]
(...)7

assign psi[2] = x[1] & ®[2] & x[3] & Q[1l] & ~QI[2] & ~Q[3]

S
2
b
ot
°a}
O
=

[x[1] & x[2] & x[3] & Q[1] & ~Q[2] & Q3]
(o0);
assign taull] = x[1] & ~x[2] & x[3] & Q1] & QI[2] & ~Q[3]
| ~x[1] & x[2] & ~x[3] & Q1] & Q2] & ~QI[3};
asgign taul[2] = x[1] & %[2] & %x[3] & Q[1l] & Q[2] & ~Q{3]
| x[1] & x[2] & ®{3] & ~Q[1l] & ~Q[2] & QI[3]
(o5
assign taul[3] = x[1] & ~x[2] & ~x[3] & ~Q[1] & ~Q[2] & QI[3]
| ®[1] & ~x[2] & ~x[3] & Q[1] & ~Q[2] & ~QI[3]
(o003

endmodule

Fig. 17. The part of the combinational circuit module of the Mealy FSM dk14 with the structure PAY,

The example set of files is shown in figures 16, 17, 18 and 19. These files are
generated for the Mealy FSM dk14 from the library LGSynth9/] [32] synthesized into
the structure PAY, by the AeS System.

module dkld_RG (clk, res, D, Q);
input clk, res;
input [(1:3] D;
output [1:3] Q;
reg [1:3] Q;

always ((posedge clk or posedge res)

begin
if (res)
Q <= 3'b0;
else
Q <= D;
end
endmodule

Fig. 18. The register module of Mealy FSM dkl14 with the PAY, structure

Vol. 55

The
synthesi
e P .
e PY -
» PY,
e PAY

by ct
L] PAY(

instru
e PA -
by cu
e PYY

by mi
* PAY,

and 1y

The A
is execute

synth
Where:
® synth]
s file kis
¢ -Meth
¢ -lmple
synthe:

ETQ.

cture PAY,

¢ files are
=gized into

é
%
:

Vol. 55 — 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 263

module dkl4 Y (clk, psi, Q, y);:
input clk;
input [1:2] psi;
input [1:3] Q;
output [1:5] y;
reg [1:5] y;

// synthesis attribute bram map of dki14 Y is yes
always @ (negedge clk)
case ({Q,psi})

5'b00000: y = 5'b00010;
5'b00001: y = 5'b01010;
5'000010: y = 5'b01000;
5'b00100: y = 5'b01001;
(...)2
default: v = 5'b00000;
endcase
endmodule

Fig. 19. The part of the microoperations decoder module of the Mealy FSM dk14
with the structure PAY,

The Automata Synthesis System in version 1.6.2. [18] is able to perform the logic

synthesis into following structures:

®
L4
L4

P — standard single-level structure,

PY - standard double-level structure with maximal encoding of microinstructions,
PY, — double-level structure with multiple encoding of microinstructions,

PAY — double-level structure with multiple encoding of internal states (partitioning
by current state) and maximal encoding of microinstructions,

PAY, — double-level structure with multiple encoding of internal states and micro-
instructions,

PA — double-level structure with multiple encoding of internal states (partitioning
by current state),

PYY — double-level structure with multiple encoding of internal states (partitioning
by microinstructions) and maximal encoding of microinstructions,

PAYse — double-level structure with shared multiple encoding of internal states
and microinstructions with common memory.

The AaS System works in command line of the Windows XP operating system. It

is executed as follow:

synth[.exe| file.kiss2 -Method [~ImplementationSystem device]

where:

synth|.exe] is the name of the executable file of the A#S System.

file.kiss2 is a name of a file to be synthesized.

-Method is the name of a method of synthesis.

-ImplementationSystem device is a optional argument that allows to generate
synthesis macro for third party commercial synthesis system. At this stage only

264 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETQ.

XST from Xilnix is supported. Instead of device word there have to be placed a
correctly symbol of device,
For example:
synth dk14.kiss2 -PAY0 -xst xcv50-bg256-6.

Output files are saved in newly created directory. The name of this directory is the
name of synthesized file with the suffix Method, where instead of the word Method
is placed the name of the method of synthesis, for example, dk14_PAYO. Besides,
structural description in Verilog of synthesized FSM there is also created a raport
file with the .rep extension. This file indudes codes of encoded parameters, number of
inputs, outputs, states and variables required for encoding, the number of logic functions
realized by the combinational circuit and an estimated size of ROM memory.

Additionally, there can be generated files to run synthesis with XST" if -xst device
option is included. There is created the XST project file (extension .prj), the XST
command file (extension. xst) and the batch file to invoke the synthesis process with
XST (extension .bat).

5. SYNTHESIS

To analyze a gain of application of proposed synthesis methods there was performed
the synthesis of benchmarks form the library LGSynth91. Benchmarks were synthetised
with use of the AaS Systemn and then obtained files was synthetised with Xilinx XST
8.1¢ [31] from Xilinx ISE 8.1i into Xilinx Virtex v50 (xcv50-bg256-6) device [30]
according to proposed design flow (Fig.15).

The obtained results of synthesis (Tab. 1) with use of standard methods (P and PY)
and proposed methods have been compared and with results of synthesis of behavioral
description in VHDL and Verilog. Because, there is no possibility to implement the
behavioral description of an FSM in the KISS2 format it also was converted into
behavioral description in VHDL [20] and Verilog [26].

Table 1

Average results of the synthesis of benchmarks

Type of

Structure

resources
VHDL | Verilog P PY] PY,[PAY| PYY | PAY, [PAYsc
Slices 30,67 44,511 51,80(50,38145,55134,66 42,041 25,13 23,6
LUTs 4,26 438101,98(89,98 1 81,43|61,21| 4,72|44,34| 41,45
FFs 70211 79,00 4,53 471 47727 4387 4,53 434 4,34
BRAMs 0 0 0] 1,064] 1497 2,15 253 2,6 2.4
Slices T6% 86% | 100% | 97% | 88% | 67% | 81% | 48% | 45%
LUTs 94% 97% 1 100% | 9B% | 89% | 67% | 81% | 48% | 45%
FFs 76% 86% | 100% | 104% 1 104% | 97% | 100% | 96% @ 96%
BRAMs 0% 0% 0% | 43% | 62% | 89% | 105% | 108% | 100%

Vol. 55 -

It s
of FSM
descrip
other p
and the
implem
in SOme
[12], [2
is reco;
re-assig
convert
whole s

As i
tions (P
the num
method
of imple
reduced

The
number
used as
exceedes
number

Aver
current
microins
(PYY) ¢
current
means (t

The |
improver
ding of 1
in most 1
decoders

There
a digital
Synthesis
paramete
methods

ETg

e

be placed g

ctory is the
ord Methog
0. Besides,
ed a rapor
, humber of
ic functions
Ory.

" -xst device
i), the XST
rocess with

s performed
- synthetised
 Xilinx XST
device [30]

, (P and PY)
f behavioral
plement the
nverted info

Table 1

|

Vol. 55 — 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 265

It should be mentioned that XST performs synthesis of behavioral description
of FSMs with use of standard single-level P structure. The synthesis of behavioral
description was performed with compact encoding of states and default settings of
other parameters. Differences in hardware utilization between behavioral description
and the structure P can be caused by different state assignment. The XS7T also has
implemented the algorithm of minimization of unreached states which improve results
in some cases. The results also depend on the scheme of description of FSM in HDLs
{121, [22]. The description in VHDL obtained from the KISS2VHDI, converter {20]
is recognized as FSM by XS7 and the minimization of unreached states the state
re-assignment can be performed. The description in Verilog obtained from the Kiss2vi
converter [26] has wrong interpretation of transitions from any state and XST remove
whole state machine during synthesis process.

As it can be seen the standard method with the maximal encoding of microinstruc-
tions (PY) reduces the number of slices only by 3%. The other important parameter is
the number of BRAMS, The conducted research showed that application of the standard
method with the maximal encoding of microinstructions does not give benefits in case
of implementation of control unit into an FPGA device — the number of LUTS is weakly
reduced or even not reduced and additionally it assumes usage of memory blocks.

The multiple encoding of microinstructions (PY,) in most cases diminishes the
number of LUTS. This method is used as a base of further methods and it can be also
used as an alternative balanced method of synthesis when outcomes of other methods
exceeded number of available BRAMs because this method required relatively smallest
number of memory blocks.

Average results obtained for the multiple encoding of internal states based on a
current state (PAY) are belter than the results obtained for the multiple encoding of
microinstructions. The multiple encoding of internal states based on a microinstruction
(PYY) gives better results than the multiple encoding of internal states based on a
current state. These both structures required implementation of two decoders which
means that it required the bigger number of BRAMS.

The multiple encoding of microinstructions and internal states (PAY) is a further
improvement of the method PAY and it gives better results. The shared multiple enco-
ding of microinstructions and internal states (PAYsc) gives the best results of synthesis
in most number of cases. Additionally the application of the common memory for both
decoders reduce the number of required BRAMs for small FSMs.

6. SUMMARY

There were presented five methods of synthesis and five double-level structures of
a digital device implementing an FSM. Fach structure is dedicated to one adequate
$ynthesis method. The synthesis methods are based on the multiple encoding of some
Parameters of a state machine and structural decomposition of its logic circuit, All
tethods are adapted for synthesis process into FPGA devices. They take advantage

266 ARKADIUSZ BUKOWIEC, ALEXANDER BARKALOV ETo | Vol. 2

of features of new FPGAs like embedded memory blocks. The utilization of such 18. A
resources leads to reducing the number of required standard logic blocks, like LUTs, 0 2
for implementation of a control unit, o
The choice from variety of synthesis methods gives opportunity to fit a control
unit exactly into unused hardware resources by other components of the whole digital 20. K
system. It makes that all blocks of device can be used equable, what means that M
synthesis process is more effective. (Iic
1
21 A
7. REFERENCES of
2. 1.
1. M. Adamski, A. Barkalov (2006): Architectural and Sequential Synthesis of Digital Devices. 7 ll\k
Zielona Géra: University of Zielona Géra Press. 2 4:]
2. Altera 2007). Embedded Memory in Altera FPGAs, available at log
http://www.altera.com/technology/memory/embedded/mem-embedded.html. of
3. Altera (2008). Synthesis. In: Design and Synthesis vol. 1 of Quartus Il Development Software Hand- 5. T
book (v8.0). User Guide. pp. 8-1-8-98. San Jose: Altera. Di
4. S.I. Baranov (1994): Logic Synthesis for Control Automata. Boston: Kluwer Academic Publishers. 2%. (‘,f
5. A. Barkalov, A. Palagin (1997): Synthesis of Microprogram Control Units. Kiev: IC NAC ht!
of Ukraine (in Russian). 97 M.
6. A, Barkalov (2002) Synthesis of Control Units on PLDs. Donetsk: DoaNTU (in Russian). des
7. A. Barkalov (2003): Synthesis of Operational Units. Donetsk: DonNTU (in Ukrainian). Fing
8. A. Barkalov, A. Bukowiec (2004): Synthesis of control unit with multiple encoding of the 98, 7.
sets of microoperations. In: Proceedings of the 2°* International Workshop on Discrete-Event System gm
Design DESDes’04, pp. 75-78, Dychdw, Poland: University of Zielona Géra Press. 2. D.
9. A. Barkalov, A, Bukowiec (2004): Synthesis of Mealy FSM with transformation of system Kit
of microoperations in excitation functions. Radioelectronics and Computer Science, No. 3, 82-85. | 30, Xil
10. A. Barkalov, A. Bukowiec (2005) Optimization of Mealy FSM with decoding of the | 3. Xil
microoperations system. Control Systems and Computers, No 5, 51-56. . Ya
11. A. Barkalov, A. Bukowiec (2007) Realization of Mealy automata with transformation of Rep

microoperations in the registers excitation functions. In: Proceedings of the 6™ International Confe-
rence on Computer-Aided Design of Discrete Devices CAD DID’07 vol. 2, pp. 34-38, Minsk, Belarus.

12. S. Brown, Z. Vernesic (2005): Fundamentals of Digital Logic with VHDL Design. New York:
McGraw-Hill, 2nd edition.

13. A. Bukowiec (2004): Synthesis Mealy finite state machines with multiple encoding of internal
states or sets of microoperations. In: Proceedings of the VI International Workshop for Candidates
for a Doctor’s Degree OWD’04 vol. 19 of Conference Archives PTETIS, pp. 367-372, Wista, Poland.

14. A. Bukowiec, (2004): Synthesis of Mealy automata with multiple encoding of internal states. In:
Proceedings of Scientific Conference Computer Science — Art or Craft KNWS’04, pp. 29-34, Zamek
Czocha, Poland: University of Zielona Géra Press.

15. A. Bukowiec, (2005): Automata synthesis with application of multiple encoding. In: Proceedings
of 2 Scientific Conference Computer Science - Art or Craft KNWS’03, pp. [7-22, Zlotniki Lubar-
skie, Poland: University of Zielona Géra Press.

16. A. Bukowiec Q006): Synthesis of Mealy FSM with multiple shared encoding of microinstructions
and internal states. In: Proceedings of IFAC Workshop on Programmable Devices and Embedded
Systems PDeS’06, pp. 95-100, Brno, Czech Republic.

17. A. Bukowiec (2008): Synthesis of Finite State Machines for Programmable Devices Based on
Multi-Level Implementation. Ph.D. Thesis, University of Zielona Géra, Faculty of Electrical Engine-
ering, Computer Science and Telecommunications. Supervisor Prof. A. Barkalov, Ph.D. D.Sc.

i

ETg

n of such
like LUT;,

(a contro]
ole digital
neans tha

gital Devices,

ftware Hand-

ic Publishers,
dev: IC NAC

Russian),
nian).
coding of ihe
Event System

ton of system
. 3, 82-85.
“oding of the

sformation of
tional Conle-
insk, Belarus.
n. New York:

1g of internal
o Candidates
Visla, Poland.
nal states. I
29-34, Zamek

: Proceedings
otniki Lubaf-

roinstructions
1 Embedded

ces Based on
trical Engine-
. D.Sc.

21.

|

18.

19.

21

22,

23,

24.

2.

26.

vol. 55 - 2009 STRUCTURAL DECOMPOSITION OF FINITE STATE MACHINES 267

A. Bukowiec, (2008): Automata Synthests System, available at
http://'wiﬂ()\»wiie.uz.zgora.pl/~abukowie/AS/as.htm

A. Bukowiec, A. Barkalov,L. Titarenk 0, (2008): FSMs implementation into FPGAs
with multiple encoding of states. In: Proceedings of IEEE East-West Design & Test Symposium
EWDTS08, pp. 72-75, Lviv, Ukraine: IEEE.

. K. Figler, (2006): Analysis of Formal Methods of Synthesis of One-Level Finite State Machines.

Master’s thesis, University of Zielona Géra, Faculty of Electrical Engineering, Computer Science and
Telecommunications. Supervisor: Prof. A. Barkalov, Ph.D. D.Sc., co-supervisor: A. Bukowiec, M.Sc.
(in Polish).

A. Tantsch (2003): Modeling Embedded Systems and SoC’s: Concurrency and Time in Models
of Computation. San Francisco: Morgan Kaufmann.

J. M. Lee, (1999): Verilog QuickStart: A Practical Guide to Simulation and Synthesis in Verilog.
Norwell, MA: Kluwer Academic Publishers.

T. Louba, 2001): Synthesis of Logic Circuits. Warszawa: Warsaw Information Technology (in Polsih).
T.Luba M. Rawski, Z. JTachna, (2002): Functional decomposition as a universal method of
logic synthesis for digital circuits. In: Proceedings of the 9™ International Conference Mixed Design
of Integrated Circuits and Systems MixDes’02, pp. 285-290, Wroctaw, Poland.

T. Luba, M. Rawski, P. Tomaszewicz B. Zbierzchowsk i, (2003): Synthesis of
Digital Circuits. Warszawa: Transport and Communication Publishers (in Polsih).

C. Pruteanu, (2004): Kiss to Verilog FSM Converter, available at

bttp://codrin.[reeshell.org.

M. Rawski,P. Morawiecki, H Selvar aj, (2006): Decomposition of combinational circuits
described by large truth tables. In: Proceedings of the 8% International Conference on Systems
Engineering ICSE’06, pp. 401-406, Coventry, United Kingdom.

. Z. Salcic, (1998): VHDL and FPLDs in Digital Systems Design, Prototyping and Customization.

Boston: Kluwer Academic Publishers.

. D. Thomas, P. Moorby, (2002): The Verilog Hardware Description Language. Norwell, MA:

Kluwer Academic Publishers, Sth edition.

. Xilinx (2002). Virtex 2.5V Field Programmable Gate Arrays. Data Scheet. San Jose: Xilinx.
. Xilinx (2005). XST User Guide (8.1i). User Guide. San Jose: Xilinx.
- Yang, S. (1991). Logic Syathesis and Optimization Benchmarks User Guide. Version 3.0. Technical

Report, No. 1991-IWLS-UG-Saeyang. Microelectronics Center of Notth Carolina. North Carolina.

Fast Q

e-r

cycli
to pr
block
Propx
solut
comg
block
is pl
chan;

Keyw

Time 1
that detert
one meast
parameter:
ment of a
short time
such a un
make pos:
effective p

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 269-286

Fast Operating PLC Based on Event-Driven Control Program
Tasks Execution

MIROSLAW CHMIEL*, EDWARD HRYNIEWICZ*, ADAM MILIK**

Institute of Electronics, Silesian University of Technology, Gliwice, Poland
e-mail: mchmiel@polsl.pl), ** e-mail: ehrynkiewicz@polsl.pl), *** e-mail: amilik@polsl.pl

Received 2009.01.08
Authorized 2009.03.26

The paper presents modified idea of program execution in PLCs. Instead of serial
cyclic execution of control program event-driven execution is proposed. Suggested approach
to program cxecution allows for selective execution of program parts or tasks. Only these
blocks from entire program are executed whose variables have changed since last calculation.
Proposed method can be implemented as software modification or as hardware accelerated
solution. The most important part of the idea is task or subprogram triggering condition
computation. Methods of program optimization are discussed. In order to determine program
blocks that require recalculation in current program scan execution specific hardware support
is planned to be researched. Memory content change detection unit allows to determine
changes in memory content since last program block execution,

Keywords: Programmable Logic Controller; Central Processing Unit; Control Program; Pro-
cess Image Memory; Scan Time; Throughput Time

1. INTRODUCTION

Time needed to execute one thousand of instructions is one of the basic parameters
that determine performance of Programmable Logic Controllers (PLCs). The second
one measure of a PLC performance is throughput time [10]. If the values of these
parameters are low a possible range of PLC application is wider. Design and develop-
ment of a CPU that would enable execution of a control program during extremely
short time is becoming a very important task. Owing to its constructional features,
such a unit should not only cover all the possible functional requirements but also
make possible to take maximum benefits from these features through possibly most
effective programming techniques [1, 4, 5, 8].

270 MIROSEAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.

A PLC during standard processing performs following operations [10}]:

1. Reading of input signals,

2. Control program execution,

3. Updating of output signals. ,

Apart from the presented operations that are visible for user the CPU is responsible
for performing tasks required by its operating system (Fig.1).

In the presented approach entire control program is executed during each scan and

it is independent of inputs and outputs signal changes. Large number of calculations
performed by the CPU does not work out new output signals values because input
arguments remain unchanged since last calculation.
Typical PLC executes control program in serial-cyclic manner. Instructions are executed
one after another. After execution point reaches the end of instruction sequence cycle
starts over. Each execution cycle (Fig.1) begins with Cycle Initialization and ends with
Communication and Diagnostics.

)
Cycle Initialization

A
Input reading Tin

¥
* Program Execution | T

\
Cutput writing Tour

\
Communication

/
Diagnostics

L

Fig. 1. A PLC standard operation cycle

Even though variables haven’t changed between consecutive program executions
PLC behaves in the same way. In case of variables whose state has not changed since the
previous computation cycle CPU executes tasks whose results are already known - they
have been derived during previous program scan. This is very important observation
that allows to introduce a new approach in construction and implementation of program
execution in PLC. This new idea is based on event driven program execution. The
program blocks executed conditionally are triggered by the changes of input variables

Vol. 55

since |

blocks
execut]
arising
to incr
Such w
be put
suppor

Eve
driven 1
observa
Modico
structur
. Sing
2. Mul

task
In multi
signed
periodic
piece of
purpose:;
triggere
describe
continou

In ot
that onls
calculati
Opportun
impleme
fragment
blocks.

A S@
tasks wh
executior
once or
responsit
Steps anc

ETQ,

responsible

h scan and
alculationg
ause input

re executed
lence cycle
1 ends with

~executions
ed since the
nown - they
observation
of progran

cution. The
ut variables

Vol. 55 — 2009 FAST OPERATING PLC BASED ON EVENT-DRIVEN CONTROL... 271

since last time. This approach allows to reduce calculation overhead by execution of
only required parts of program instead of entire control algorithm processing.

Above observation shows that control algorithm can be executed partially. Only
plocks whose input variables have changed since last scan should be selected for
execution. This approach allows to eliminate excessive program execution overhead
arising from code execution whose results are already known. This modification allows
o increase controller performance and reduce its response time.

Such way of control program execution one can obtain in standard PLC but it should
be put in nonstandard operation. The solution may be software supported or hardware
supported.

2. SOFTWARE SUPPORTED SOLUTION

Even though commercially available PLC CPUs are not adapted to work in event
driven fashion approach, it is possible to write a program that takes benefits from event
observation.

Modicon TSX controllers’ family can be programmed using two different program
structures. Control programs can be developed in form of:
I Single threaded main program that consists of segments and subprograms,
2. Multi threaded structure that consists of a main task, quick tasks and alarm interrupt
tasks.
In multithreaded approach each task has assigned priority. The lowest priority is as-
signed to main task that can be executed in cyclic way (typical PLC execution) or
periodically. Quick tasks have higher priority assigned. A quick task should be a short
piece of program due to its periodical execution. Mainly it is executed for monitoring
purposes like monitoring of rapid changes of controller digital inputs. Its execution is
triggered by event like a counter overflow or change on a digital input. In opposite to
described tasks (main and quick) an interrupt task is executed neither periodically nor
continously.
In other types of controllers it is also possible to write a program in a such way
that only selected blocks are executed when input variables have changed since last
 caleulation. Dividing a program into blocks, macros and subprograms an is given
opportunity for partial execution of entire program. All those mechanisms must be
implemented in software. In such approach it is required to implement additional
_ fragment of program that is responsible for execution of condition checking for program
blocks.
A Sequential Function Chart (SFC) offers a programmatic mechanism to describe
fasks whose execution is conditional. This method enables to create subfunctions that
Execution is suspended until given conditions are met. The subfunction can be executed
once or in cyclic way in parallel with other running tasks. A program designer is
_ [esponsible for defining transition and logical statements that activate appropriate step.
~ Steps and transitions contain standard program blocks.

R

272 MIROSEAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.

3. WHAT IS AN EVENT?

To be able to talk about event-driven program execution two questions should be
discussed: :

What is “an event” from the control program’s point of view?

How to divide control program to achieve optimal solution?

Discussion presented in the paper is focused on a proposition of an idea of a
programmable controller that is able to execute control program in an event-driven
mode, releasing the user from the effort of preparing the conditions for the blocks
triggering. These tasks should be completed by the program compiler according to
appropriately defined task partitioning algorithms. During execution of a program PLCs
make use of external signals: inputs, outputs and internal variables: markers, counters,
timers which can also be treated as markers in this case. According to analysis presented
in [6] change of state of a variable or signal requires evaluation of a new output value.

In general controller function can be put down as following formula:

Yy = AX, Q. Yu-1)

Where:

Y, — Calculation result,

X - Input variables,

QO — Marker variables,

Y,-1 — Previous value of output.

Dividing the program into blocks is the main part of an event-driven program
execution concept. Through an analysis a set of function arguments can be determined,
which can be referred as the sensitivity list of the function A for each block. For purpose
of conditional execution recording of variable changes is required. Processed triggering
conditions are stored in conditional execution marker. Before starting execution of a
block its conditional execution marker (flag) is checked. If in the set of the controlling
function arguments no changes have appeared since last calculation the flag remains
inactive and the block does not undergo recalculation.

The most reasonable way of the program partitioning is outputs based method - as many
blocks as outputs are controlled. For each output a list of variables (sensitivity list) is
created whose state, or rather change of state, will affect the output. Change of one of
these variables will impose execution of the corresponding block. Size of each block
will directly depend on the complexity of the function evaluating the corresponding
output state, whereas size of the triggering function will depend on the sensitivity
list length. The first aspect is typical for a standard controlling program while the
second results from the program division into the event-triggered blocks. As presented
in Fig.2, organization block of the program will contain the cyclically executed part of
the program — the fragments that are not suitable for event-driven execution and the
part of the program that will be responsible for detection of changes in the sensitivity

Vol. 55

list of
consis

Prc

Actl

Actt

Actt

L

W)
severa
variab
two ki
signal
chang;
variab
that th
proces
variab
size of

Jol. 55— 2009 FAST OPERATING PLC BASED ON EVENT-DRIVEN CONTROL... 273

ETg

Jist of the block. The part of the program, that is intended for event-driven execution
consists of operational part from original program and conditional entry.

s should be

L Oranization Block
1 idea of 4 Cycle Program
vent-driven Execution
the blocks Process Image Me’mory
ccording to v
gram PLC; Actual State of Group 1 | Group 1 >
'.s, counters, changes Task 1
1S presented Group 1 Backup | detection |,
utput value,) .
\ | State of G 2 1 Group 2
% fee iy chalgges Task 2
% Group 2 Backup 1/\ detection P
% -
| ® »
® ®
L @
Actual State of Group n 1 Groupn >
en program changes Task n
determined, Group n Backup | detection |,
For purpose
d triggering

cution of &
controlling
lag remains

Fig. 2. Program block execution

What should be done when a state of one output affects another one state, or when
several output states depend on one internal variable state? After closer look at the
variables deciding about execution of a given program block, it can be found that only
two kinds of variables can have direct influence on the given function’s state: input

e e

d - as many
ivity list) 8
e of one of
“each block

rresponding signals coming directly from the input modules (in most cases their change initiate
- sensitivily change of other variables state) and state of the timers - they are the only internal

variables which changes independently from the input signals. It results from the fact
that the time is counted independently of cycles of the controller loop. All variables
processed by a PLC are shown in the Fig.3. With dashed line are marked sets of
\’firiables that are responsible for calculation triggering. Above observation reduce the
Size of the additional memory necessary for storing information about variable states.

n while the
s presented
uted part of
ion and the
> sensitivity

274 MIROSLAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.
(—————— \ P
rocess
: lmzrzcﬁ‘ssuts _Lf\ /1\1___1/[\ Image Outputs
g /1 -PIQ
l - Pl l
\ o e e - -
Central /L—[\ MMarkersM
Processing W emory -
Unit
Counters
Memory - C
[L T e e ™~
/L}I\ Timers I
\rﬂ/ Memory - T ||
S e o e d

Fig. 3. A PLC standard variables ranges
4. HOW TO BUILD AN ORGANIZATION BLOCK?

When the decision has been already made that it is sufficient to monitor changes of
inputs and timers, capabilities of the controllers should be investigated for the purpose
of writing procedures checking state of mentioned variables. It is necessary to check the
state of all variables, that given block depends on. It should be noticed that changes of
any number of variables should schedule a single execution of a block. There’s no need
for a multiple execution of a block while input variables are updated at the beginning
of the program scan.

Let’s consider two examples of programmatic implementation of event driven pro-
cessing. First example is schematically presented in Fig.4. Before execution of program
block current value of all variables that are used is compared with their previous va-
lue. If current state of at list one variable differs from previous one the block must be
executed. There is a great inconvenience in implementation of change checker block.
This block consists of large amount of instructions that are responsible for checking
processing condition of a program block only. Exemplary program listing and execution
times are presented in Fig.5 [2].

Vol. 5:

In th
to | and
requires :
should b

ETQ,

hanges of
1€ purpose
 check the
hanges of
’s no need
beginning

riven pro-
f program
evious va-
'k must be
ker block.
- checking
| execution

yol. 55 — 2009 FAST OPERATING PLC BASED ON EVENT-DRIVEN CONTROL.... 275

Program part with
cyelic execution

Arg 1 !
g fias changed o
N
.
.
.
Argn T
as changed
N
O
Arg1 >
as changed,
N
.
o
°
Arg n
) as changed
N |
O=

Fig. 4. Program block diagram with event-driven tasks execution

Task 1
event
triggered

Task 2
event
triggered

a. 57-344 PLCT

X In.o Fi0.3us
X MiD. 9 jif0éEps
a /0. 3us
x In.7

X H10.7

co FC1 f/E.3us
A I0.0 f/0.2us
= H1B. 0 //l.4ps
A I0.7

nLg.7
Execution Time: f/27. 4ps

b. §7-214 PLC”

LD 6.0 //0.Zeps
B / /8. 00ns
LD 0.0

ED £/8_00ns
OLD 740 zens
ih I0.7

U

oL

o) IO,

ED

oL

CALL SBER O //L.30us
Execution Time:ff113. Aips

Fig. 5. Listing of change detection for one block

In the presented program example it was necessary to detect the changes from 0
0 1 and from I to O for each variable. Detection a variable change in Simatic S7-314
fequires at least 5 instructions (twice XOR, OR, AND, and =) and additional marker
should be used for storing previous value of a signal. Time needed to execute this

276 MIROSEAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.

program part for 8 inputs is 27.4ps. The Simatic S7-214 (b) PLC requires 113.5ps,
even though less instructions are executed. The program execution in the S7 314 CPU
is almost four times faster than in S7 214 CPU.

Complexity of program implementation is growing very quickly for blocks that
process several signals. Partially this problem can be overcome by variable grouping
in adjacent memory cells to form longer words that allow processing several bits at
once. This will allow to use byte or word instructions that can greatly accelerate
detection process. Block diagram of optimized solution is presented in Fig.6.

Program part with
cyclic execution

: Group 1 Y Lavsekn:
as chang : triggered

Task 2
event
triggered

@
L 4
@

Task n
event
triggered

Fig. 6. Variables grouping in event detection procedure

Part of exemplary program in STL representation and calculated execution times for
Siemens S7-214 and S7-314 CPU of PLC is presented in Fig.7. The example presents
solution for eight variables, but it can be easy extended up to 32 bits (variables)
— double world — grouped in area of input, output variables or internal markers. In
case of checking larger number of variables or variables that belong to different areas
presented fragment of code must be repeated for all triggering variables. Final result
is logical sum of all partial results that allow to determine if change has occurred. As
it can be seen in the example, in case of both §7-214 and S7-314 controllers, program
execution time decreases significantly. For the S7-314 unit 3 times faster execution is
observed. Increasing efficiency is expected for a bigger number of grouped variables.

Implementing conditional execution of block with modified organization of data
cause program growing. For blocks with moderate number of parameters that are
gathered in coherent memory area such solution gives quite good results. Performance
is reduced when number of parameters is growing or parameters belong to different

Vol. 55

areas
marke

ETQ Vol. 55 — 2009 FAST OPERATING PLC BASED ON EVENT-DRIVEN CONTROL... 277
a. 57-314 PLC“
13.5“8, L Grl Memory A0 Pas
14 CPU L Grl Sigmals Fi0 6us
T Grl Memory F40.3us
O 70, 5ps
ks that L 0 . £/0. 6ps
rouping S>IFC‘_’L A7l Eus
. C FC 5 3ps
| bits at /f5.3n
celerate b. , 57-214 PLCT
LD EMO. 0 /0. BOus
LPE F40. Zdns
MOVE Grl S, Grl Mz fFLE. Ous
AEND 0. 40us
HOBE Grl M1, Grl M2 fA19. s
AENO A0 d4ns
AB<= Grl Mz, O 18, Ons
CALL SER O A48 00ps
LPP 0. Zins
HOVE Grl &, Grl ML FLE. On=
Totally Emxecution Time: FETE Dbps
Fig. 7. Listing of change detection for grouped variables for one block
areas (input, output or markers). Other inconvenience of this approach is additional
marker allocation for holding previous value of variables.
5. AN EXAMPLE OF EVENT DRIVEN PROGRAM EXECUTION
"Start” "Stop” “BLK" "Start_Up"
e | e e | e |
"Start_Up"
.] s
mes for "Counter"
resents 'S CUD | "Out_Counter
riables) . ;g 9
kers. In “Presetmall R
nt areas CH#5 wmsl] py
| result "Reset"u=s R
red. As
“Timer"
)rqgra{n IS, ODT | "Out_Timer"
ution is q
riables. "Time" s TV
of data wl R
hat are
ce)
'Ijrr}an Fig. 8. An Example of LAD Program
lifferent

278 MIROSEAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.

The above considerations are illustrated by an exemplary program presented in
Fig.8 in a well-known form of LAD diagram [3]. The example is very simple and it
is intended to clearly demonstrate the subject of this paper. There are two program
blocks (Counter and Timer) that are triggered with the same condition. The counter
and the timer have also inputs and outputs that do not directly depend on this condition
— Preset, Reset, Out_Counter, Out_Timer. It does not pay off to test these signals and
process them with event-driven method, which can be clearly seen in the program
listing (Fig.9).

As it can be noticed the instructions 1-9 and 17-19 are directly linked. The element
associating these instructions is, among other things, additional variable L 0.0 included
during the process of program compilation. The rest of the instructions form two-
or three-instruction groups not directly connected with each other. This part of the
program will be coded in unchanged form and will be executed by the controller in
serial cyclic mode. The program written in the standard way is executed by the S7-314
CPU in time of 27.10us. This is the time of presented program execution in each loop
cycle. In order to compare execution time with event driven execution method second
version of program is written.

1. n LStart FFO. 2p=
2. Li] LStart W Fin 2ps
3.] Stop* FFo 2ps=
4. = L B0 FFo. 8ps
L n L 0.8 F70. 8ps
6. a LBLE F#0. 2p=
7. = LStart W FFD. 2ps
8. | L 4.0 FF0. 8ps
9. [M1} JLCounter” Ff2 éps=
0. A L Presen FA0LEps
11, L C#s S0 ens
1z. 3 S Counter® fi6. Ops
13. A L Reset™ Fi00Ens
14. R lhounte Fil. s
15. A L Counter® FA0.Bps
1E. = Lan Cowmter™ fr0.EZups
7. R L 0.0 Fio. gp=s
18. L 55TH5= F10.6ps=
i%. 5D Eimex Fi9. p=
20. & Lo Tdmy ™ S0 8us
z1. = st Timer™ S0 Ens
Event Emecution Time: FF16. tips
Cycle Execution Time: FF10.B0us
Totally Execution Time: Fi27. lops

Fig. 9. An Example of STL Program

Vol.

T
sting
- has
could
Start,
chang

M
Appli
it is s
the pr
the ju
notice
group
and ¢
The p
is abo

means
list re;

ETQ.

nted in
- and it
rogram
counter
ndition
als and
rogram

lement
icluded
m two-
of the
oller in
S7-314
ch loop
second

Vol. 55 — 2009 FAST OPERATING PLC BASED ON EVENT-DRIVEN CONTROL.... 279
n. X Start F70. dus
B. X M Start’ Fio fp=
€. a F#0. 3ps
n. X . Stop” {0 3u=
E. X M Stop” Fio sps
. [1] F70. 3p=
[~ X B £i0. 3us
H. X M BLE” Fio 6ps
I. JCN J Fiz. 3pus

1. E:S LAtars
Z. o] wotart_Up~
3. A LOtop™
4. = Lo.o
R A Lo. 4
& K LBLE™
7. = wStare Tp~
a. A Lo.0
9. cu LAlomter™
10. A L. 0
11. L BETHEs
1Z. 5D Lo Tdme
J. n L Stavt fin 2us
X = M _Stavte fi1 dps
Cycle Execution Time 1: FA100 Bops
Cycle Execution Time 2: FF07 20p=
Event Execution Time: /16 &0us
HIN Exscution Time: Fi11 1eps
HAX Execution Time: FF34. 30us

Fig. 10. An Example of STL Program

The program after application of event-driven control is presented in Fig.10. The li-
sting is limited to the event-triggered part of the program. The rest — executed cyclically
- has been omitted. As can be seen the maximum loop cycle time has increased, what
could be obviously predicted, as the part responsible for the detection of the signals
Start, Stop, and BLK has been added. A decision had to be made which version of the
changes detection should be used, as the number of the tested inputs is only three.

Maybe for three tested variables the solution from Fig.5a will prove to be better.
Application of this solution made the cyclically executed program longer by 7.20us. As
it is seen in Fig.7, application of the grouped variables change checking would make
the program 6.60us longer — after replacing the block calling instruction CC FC1 with
the jump to label instruction INC J. The difference is not significant. It should be
noticed, that even in case of three tested signals the application of change checking in
grouped variables is executed faster. However for the sake of clarity of the programs
and convenience of their comparison this method has not been used in this example.
The minimum program scan time (i.e. no signal changes observed) is 17.70us, what
is about 9us less then in case of the standard solution. It should be pointed out that it
means about 1/3 time saving for those loop cycles for which signals from the sensitivity
list remain unchanged.

280 MIROSEAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.

The average program execution time in function of input signal frequency should

be determined. Let us take into account “N” control program scans which contain “n
scans without changes of observed inputs. The average time of control program scan
can be calculated as:

17.70n + 34.40(N —n)
N

< 27.10

Therefore:
n
— > (0.434
N

It means that for the considered example it pays to use event-driven control program
execution if rate of input changes is not grater then one per two control program scans.

That is highly improbable for control systems dealing with real automation systems
like motor drives. Sometimes changes of the Start or Stop signals happen in few
hours intervals, and blocking signals state can change every few days or even much
more rarely. In typical operation condition the average time of program scan for the
event-driven program will be shorter then for the program written using the standard
techniques. It should be stressed here that reducing this time results in reduction of
access time to the input/output signals, while the CPU executes less instructions in

each program loop.

6. HARDWARE SUPPORTED SOLUTION

As it was presented software solution in area of event driven program execution
give very permissible results but requires execution of additional fragment of program
that detects execution condition for program blocks. Based on experience and obse-
rvation from software implementation all those inconvenience can be overcome by
appropriate hardware construction [9, 11]. Merging features of a CPU with custom
hardware implemented in an FPGA gives opportunity to construct systems with set of
features that are not commercially available. Main limitation in detecting of execution
conditions is connected with memory access. In order to determine difference in signal
group additional memory access is required. Current value of signal or variable must
be compared with previous one. In this case comparison operation is limited to diffe-
rence detection that can base on XOR operation between current and previous value
of memory. This operation involves additional instructions as well it consumes some
CPU time to execute this conditional entry to program block.

Is it possible to construct a memory controller that will support memory content
change detector? Further part of this chapter presents developed solution that allows to
detect memory content changes during operation and accelerates controller operation.
Memory is used to store operation arguments of the PLC CPU. In order to accelerate
calculation input variables are transferred from input modules to process image memory

Vol.

befo
proc
trans
able
This
In e
tion

outp
only
diffe
cell «
tiona
mem
with

data

data

use ¢
take
to th
read

Thos
chang
write
differ
that ¢
mapp
marke

Diagr:
chang

ETO.

should

in “n
n scan

ogram
scans.
ystems
in few
- much
for the
andard
tion of
ons in

>cution
rogram
1 obse-
me by
custom
1 set of
>cution
 signal
e must
y diffe-
s value
s some

content
lows to
sration.
elerate
1emory

Vol. 55 - 2009 EAST OPERATING PLC BASED ON EVENT-DRIVEN CONTROL. . 281

before calculation starts. Calculation results are accumulated in separated space of
process image memory. When execution of control program is completed controller
transfers content of output part of process image memory to output modules. To be
able to perform complex calculation additional space for internal variables is required.
This additional area is called markér memory.

In event driven system calculation are performed only if changes are detected in func-
tion arguments e.g. (X, Q, Yn-1). This requires to monitor three separate areas input,
output and markers space of process memory. Independently from destination area
only operation that can alter memory content is write operation. In order to implement
difference detection circuit of memory content during write operation current and new
cell content must be compared. While this memory must be connected to CPU, addi-
tional read or write cycles should not be performed. Problem can be solved by use of
memory with separated data inputs and outputs. Schematic diagram of memory system
with data change detection is shown in Fig. 11. From a memory cell with separated
data input and output is formed a memory block that is connected to bidirectional
data bus (D). The memory block is typical component that can be implemented with
use of distributed or block memories available in an FPGA device. Implementation
take benefits from synchronous write operation. It can be compared with writing data
to the set of addressable D-type edge triggered registers. Independent and concurrent
read and write operations allow accessing new and current memory cell contents.
Those two data items are compared against changes with use of XOR gate. Variable
change detector is responsible for catching any changes. Detector register is set during
write cycle at the first detected difference. The HC line becomes active notifying that
difference has been observed. For initialization purposes there is an input (HC_CLR)
that allows to clear HC flag. In order to make available this signal to the CPU it is

mapped in marker space. The HC signal can be read and processed by the CPU as
marker flag.

M.?T?_r! Elf‘ik_ _ From other
:” : Memores pifference detector
RD T 1 e | l
| ! I '
! \I X 1 |
| ! l I
D f%: D Dour : 7 ! boa ‘ HC
I
AE: A : i > |'
| MEM | | e '
WRo I WE i ! CJ ‘
I
CLKo- [;_“L 'HC_CLR }
e I
|]
. 1

Fig. 11. Memory system with change detection

Diagram shows only single bit construction. Circuit can be easily extended for detecting
changes in memories with word longer than one bit. For those purpose each data line

282 MIROSLAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.

is equipped with difference detector (XOR gate) and difference results are accumulated
by multiple input OR-gate.

Process Image - Configurable Event
Memory Detectors
Group 0 Event detector 0
w O I_GR: 1,7,15
e I e et
o 0 O_GR: 05
[S S T T R eeuap e ———
=0 M GR: 1,25
Group n 1 B
Group 0 :ﬁ ¢
b]
3 %‘ ————————————— 4]
3 G- ———— Event detector n
Sron— I_GR: 12,15
= D : O _GR: 36
. e M _GR: 00912
o 2
-3
[T P U OO
=6
Groupn

Fig. 12. Process image memory mapping to difference detection unit

Proposed change detector covers problem of change detection inside given space of
memory (according to memory space assignment). In order to determine condition for
program block execution several change markers should be checked. This approach has
been considered as inefficient solution. Variable grouping reduces overhead connected
with condition checking (see Fig. 6). Further optimization are possible in hardware
detectors. Hardware detectors can integrate functionality that allow to selectively guard
required memory regions covering desired variable set into change detection system.
Exemplary diagram of process memory regions assignment is shown in Fig. 12. Process
image memory is divided into three spaces: input, output and internal marker. Each
space consist from n groups that can be individually included to selected difference
detector . Presented idea allows for hardware detection of changes in selected memory
areas. The change detector can accommodate different requirements of watched area
by configurable memory mapping in so called membership look-up table. Detailed
construction of memory watching system is shown in Fig. 13. In the diagram there is a
main memory that is used by the PLC CPU as process image memory. To the memory
is connected value change detector. Whenever data in memory cells are modified
difference notification is passed to configurable watch points. The configurable watch
point is surrounded by rectangle. Inside watch point there are three look up tables. If
write cycle falls into watched area, look-up table output is active. Each look-up table is
assigned to different memory space (input, output, markers). Number of cells in look
up table determines possible number of group that each space can consists of. Content
of look-up tables describes membership of memory spaces and groups to given task.
This membership look-up tables are loaded by the PLC CPU during initialization of

Vol. 5

syste
on us
Each
are ty
I. L
ex
2. L
ri
There
store
can be
is rela
order
large ¢
The n
impler
that nu
Watch
archite
Those
must b
Th
widely
from 3
mories
memor
step of

In the f
mented
with nu
tables a
results 4

ETQ.

umulated

1 space of
dition for
roach has
~onnected
hardware
ely guard
n system.
2. Process
ker. Each
difference
1 memory
ched area
- Detailed
there is a
> memory
modified
ble watch
tables. If
1p table is
Is in look
f. Content
iven task.
ization of

vol. 55 — 2009 FAST OPERATING PL.C BASED ON EVENT-DRIVEN CONTROL,... 283

system. Variable membership data should be determined by program compiler based

on user program.

Each task that is supposed to be executed conditionally requires one watch point. There

are two requirements that should be met by watch point system:

1. Large number of independent watch points (determines number of conditionally
executed program blocks)

2. Large number of groups covered by one waich point determines precision of va-
riable localization in memory space

There exist a trade off between number of groups and memory space that allow to

store membership information. If number of groups is growing (riggering condition

can be very precisely determined as number of discrete or byte variables inside group

is relatively small. Usually each task is using variables that belong to several groups. In

order to detect changes all those regions must be watched This will require relatively

large storage space that keeps variables assignment information.

The number of conditionally handled tasks depends on number of change detectors

implemented inside an FPGA device. From a PLC user point of view it is important

that number of this blocks is relatively high in order to allow flexible program execution.

Watch points architecture should be as simple as possible and perfectly fit into FPGA

architecture.

Those opposing requirements cause that number of group and number of watch points

must be reduced to a number that can fit inside selected FPGA device.

The configurable watch point was implemented with use of an HDL language and
widely examined. For implementation purposes was chosen Spartan 3 FPGA family
from Xilinx [12]. Those are symmetrical FPGA devices with integrated block me-
mories. One block memory can store up to 16kb. Very important feature of those
memories is dual gate access system with configurable bus width from 1-32 bits with
step of power of 2.

Table 1

Change detector logic resource utilization

Number of groups | LUTs | Distributed RAMs
3x 16 20 3
3x32 33 6
3 x 64 66 12
3 x 128 110 24

In the first approach the difference detector with membership memories was imple-
mented according to block diagram shown in Fig. 13. There was implemented versions
with number of groups from 16 — 128 for each memory space. Membership look-up
tables are implemented as distributed RAM blocks formed from LUTs. Implementation
tesults are collected in Table 1.

284 MIROSEAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.
D{————)p Difference
detector
AT A Memory I
WR o we Block J>
CLKo > '
input
ﬂ Membership
Look Up
Output
L) D Q o
o ey L | e
CE
Mark
_—J" Mem?arerirhip
Look Up HC_CLR

Configurable Event Detector

Fig. 13. Difference detector with guarded memory regions assignment

Difference detector instead of using distributed RAM cells for membership implemen-
tation can use block RAM that is also available in FPGA device. This modification
allow to save logic resources that are used for membership function implementation.
Block RAM can be configured to operate with 32 + 4 bit data words. This allow to
implement up 36 independent difference detectors using one block RAM. The 32+4 bit
data word configuration allows defining up 512 separate regions inside memory. Finally
two implementation of process memory have been created with different approaches
in implementation of difference detection systems. Final implementation results are
gathered in Table 2. In the first line are gathered results for implementation based on
distributed RAMs while second line describes unit designed with use of block RAMs.
The table presents logic requirements, possible number of groups that can be defined
in memory and number of independent detectors implemented.

Table 2

Process image memory with difference detection

Number of

Channels LUTs | Distr. RAMs | Block RAMs
groups
8 3x16 158 24 |
36 512 147 0 2

As it is presented logic complexity of both circuits is comparable. They consume
almost the same number of general purpose components. The only difference is in
membership look-up table implementation. Using block RAM resource (second line of
Table 2) instead of distributed RAMs (first line of Table 2) it is possible to:

Vol. :

)

Final
famil
(IxR

St
grate
benef
relatiy
the ev
reduc
“empt
the ab
whose

Tt
munic
cantly
real a
varies
of a P
seems

Th
met in
ne rels
greater
benefit
operati
if giver
those o
process
for give
up to 1
groups.

Fur
tation i

output «

ETQ.

lemen-
fication
ntation.
low to
2+4 bit
Finally
roaches
1lts are
1sed on
RAMs.
defined

Table 2

onsume
ce is in
| line of

Vol. 55 - 2009 FAST OPERATING PLC BASED ON EVENT-DRIVEN CONTROL... 285

I. Increase number of monitored groups from 48 (3x16) to 512 (8 x increase)
2. Increase number of independent channels from 8 to 36 (4.5 x increase)
3. Slightly reduction of logic resources allocation from 158 to 147 LUTs (about
7%)
Finally it can be noticed that with use of the smallest FPGA device from Spartan 3
family (XC3S50 — 4xRAMBI6) it is possible to implement 2kB process image memory
(IXRAMB16) with up to 108 independent watch points (3xRAMB16).

7. CONCLUSIONS

Studies on the optimized program execution in CPU of the PLC have shown the
grate improvement in operation speed. The presented solutions bring especially many
benefits in case of control of the processes for which input signal changes happen
relatively rarely, as in such situation typical controller executes “empty” loops, while
the event driven controller will only perform testing for changes, what will significantly
reduce access time to the input/output signals whose change happens during such an
“empty” cycle. The authors’ experience show that many industrial application satisfy
the above condition. Most industrial processes feature great number of inputs/outputs,
whose state changes very rarely — controller executes then many instructions uselessly.

This time could be utilized for other important tasks as for example network com-
munication, or simply more frequent checking of the object state what would signifi-
cantly reduce response time for the signal changes of strategic importance. Because in
real applications, especially using event-driven execution, control program scan time
varies from cycle to cycle, it seems that it would be better to introduce a new measure
of a PLC performance - average time of one control program scan. Such parameter
seems to be more useful for determining a real performance of a PLC system.

The presented discussion concerns the attempt to apply standard CPU solutions
met in programmable controllers for nonstandard tasks, however, research is also do-
ne relating to hardware support of the changes detection, what should lead to even
greater response time reduction. In this approach selective program execution takes
benefits from specific memory controller that compares memory contents during write
operation. Through configurable group membership tables it is possible to determine
if given write operation cause condition change for given program task or block. All
those operation are performed in parallel with CPU operations. There are not additional
processing required for condition calculation just conditional execution flag is checked
for given program block. Even relatively small and cheap FPGA device can implement
up to 108 independently triggered processes with possible definition of 512 variables
groups,

Further research and development will concentrate on detailed tests and implemen-
tation improvement of proposed solution. An optimization in autonomous input and
output data collecting and processing is also considered. Concurrently we investigate

286 MIROSEAW CHMIEL, EDWARD CHRYNIEWICZ, ADAM MILIK ETQ.

possibility of operating spéed improving of typical bit-byte structure of a PLC CPU

4

9.

10.

,71. We hope that results of the presented work will be useful for this structure too.

8. REFERENCES

O N. Aramaki Y. Shimokawa S. Kuno, T. Saitoh, H. Hashimoto: A new Architec-
ture for High-performance Programmable Logic Controller, Proc. of the TRCON’97 23rd Int. Conlf.
on Industrial Electronics, Control and Instrumentation, IEEE, 1997, volume 1, 187-190, New York,
USA.

H. Berger: Automating with STEP 7 in STL and SCL — SIMATIC S7-300/400 Programmable
Controllers, Siemens AG, Germany, 2001

H. Berger: Automating with STEP 7 in LAD and FBD — SIMATIC S7-300/400 Programmable
Controllers, Siemens AG, Germany, 2001

The PLCs, Preprints of the 16th TRAC World Congress, Prague, Czech Republic, July 3-8, 2005.

M. Chmiel and E. Hrynkiewicz Remarks on Parallel Bit-Byte CPU structures of Program-

mable Logic Controllers. In Adamski M. A., Karatkevich A, Wegrzyn M. (ed.): Design of Embedded

Control Systems, Section V, 231-242. Springer Science+Business Media, 2005.

M. Chmiel,E. Hrynkiewicz A, Milik: Compact PLC With Event-Driven Program Tasks

Execution, Preprints of the 3RD IFAC Workshop On Discrete-Event System Design, DESDes’06, pp.

99-104, Rydzyna near Leszno, Poland, September 26-28, 2006.

M. Chmiel and B. Hrynkiewicz Fast Operating Bit-Byte PLC, Preprints of the 17th IFAC

World Congress, Seoul, Korea, July 6-11, 2008.

J. Donandt Improving response time of Programmable Logic Controllers by use of a Boolean

coprocessor. IEEE Comput. Soc. Press., no 4, Washington, DC, USA, 1989, pp.167-169.

E. Hrynkiewicz, A Milik, J. Mocha: Dynamically Reconfigurable Concurrent Control

Program Execution, Proceedings of National Electronic Conference, Poland, Dartowko Wschodnie,

June, 2008.

G. Michel: Programmable Logic Controllers, Architecture and Applications, John Wiley & Sons,

West Sussex, England, 1990.

. A. Milik: High Level Synthesis — Reconfigurable Hardware Implementation of Programmable Logic
Controller, PDeS 2006 Programable Devices and Embedded Systems, Brno 14-16 February 2006

. Xilinx: XAPP 430: Spartan-3 Advanced Configuration Architecture, 2006.

M. Chmiel, BE. Hrynkiewicz, A. Milik: Remarks on Improving of Operation Speed of

DA]J

E TQ BLECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 287-315

.C CPU
ture too,

\ Architee. Logic synthesis dedicated for CPLD circuits

Int. Conf,

New York,
DARIUSZ KANIA*, ADAM MILIK”, JOZEF KULISZ*, ADAM OPARA™, ROBERT CZERWINSKT*
crammable
Politechnika Slgska, Instytut Elektroniki”, Instytut Informatyki™
erammable

e-mail: dkania@.pdsi.pl

1 Speed of

, 2005. Received 2009.01,05
fP rogram- Authorized 2009.04.03
Embedded

sram Tasks The paper preseats synthesis strategies for PAL-based devices. All component methods

Des’06, pp. used in presented strategics are originally developed. In this paper the essentials of all
methods have been presented. Exact algorithms descriptions can be found in referenced
17th IFAC materials. The optimization of synthesis methods were aimed toward required areas mini-
mization or propagation delay minimization (reducing number of levels).
a Boolean A low computation complexity of synthesis methods that use tri-state output buffers
or output graphs make them useful as additional steps of complex synthesis strategies.
nt Conirol Application of those methods can radically reduce areas or propagation delay. Without
Vschodnie, doubt the best results in terms of required surface can be obtained by methods that use de-
composition components. Decomposition methods that extend classical model of functional
ey & Sons, decomposition (Curtis’ decomposition — row based and column based decompositions) are
computing demanding procedures. The binary decision diagram was taken into considera-
zableol(l)(égic tion in order to increase computation performance/efficiency. The experience that has been
iy 2

gained in implementation of column and row based decomposition allows to implement effi-
cient partitioning procedures for the BDD, Decomposition results for the BDD methods are
slightly worse as referenced to previous approaches. The synthesis process is computation
efficient and allows to decompose complex logic circuits in reasonable amount of time, The
exploration of BDD decomposition methods shows their undiscovered potential that still can
be developed especially for decomposition of function consisting of few hundred of input
and output variables.

Several years’ of experience in design of decomposition procedures for CPLD allows
developing complex synthesis strategies that have been presented as summary of the paper.
They are dedicated for different CPLD families addressing different features (e.g. three-state
output buffers) and requirements (e.g. propagation time constraint).

Keywords: logic synthesis, CPLD, decomposition, technology mapping

288 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

1. INTRODUCTION

Technological progress drives the necessity of constant improvement of logic syn-
thesis algorithms. In recent years Field Programmable Gate Array (FPGA) structures
have gained the greatest popularity. Many various synthesis methods were develo-
ped for them [1-7]. A number of synthesis methods, dedicated strictly for Complex
Programmable Logic Devices (CPLD-s), also appeared in the literature [8-18]. They
sometimes utilize elements of synthesis dedicated for FPGA devices. In such a case
certain steps of the algorithm are modified to include constraints characteristic for
resources available in CPLD-s.

A very interesting approach was presented in [9,11]. Generally in the synthesis pro-
cess methods developed for FPGA devices were employed, but Look-up Table (LUT)
blocks were replaced by Programmable Logic Array (PLA) cells, characteristic for
CPLD architectures. The optimal structure of the cells was selected basing on expe-
riments presented in [19-20]. The authors prove, that it would be more efficient with
respect to area occupied in silicon, to build logic blocks as small PLA arrays, instead
of LUT blocks [13-16, 19-22]. On the other hand synthesis methods dedicated for PLA
structures are well mastered, and known for a long time [23-27]. These two observa-
tions let us suppose that it is quite likely that devices, in which arrays characteristic
for Simple Programmable Logic Devices (SPLD-s) are the main building blocks, can
regain their popularity.

One of the basic problems in logic synthesis dedicated for Programmable Logic
Devices (PLD-s) is project decomposition. The goal of decomposition is to partition
the entire design into parts that can be directly mapped onto logic blocks available in
the target structure. Most of contemporary CPLD circuits consist of logic blocks with
internal structures that resemble architectures of simple PAL devices (Fig. 1). Further
on in this paper such devices will be referred to as PAlL-based CPLD-s. A characteristic
feature of a PAL-based CPLD is that its basic building block (a PAL block) contains
a limited, and small number of AND gates (product terms).

The classical method of logic synthesis, dedicated for PAL-based CPLD-s, and
implemented in great majority of vendor tools, consists of two steps. First a two-level
minimization is applied separately to every single-output function, next implementation
of the minimized functions in PAL-based blocks, containing a predefined number of
product terms, is performed. If the number of implicants Ay, representing a function
after minimization, is greater than the number of product terms k, available in a logic
block (Fig. 1), a greater number of logic blocks has to be utilised to implement the
function. The classical product term expansion method utilize feedback lines to build
a multi-level cascaded structure, which increases propagation delays significantly.

Vol.

Fig

sum
(Eq.

PAL-

block

ETQ.

ic syn-
uctures
develo-
omplex
]. They
a case
stic for

sis pro-
(LUT)
stic for
n expe-
nt with
instead
or PLA
bserva-
cteristic
ks, can

e Logic
artition
lable in
ks with
Further
cteristic
>ontains

)-s, and
vo-level
entation
mber of
function
' a logic
ent the
to build
itly.

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 289

A Programmable
- Interconnect Array
PAL-based _e PAL-based
& Macrocell > ™ Macrocell D
PAI~based PAL-based
1 Macrocell € 41 Macrocell “'_D
PAL-based PAL-based
= Macrocel] € <> Macrocell D
PAIL-based PAL-based
B Macrocell > " Macrocell | 0[VO

Fig. 1. An idealized CPLD architecture with PAL-based logic blocks consisting of k product terms

An implementation of a minimized function f, which can be represented as a
sum of Ay implicants, requires 6y PAL-based logic blocks containing k product terms
(Eq. 1.

@-%Af"k +1 ()

k-1

Similarly, the classical implementation of a f : B* — B™ function requires (5}
PAL-based logic blocks (Eq. 2).

u " (T Ay =k
sk = Z(sﬁ = Z(hf—_%] + 1))
=1 =1

As an example a classical implementation of a function f : B* > B, utilising PAL
blocks containing three (k = 3) product terms, is presented (Fig. 2).

290 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ. Vol.

pres
Programmable synf
Interconnect Array e PAL met
{ : l > expe
14 k3 in S
.03 [f
.1lb a b ¢ d \ 2
.ob £2 £1 £0 [b}—] - paL] 7 2.1
-p 15 Run ,| k=3
10-0 100 HHH
1-11 100 PAL ‘ sourI
-000 100 _—
~101 100 k=3 T
01-0 100 [dl— .
——Oll 100 PAL and
1-11 010
111- 010 k=3 ’_l ke
~000 010 | iﬁ;
0-00 010
00-0 010 pAL| S P
0110 001 ~ k=3 attra
-011 001 in Fi
1-11 001 PAL
101- 001 3
.e
|
m Ar —k PAL Jo
5= || H a7 B !
. —1 | T -
=]
Fig. 2. A classical implementation of a function f : B* — B, utilising PAL-based logic blocks
containing 3 product terms
The purpose of this paper is to present more effective methods of function imple-
mentation in PAL-based CPLD structures, and propose synthesis strategies appropriate
for various device architectures, and optimisation goals. The synthesis strategies pro-
posed in the paper make use of various methods and algorithms, developed by the Tl
authors during several years of research work. groun
The paper is structured as follows: the first chapters briefly presents the synthesis termu
algorithms, their properties, and possible applications. Section 2 introduces some new serves
concepts of product term expansion. Section 3 focuses on multi-level synthesis based numb
on the Graph of Outputs. Various decomposition models for PAL-based devices are not ¢

ETQ.

ocks

| imple-
ropriate
ies pro-
| by the

ynthesis
e New
is based
ices are

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 291

presented in Section 4. Section 5 gathers this information, and presents a complex
synthesis strategy dedicated for PAL-based CPLD-s. The strategy comprises all of the
methods presented before. Basic information about interface to vendor tools, and some
experimental results are reported in Section 6. The paper is concluded with a summary
in Section 7. '

2. LOGIC SYNTHESIS METHODS BASED ON THE CONCEPT OF EXPANSION
EXPLOITING TRI-STATE OUTPUTS

Logic blocks contained in CPLD structures feature usually additional logic re-
sources that can facilitate product term expansion. These resources include parallel
expanders, folded NAND feedback lines, often referred to as shared expanders, logic
allocators, and tri-state output buffers.

The expanders enable unequal distribution of product terms between macrocells,
and extending the number of products available for one function beyond the limit of
k terms contained in one PAL block. Anyway they can only move the limit to a
greater value, and they do not provide feasibility of implementation for every function.
Additional expansion of the number of terms is thus necessary.

Product term expansion that exploits tri-state output buffers seems to be the most
attractive solution, as it doesn’t lead to expansion of logic levels. The idea is presented
in Fig. 3.

d OF
ad M y
— PAL
dh =3
e
f o
e Y2
o b2 1 oear

be =3

—t =3 B

Fig. 3. The essence of product term expansion exploiting three-state output buffers

The concept of product term expansion utilizing tri-state buffers lies in the back-
ground of an original synthesis method, dedicated for CPLD-s featuring three-state
terminals. The set of multioutput implicants of a Boolean function f : B" — {0, 1, —}"
serves as the starting point for a two-level synthesis. It has been assumed that the
number of inputs of a PAL block is big enough, so the proposed synthesis model does
hot comprise an algorithm of input partitioning.

292 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

The two-level synthesis consists of Two-level Splitting Minimization, PAL-oriented
term partitioning, and PAL mapping.

The synthesis process starts with the Two-level Splitting Minimization. Then parti-
tioning of individual minimized functions is performed. As a result of the two procedu-
res, the set of implicants of a Boolean function is divided into subsets with cardinality
Jess than the number of terms available in one PAL block.

The detailed criterion of minimization may vary slightly, according to the imple-
mentation style. The idea of the Two-level Splitting Minimization is presented in Fig. 4.
The objective of the classical two-level minimization is to reduce both the number of
products in the Boolean formula representing a function, and the number of literals in
a product. Because of a limited number of multi input terms available in a PAL block,
the primary goal of the Two-level Splitting Minimization is to reduce the number of
products. Reduction of literals is inessential. As the result of the Two-level Splitting
Minimization, we obtain a set of terms of minimum cardinality. The terms contain a
reduced number of - elements.

Q) (In 10-0 1
abed y 0-0- 1
0000 1 01—1 %
0001 1 -1-1 1
0100 1 ® >’, 1-11 1
0101 1 ‘1§/!
0110 1 j}" /
0111 1 S :1:; o
1000 1 3% 4
1010 1 4 /i
1011 1 /
1101 1 1 -
1111 1 e (It i 10-0 1
’ 0-0~ 1
~ TR 0110 1
b F TG -1-1 1
b d 1011 1
C
a res
b & B, |':"
;2;;

Fig. 4. The essence of the Two-level Splitting Minimization: (I) minterms of the exemplary function,
(ID) results of the classical two-level minimization, (III) results of the Two-level Splitting Minimization

The objective of the PAL-oriented term partitioning procedure is to subdivide the
set of implicants into subsets, for which cardinality is less or equal to the number
of terms (k) available in a PAL-based block. Different concepts of the algorithm are
presented in [28-31]. Sometimes the PAL-oriented term partitioning procedure doesn’t

Vol.

lead
synt

ping

and :
PAL.-
with

indep
dynai

Anott
multi-
The n

CH

%

8i
be
in
io

ETQ.
riented

n parti-
rocedu-
dinality

> imple-
1 Fig. 4.
mber of
erals in
L block,
mber of
Splitting
ontain a

N
I
[N S =

-
=)
e

function;

mization

ivide the

number
ithm are
e doesn’t

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 293

lead to a one-level structure, but to a p-level' structure, where p is a parameter of the
synthesis algorithm [32].

The idea of the PAL-oriented term partitioning, and PAL-based logic block map-
ping is presented in Fig. 5.

Ty am

0-0~ 1
0110 1
01-1 1

oy

a=1

10-0 1
11-1 1
1011 1

Fig. 5. The idea of PAL-oriented term partitioning: (I) partitioning vector a = 0,
(IT) partitioning vector a = 1, (IlI) mapping onto PAL blocks featuring 3 terms

The synthesis algorithms exploiting tri-state buffers were implemented in software,
and are elements of the PALDec synthesis system. Results of synthesis for different
PAL-based devices are presented in [28-33]. The methods are especially attractive
with respect to dynamic parameters. The algorithms discussed above can be used as
independent synthesis methods, or constitute an extension for other tools, improving
dynamic properties of final solutions.

3. MULTI-LEVEL SYNTHESIS FOR PAL-BASED DEVICES BASED ON
THE GRAPH OF OUTPUTS

Another approach to logic synthesis consists in analyzing the set of implicants for a
multi-output function, and extracting the groups, that are common for several outputs.
The method is based on analysis of the so-called Graph of Outputs.

" Hereafter in this paper, we will interpret the term “number of logic levels” (and consequently
“one-level structure”, or “p-level structure™) as the number of cascaded PAL blocks in the longest
signal path from the inputs to the outputs in the circuit of concern. The exception to this rule will
be the terms “two-level minimization”, and “two-level synthesis”. These terms are well established
in the literature, and we will use them in their traditional meaning, i. e. “two-level” = two levels of
logic gates.

294 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

A minimized multi-output function f : B" — B™ can be described by a set of
multi-output implicants, consisting of the input part, containing the {0,1,-} symbols,
and the output part, containing the {0,1) symbols. Let us assume, that G < Y, U/ >
is a directed graph, where Y is the set of the graph nodes, and U is the set of the
graph edges. An example function, and the graph corresponding to it are presented in
Fig. 6. Every node of the graph represents a different output part of the multi-output
implicants. Edges of the graph connect nodes, for which the output parts have at least
one common | symbol at the same position, and simultaneously the code distance
between the output parts is minimal [33-34].

id
T 010
\ilb abcd Y= 110 ¥ = output part of a multi-
ob £ £ £ wO)=2 output implicant
8 111 oA P p
~000 010 A, ~ node discriminant; the
O)=1 H

0110 111 e number of the same

- 001,111 .
100- 110 ~ |) i output parts in the set of
-010 001 U =4(010,110) 5/0 . L
0011 111 10,111 1 5 7 multi-output implicants
1111 111 u(y) — the number of {1}
110 o0 symbolsiny
010- 110

Fig. 6. Representation a minimized multi-output function f : B* — B°
by means of the directed graph G

Every node in the lowest range of the graph corresponds to a function output. Every
output can be assigned the AT, and rj? parameters, where j is the index of the given
output, and m is the number of outputs of the multi-output function f. The value of
A7 is equal to the sum of node discriminants that belong to the directed path, starting
from the j-th node in the lowest range of the graph, and ending in a node in the highest
possible range for the j-th output. As an example: A; = Agro+Aro+A = 14243 =6
- see Fig. 6. The r;“ parameter, referred to as the remainder, is a number calculated
from the following relation:

A’j’." -1 = r;“(mod(k -1) 3

where k stands for the number of terms available in the PAL blocks used for imple-
mentation.

A graph built according to the procedure described above is referred to as the
Graph of Outputs. Basing on analysis of the Graph of Outputs, solutions that require
less logic blocks than the classical approach, can be found. Theoretical backgrounds
for the method are presented in [33-34]. The algorithm is founded on the Theorem of

Vol.
Sele
witl

chir
mor
logi

sele
muli

.

Sele
proc
1. I
(
2. 1
C
2a. |
n
i

2b.

o

assoc
PAL-
T
5 for
terms
T
of the

are pi
The a
consti

ETQ.

a set of
ymbols,

Y, U~
t of the
ented in
i-output
-at least
distance

1 multi-

t

nant; the

same

the set of
plicants

of {1}

t. Every
1e given
value of
starting
> highest
2+3 =06
Iculated

A)
r imple-

o as the
- require
grounds
orem of

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 295

Selection of a Node of the Graph. Proof of the theorem can be found in [33], together
with many further details.

The essence of the technology mapping consists in analysis of the graph, and sear-
ching for the node discriminants that are associated with possibly large groups of com-
mon implicants. These groups of implicants are implemented by common PAL-based
logic blocks.

The synthesis algorithm consists in iterative selection of the graph nodes. After
selecting in step i a graph node, a new PAL block is introduced to the synthesized
multi-level structure, starting from the inputs, and growing towards the outputs.

The rules for selecting a node can be deducted directly from the Theorem of
Selection of a Node of the Graph [33-34]. They can be described by the following
procedure:

1. From the set of all graph nodes the node iAy is chosen, for which u ("Ay) = max

(i. e. the node, which is placed on the highest range of the graph).

2. If several nodes lie in the same range, further selection is carried out, depending
on values of the discriminants:

2a. if there are nodes, for which ’Av 2 k, the node is selected, for which the discrimi-
nant ‘A, = max;

2b. if for all discriminants ‘A, < k, the node is selected, for which within the set

of remainders R = { /%) cje {1, u’A the maximum number of remainders
f J aca,

A, . g3 A i
A% satisfies the condition 0 < A S Ay <k

3. 1If no nodes meet the criteria 1 and 2, implementation of the implicants assigned
to the other nodes is carried out by means of the classical method.

The Graph of Outputs for the example function from Fig. 6, together with the
associated values of discriminants A’}’, remainders r;", and the implementation using
PAL-based blocks featuring 3 product terms, is shown in Fig. 7.

The classical implementation of this function requires 16 product terms (5, 6, and
5 for each output respectively). If using PAL-based logic blocks containing 3 product
terms, a 3-level structure consisting of 7 blocks is obtained.

The synthesis method presented above was implemented in software as a module
of the PALDec synthesis system. Results of synthesis for different PAL-based devices
are presented in [33-39]. The method is especially efficient with respect to chip area.
The algorithm presented above can be used as an independent synthesis method, or
constitute an extension for other methods, used as a tool for optimising resources usage.

296 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETO.

14

03
itbabed

ob £2 1 0 o nmn i)

P8 ,“ ’ a - output part of

8 ? O g (13 1 i) muti-output implicants
L b - the number of the

100- 110
-010 001 same output part

&
o
&
&
L
0011 111 "
1111 111 "
110- 001 .
010- 110 u

&

]

o
jgk
>

Step 3

Jfo

.

;bcg
abed | PAL {111

=

abced k=3 6 / StepZ Z;Z'E

. ,
= PAL 1
j abe | PAL 110 f

abe k=3"T B

Fig. 7. A multi-level implementation of the example multioutput function, utilising PAL-based logic
blocks containing 3 product terms

Step 1

4. DECOMPOSITION MODELS DEDICATED FOR PAL-BASED DEVICES

Decomposition plays an extremely important role in modern logic synthesis. In
spite of rapid and multifarious progress in the field, the optimal means of partitioning
a digital circuit into logic blocks characteristic for programmable structures is still not
known at present.

In great majority of applications decomposition is used in synthesis dedicated for
FPGA circuits. It is an essential part that enables partitioning of a designed circuit,
and mapping it onto configurable logic blocks (CLB-s).

Decomposition is hardly ever used in synthesis dedicated for other types of PLD-s.
There are few known algorithms, dedicated for PLA structures [9, 21-23, 25-27]. In
some of them decomposition methods developed for LUT-based FPGA-s were directly
transferred [9, 11]. Input and output assignment is a characteristic feature of those
methods, that significantly influences the number of products in blocks of minimized
functions, obtained after the decomposition process [40-41]. The problem of proper en-
coding of inputs and outputs is widely discussed in connection with state assignment for
FSM-s in [42-43]. Those problems are related to symbolic state encoding, dichotomy
theory, multi-value function minimization, and the concept of output dominance. There

Vol. 55

are al.
probl

Tl
of inp
that tl
in the
. M
2. “F

Fu
issues

of the

wi
XInX

Ar
partiti
blocks
is thu
structu
functic

In
gates 1
PAL-b
decom
» Se
Ca
Co
Im
Al
produc
explail

Se.

on sea
circuit
by mu.

ETQ,

ed logic

[CES

hesis. In
titioning
still not

cated for
| circuit,

f PLD-s.
5-27]. In
- directly
of those
inimized
oper en-
ment for
chotomy
e. There

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 297

are also works devoted to binding input and output coding process with decomposition
problems.

The main constraint characteristic of a PAL-based logic block is not the number
of inputs, but the number of multi-input product terms. This results in an observation,
that the objective of decomposition dedicated for PAL-based structures can be defined
in the form of the following two major tasks:

1. Minimizing the number of PAL-based blocks used;
2. “Fitting” the designed circuit into PAL-based logic blocks best.

Further on three models of decomposition, directly concerning the above-mentioned
issues, will be presented.

4.1. THE COLUMN DECOMPOSITION

A function f : B" — B™ can be decomposed if, and only if, the column multiplicity
of the partition matrix v(X, | X,) is lower or equal to 27, i.e.

v(XalX)) 2P e f(Xo, X1) = Fg1(X1), ©2(X1), ... 8p(X1), X,])

where the X; and X; sets should satisfy the conditions X;UX, =I={i,,....i»,i{}, and
X1nX2=¢ [44]. The X, and X, sets are respectively called the bound and the free set.

Analysis of the classical decomposition model proposed by Curtis shows that the
partitioning expands the total number of outputs in the circuit. At least p additional
blocks are required for implementation of the bound block. Employing decomposition
is thus eflicient only in the case, when the classical approach leads to a cascaded
structure that requires a greater number of a PAL-based block to implement the same
function.

In the Column Decomposition model presented hereafter, the number of AND
gates required by the implementation is minimized. As a consequence, the number of
PAL-based blocks is minimized simultaneously. The process of the proposed column
decomposition can be divided into the following steps:

e Selection of the bound variables;

o Calculation of column multiplicity;

¢ Column pattern code assignment;

¢ Implementation of the bound and the free blocks.

All the steps are optimized for PAL-based devices with a predefined number of
product terms. The steps of the decomposition process listed above will be briefly
explained below.

Selection of the bound variables: Selecting variables for the bound set is based
on searching for such a variable partitioning, which implies splitting of the analyzed
cireuit into two subcircuits of similar complexity. The circuit complexity is estimated
by multiplying the number of inputs and the number of outputs of a block. The set of

298 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETO.

input variables I = {i,,...,ip,1;} is partitioned into subsets X; and X, in such a way, that

the value of il -p+ (iz + p) -m is minimal (see Fig. 8).

| Bound Block - l—\ /—

\ glEXI) /

XU Xo=

XM X2:¢ Xl

| ym1 y

X
I 1 . H
E E> gn(X)) E
’ 1
SHE 5
0

Yo | r\
/|

Fig. 8. The essence of selection of variables for the bound set

Calculation of column multiplicity: The column multiplicity is obtained as a result
of colouring of the Column Incompatibility Graph. A special colouring algorithm was
proposed for this purpose. The algorithm introduces elements of two-level minimization
at early stages of the decomposition process. The method is presented in detail in [45].

Column pattern code assignment: The column multiplicity of the partition matrix
is equal to the chromatic number of the Column Incompatibility Graph y(G). The
number of bits required to distinguish all column patterns is equal to [1g,y(G)]. The
bound block works in fact as a specific code translator. Its output code is determined
by column pattern assignment. The way the codes are assigned to each of the columns
can significantly influence complexity of the bound and the free blocks after minimi-
zation. Various techniques of output and input coding are described in [23, 27, 40].
Usually the coding methods are closely related to FSM state assignment. Methods of
product minimization after primary circuit partitioning, and appropriate input-output
coding for PLA structures, are also considered. Algorithms of this class can directly be
implemented in synthesis process dedicated for PAL-based structures, but the results
obtained are rather unsatisfactory. Column pattern assignment for CPLD-s should take
into account properties of the target architecture. In the proposed pattern assignment
method, an attempt is made to anticipate the results of two-level logic minimization.
The columns that appear more often in the partition matrix, are assigned codes that
require less products. As a consequence for the whole set of column patterns the codes
are selected, that provide the minimal number of products after minimization. The
proposed code assignment method employs uniform coding [46-48], coverage pattern
coefficients, column code coefficients, pattern pair coverage coefficients, and neighbo-
urhood pattern coefficients. The detailed algorithm of the pattern code assignment is
described in [33, 49].

Vol

sef
ter

Fo
is

rec
de
of

ap
ne;

co
fu
nu
tru
the

%

ch:

the
of

col
inf
de

“fi

prc

blc

ou
the

ETQ.

y, that

1 result
m was
ization
n [45].
matrix
). The
)]. The
rmined
Ylumns
1inimi-
7, 40].
10ds of
-output
ctly be
results
1d take
rnment
zation.
es that
> codes
n. The
pattern
ighbo-
nent is

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 299

Implementation of bound and the free blocks: After partitioning of the I={i,,...,i»,i;}
set into subsets X ={i,,,...,0», {;} and Xo={in,..slnzs2, inz+1}, and encoding column pat-
terns using method described above, a two level function minimization is carried out.
Minimization is performed for the functions that describe the bound and the free blocks.
Following that, the number of PAL-based logic blocks required for implementation &,
is calculated, using Eq. (5). The number is a sum of the number of logic blocks
required for implementing the bound (6,) and free (6,,) blocks. Symbols z; and w;
describe the numbers of product terms required for implementation of the i-th function
of respectively the bound and the free blocks.

14 m
Zl‘—k W[—k
6ZW:6Z+6W:Z((/(_1]+1)+Z([k_1
/ i=1

=1

+ l) (5)

If the 6, value is greater or equal to number of logic block required in classical
approach, the function is implemented using the classical method. In the other case the
next step is performed, during which the free and bound blocks are subject to further
column decomposition. Additionally, after the two-level minimization of single-output
functions (Espresso-Dso), the condition A ri < 2k is checked (where Ay; stands for the
number of implicants representing the function f; — see Eq. 1). When this inequity is
true, the function is implemented using the classical method. This approach reduces
the total number of outputs analysed in next decomposition steps.

The column decomposition method was implemented in the PALDec synthesis
system. Results of synthesis for different PAL-based devices are presented in {33,
50-51]. The method is the most attractive in respect of area, but unfortunately is
characterized by a quite high computational complexity.

4.2. THE ROW DECOMPOSITION

Decomposition is usually carried out for “fitting” the number of inputs of a syn-
thesized blocks to the number of inputs available in configurable LUT-based blocks
of a target programmable structure. After introducing certain additional elements, de-
composition can also lead to minimization of the total number of products, indirectly
influencing minimization of the number of PAL-based blocks. Incorporating into the
decomposition elements of “fitting” the synthesized functions into PAL-based blocks
could constitute a valuable extension of the method.

The proposed Row Decomposition (two-stage decomposition) directly focuses on
“fitting” the designed circuit into PAL-based logic blocks best. The essence of the
proposed concept (Fig. 9) consists in finding such a design partitioning (function de-
composition), which enables implementation of the free block in one PAL-based logic
block featuring a predefined number of product terms.

Additionally, minimization of the number of the bound block outputs is carried
out. As for a given Karnaugh map the number of the bound block outputs is equal to
the row multiplicity (p = u(Xs | X)), one of the main problems occurring at the initial

300 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

The Bound —\ p=Hu (XZIXI) /— The Free

Block Block

\ 21Xy k
X1E>)| |ecof P [PAL
e —-> X1D\ | / g =
: A [
gp(Xl) !

X1UX2=I, X]ﬂXzz(D X2| S &

Fig. 9. The concept of Row Decomposition

stage of the appropriate decomposition search is evaluation of row multiplicities for
subsequently analysed input variables partitionings. The algorithm for determining the
row multiplicities utilises a new idea of the so-called Incompatibility and Complement
Graph [33, 52].

For a given variable partitioning, a function f(X,,X,) can be presented in the
following form:

uXaiX,)
S (X2, X)) = Ho(X3) + Z [Hi(Xz)gi(Xl) + H}(Xz)&'(xl)] (6)

i=1

where g,(X;) denote functions, which describe row patterns.

The number of products necessary to implement the free block is equal to the
number of implicants of the function represented in the above form.

The row multiplicity p (X; |X,), determined as a result of the Row Incompatibility
and Complement Graph colouring, is related to the minimum number of outputs of the
bound block. If the number of implicants required for implementing each of the g (X;)
functions is less or equal to k, then the number of PAL based logic blocks necessary for
implementing the bound block amounts to §, = u (X;| X;). This observation suggested
a simplified method of the &, coefficient (Eq. 5) minimization. A heuristic rule of
restricting the search area to solutions, for which u (X;| X;) = min, is included in the
algorithm. More details are presented in [53-55].

The synthesis method described here was thoroughly examined in comparison to
the Column Decomposition model, presented in the previous chapter. The experiments
show that:

e The Row Decomposition is better with respect to the number of logic levels, than
the algorithms based on the Column Decomposition;

e The Row Decomposition can be useful in cases, for which reducing the chip area is
of main concern, but without degrading the chip dynamic properties significantly;

Vol. =

oy o Bl

C
ber ¢
ilable
Bina;

T
equiy
tionir
line,
multi
for a
part «
This
the u,

Th
decon

Ccts

ities for
ning the
plement

1 in the

()

1 to the

atibility
ts of the
e g (X1)
ssary for
1ggested
rule of
>d in the

wrison o
eriments

els, than

p area is
ificantly;

Vol. 35 — 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 301

o If reducing the number of logic levels is an important factor in the synthesis, the
Row Decomposition algorithm is especially efficient for structures consisting of
PAL-based blocks containing 2’ (a power of 2) product terms.

4.3. BINARY DECISION DIAGRAMS IN DECOMPOSITION DEDICATED FOR CPLD-S

Complexity of most of decomposition algorithms grows dramatically with the num-
ber of function arguments. This impedes their implementation in commercially ava-
ilable EDA tools. Great hopes for prevailing those obstacles are recently pinned on
Binary Decision Diagrams (BDD-s).

The classical decomposition model, in which column patterns are analysed, is
equivalent to an appropriate BDD transformation, based on horizontal diagram parti-
tioning (cutting). It can be proved that the number of nodes that are left below the cut
line, but directly connected with some nodes above the cut line, is equal to column
multiplicity of the partition matrix [56]. Fig. 10 presents an example of decomposition
for a function represented by a Binary Decision Diagram. The edges from the upper
part of the diagram (above the cut line), reach directly to two nodes below the cut line.
This means that the bound block, which will implement the function represented by
the upper part of the graph, should have one output.

Fig. 10. An example of decomposition utilising Reduced Ordered BDD-s (ROBDD-s)

The presented approach, described e. g. in [56], became the base for a number of
decomposition methods dedicated for LUT based FPGA-s.

302 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

In the case of CPLD structures, the main constraint regards the number of product
terms, while the number of inputs is relatively high. So another approach to the graph
partitioning is needed. One of such algorithms was presented in [57]. The essence
of the method consists in searching for such a subdiagram in the BDD, that can be
implemented in a PAL block containing a predefined number of product terms. For
determining the number of products required to implement a subfunction, the number
of implicants associated with the subdiagram needs to be found. The main criterion
for a decomposition attempt is the minimal number of implicants Ay, necessary to
implement the function before the decomposition. If A s is known, also the number of
PAL-based blocks required can be evaluated (Eg. 1). Decomposition of the diagram is
justified only if Ay > 2k. If the condition is not met, the classical approach is used.

The example of function decomposition with the use of the subdiagram search
is presented in Fig. 11. It is assumed, that the number of terms available in PAL
blocks used for implementation amounts to 3. The presented diagram uses the so-called
attributed edges. If an edge ends up with dot, this means that the expression represented
by the pointed subtree has to be inverted. The circuit obtained as the result of the
decomposition is presented in Fig. 12.

1
i
|
|
1
i
i
3
3
p
I
|
I
I
|
I
1
[}
)

Fig. 11. Transformations of a BDD corresponding to a function decomposition dedicated
for PAL-based circuits

Vol. ¢

T
like t}
the P
Decos
partiti
to the
block
ROBI
line ¢«

In
IOW Ir
(see p
of nod
the R(

Th
nality
partiti
of the
numbe

ETQ.

product
e graph
essence
can be
ms. For
number
Titerion
ssary to
mber of
gram is
used.

) search
in PAL
o-called
esented
t of the

ed

Vol. 55 — 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 303

ab
cb |paL| 76
K=3
be | I)
ac PAL nj A nsed
K=3 S
abe nsed paL] Y
n,d K=3
abce EF
bee |PAL n7
= K=3 PIA4 - Programmable Interconnect Area
n.e

Fig. 12. The synthesized structure obtained as the result of decomposition

The next method of function decomposition, utilising Binary Decision Diagrams,
like the first one, is oriented towards fitting the partitioning of the primary circuit into
the PAL-based logic block structure. It can be considered as an extension of the Row
Decomposition concept discussed in chapter 4.2. In the process of search for the best
partitioning of the set of input variables, an attempt is made to add as many variables
to the free set, as possible, without violating the condition of feasibility of the free
block in one PAL block. The partitioning of the set of variables can represented in a
ROBDD as a horizontal cut. The variables associated with nodes lying above the cut
line correspond to the free set, and the variables below the cut line — the bound set.

In this approach a ROBDD with edge complement attributes is used to evaluate the
row multiplicity 4(X,|X), instead of the Row Incompatibility and Complement Graph
(see p. 4.2). The row multiplicity can be efficiently computed by counting the number
of nodes cut off. Different partitionings are obtained by changing order of variables in
the ROBDD, and by moving the level of the cut line.

The decomposition algorithm consists of several phases. During each phase cardi-
nality of free set, which corresponds to the current cut level, is determined. A variable
partitioning is searched, which satisfies the condition of feasibility of implementation
of the free block in one PAL block, and for which the bound block has the lowest
number of outputs. If a solution is found for given cut level, the cut line is lowered.

304 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

a—> g (x;,x,,x5)
b— g,(x;,x,,x5)
i = XoX1 %,

+ XXX, &

+ X0X1%, 8

+xoxl)_€ég1

+ X0 XX, 8

XXX, 85

Fig. 13. Function diagram with annotated path number

In the Row Decomposition model discussed above, only disjunctive partitionings
are considered. In order to reduce the length/depth of the critical path, also non-disjunc-
tive partitionings can be employed. Let’s consider the function defined by the diagram
presented in Fig 14.

In the first step of the non-disjunctive decomposition, a possibly good disjunctive
partitioning is found. Let’s assume, that we are going to implement the function using
PAL blocks containing 3 product terms. For a given variable ordering only xy, can be
included into the free set. In this case, the free block is described by the following
formula:

J = xog(xy, x2, X3, X4) + Xo g1 (X1, X2, X3, X4) @)

Vol. 55

v0

/=

Th
diagra
the dis

exceel
and g
circuit
3 leve

Th
into t

ETQ.

tionings
disjunc-
diagram

junctive
n using
, can be
llowing

™

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 305

X XX PAL g,

XX k:3 P

I | xg
X XXX A xxg |PAL f
xxxx | PAL g x)E] éﬂ k=3

xxxx | k=3

PIA — Programable
Interconnect Area

Fig. 14. The diagram cut method corresponding to a non-disjunctive decomposition,
and the resulting circuit structure

The free block is implemented using two product terms. Function 8 describes a
diagram rooted by node vy, and g; — by v, respectively. Including the variable x; into
the disjunctive free set increases implementation requirements to 4 product terms. This
exceeds limit of 3 terms in a PAL block. Function g1 is realized by one PAL block,
and g, by two blocks, respectively. Finally, using the disjunctive decomposition, the
circuit can be implemented with the use of 4 blocks, and the maximum path length is
3 levels.

The non-disjunctive decomposition allows to include the variable x1 both
into the free and the bound sets. The free block is described by the formula

306 DARIUSZ KANIA, ADAM MILIK, JOZEE KULISZ, ADAM OPARA ETO.

f = xox180 + XoX &0 + Tog1, and utilizes 3 product terms. The whole circuit is built of
3 PAL-based logic blocks, and the maximum path length is reduced to 2 levels (Fig.
14).

According to the observations presented above, the basic decomposition algorithm,
was modified [58]. After finding a proper disjunctive partitioning, the procedure tries
to add a child node, located below cut line, to the free set. In the presented example,
v is chosen as a child of v;. The node is accepted, if the resulting implementation of
the free block fits into a single PAL-based logic block (Fig.14).

5. COMPLEX STRATEGY OF LOGIC SYNTHESIS FOR PAL-BASED CPLD-S

Synthesis algorithms presented in previous chapters were carefully and extensively
verified and tested. The test methodology was based on synthesizing benchmark circuits
[59]. The results obtained were compared against results published by other authors, and
against results generated by using commercial tools. A number of program modules,
implementing the algorithms presented above, were developed. They make up together
the PALDec (“PAL Decomposition”) synthesis system. The number of experiments
carried out in recent few years reaches tens of hundreds. The results obtained were
published in [28-36, 38-39, 49-51, 53-55, 58, 60-62,]. Analysis of the results makes it
possible to compare the algorithms with respect to logic resources consumed, and the
number of logic levels.

Without doubt we can appoint the decomposition methods that utilise tri-state
buffers, as the best for obtaining the shortest paths (and propagation delays). The
one-level method with tri-state buffers (1 TBW) gives the best results {28, 33] in terms
of propagation delays. Finding a solution with this method is however not guaranteed.
If a solution cannot be found using the one-level method, the p-level method with
tri-state buffers (p_.TBW) can be applied instead [32-33]. This method is able to find a
solution providing the smallest possible number of logic levels. The synthesis strategy
combining both methods (1p. TPW), allows to obtain implementations with the smallest
possible number of logic levels.

The 1p.TPW strategy consumes however significantly more logic resources than
the other presented methods. The average increase in logic blocks usage is around 1.5
times, in comparison to the classical approach [33]. A unique feature of the proposed
p-level function implementation is, that the number of logic levels p can be set as a
parameter for the method. It was observed, that solutions, for which the number of
logic levels allowed is higher, are found faster, and they consume less logic resources.
This way it is possible to control propagation delays vs. resources usage in the obtained
solutions. Simplicity of the methods (1_TBW, p_.TBW) enables them to be successfully
used in complex synthesis strategies dedicated for any PAL-based devices featuring
tri-state output buffers.

The greatest advantages of the multiple-output function synthesis methods utilising
the Graph of Outputs are simplicity, and short computation time. By combining the

Vol.

met]
plen
achi
]
met]
if ¢
in ¢
grou
impl
impl
(1.T
g
metl
on tl
metk
achie
I
bloc]
obtaj
respe
on C
numl
C
comyj
cases
The
is ca
of ar
6,3s)
T
the S
for P
a lar;
comt
of sy
the r
from

comr
Warp
synth
in wl
archi

ETQ.

built of
Is (Fig,

orithm,
ire tries
xample,
ation of

PLD-S

ensively
circuits
ors, and
nodules,
together
sriments
ed were
makes it
~and the

tri-state
ys). The
in terms
wranteed.
yod with
to find a
. strategy
smallest

-ces than
ound 1.5
proposed
, set as a
imber of
esources.
obtained
cessfully
featuring

s utilising
ining the

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 307

method basing on analysis of the Graph of Outputs, with the classical function im-
plementation, a several percent reduction in the number of logic blocks used can be
achieved. This is however paid with a similar increase in the number of logic levels.

In most cases, independently from the size of the PAL logic blocks, applying the
methods utilising Graphs of Outputs leads to expansion of the number of logic levels,
if compared to the classical method. This drawback can however be compensated
in circuits that contain tri-state output buffers. In the methods referenced above, the
groups of multiple-output implicants extracted in subsequent steps of synthesis, were
implemented using the classical method. There is nothing to prevent the groups of
implicants from being synthesised with one of methods exploiting tri-state buffers
(1.TBW or p_.TBW) instead.

The most efficient, in respect of logic resources used, synthesis methods are the
methods employing decomposition. The best results were obtained for the method based
on the Column Decomposition of multiple-output functions (DK) [33, 45]. Using this
method, a reduction of the number of logic blocks between 20% and 30% can be
achieved, in reference to the classical implementation [33].

Elements of adapting the decomposition model to structures of the PAL logic
blocks are included in the Row Decomposition method (DW) [33, 53, 61]. The results
obtained using the algorithms based on Row Decomposition were slightly worse with
respect to the number of logic blocks, from the results generated by the methods based
on Column Decomposition. They were however significantly better with respect to the
number of logic levels.

Computational complexity of the algorithms based on the Row and Column De-
composition limits their usage for functions with large number of arguments. In such
cases it is however possible to apply the methods basing on Binary Decision Diagrams.
The program module dekBDD, developed as a result of the research work [58, 63],
is capable of performing the whole synthesis process for a function with several tens
of arguments within few seconds (eg. apex5: 117 inputs, 88 outputs — synthesis time:
6,3s).

The final goal of the research works carried out in the Institute of Electronics of
the Silesian University of Technology, was to develop eflicient synthesis algorithms
for PAL based CPLD structures. To achieve the goal, the new methods were tested in
a large number of experiments, and the results were analysed. In the experiments the
commonly accepted set of test circuits [59] was used as the means to verify quality
of synthesis tools. The test circuits were synthesised using the programs developed by
the research team (PALDec), and the results were compared with the results obtained
from other tools, used as the reference. The set of reference tools was wide, it included
commercial programs (MAX+Plus, Synplicity, Abel, MACHXxI, ispDesignEXPERT,
Warp, Quartus), available academic tools (ASYL, PLADE) [64-65], and the classical
synthesis method (Espresso). As the conclusion, synthesis strategies can be proposed,
in which the synthesised circuit can be optimised for different goals, and various
architecture-specific features.

308 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

The synthesis strategy proposed for PAL-based CPLD-s without tri-state buffers
starts with the Column Decomposition (DK). The subcircuits obtained as the result are
then optimized by one of the methods utilizing the Graph of Outputs (Z_.GW). Improve-
ment in propagation delays can be gained by the use of the TBW method (1p . TBW). If
the propagation delay is a critical parameter, better results can be obtained by using the
Row Decomposition method (DW). The circuit after partitioning is further optimized
by the Graph of Outputs method (Z_-GW). If using tri-state buffers is permissible, the
best results are obtained with the 1. TBW method, which generates one-level structures.
If the method is unable to find a solution, the p_.TBW method can be used instead.
Finally the two algorithms were combined, and the 1p_TBW strategy was developed,
which produces a solution with minimal number of levels. The proposed algorithm of
selecting synthesis strategies for different optimisation goals, and architecture-specific
features is presented in Fig. 15.

x.pla
/-‘ | Optimization goal
A

AREA|SPEED
N 2Ny
DK DK Ip TBW

¥ v ¢
ZGW]| [z Gw]| [z gW

y

1p TBW
) v
| xvhd | | xvhd | | xvhd| [xvhd)
TBW - three-state output buffer;
DK — column decomposition;
DW - row decomposition;

Z_GW -~ multiple-output synthesis using Graph of Outputs;
1p_TBW - strategy of term expansion using three-state buffers

Fig. 15. The proposed algorithm of selecting synthesis strategies for PAL-based CPLD-s

The research works are continued, and now the main objective is to develop stra-
tegies including methods based on BDD partitioning. The dekBDD module [58] is
going to be incorporated into the PALDec system. Some early results are presented in
[63].

Vol. .

]
tools
by ¢
only
Syste
deve

1
prop
penc
tlists
the
howi
arch
thesi
prep
com
wort

1
more
scrip
the 1
vend
by s3

E
ferre
desig
form
betw

A
in pe
resul
were

I
of th
mucl
imple
prop
of at
and ¢
the d
in [3

ETQ.

buffers
sult are
1prove-
3WH. If
ing the
[imized
ble, the
ictures,
nstead.
eloped,
ithm of
specific

op stra-
[58] is
nted in

Vol. 55 — 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 309

6. INTERFACE TO VENDOR TOOLS AND EXPERIMENTAL RESULTS

If thousands of experiments are to be carried out, interfacing prototype software to
tools supplied by PLD vendors becomes an important issue. Software tools developed
by companies or institutions independent from PLD vendors are capable of performing
only the logic synthesis stage. Then the design has to be transferred to a vendor-specific
system for completing the implementation stage. This regards also academic software,
developed by research teams.

The main problem in porting a design to a vendor-specific system is to find an ap-
propriate intermediate format for the design data exchange. Commercial vendor-inde-
pendent systems (eg. Synplify, Leonardo Spectrum, Precision RTL) use low level ne-
tlists for this purpose. This approach is secure, because there is a little chance, that
the low level structure will be interfered by implementation tools. The method is
however not universal, because low level netlists contain much vendor-specific, and
architecture-specific information. Using this approach requires thus to equip the syn-
thesis software with procedures or plugins responsible for converting formats, and
preparing data specific for the implementation tools. This is acceptable for commercial
companies, but difficult for academic research teams, as it requires much “scientifically
worthless” extra job.

It was thus desirable to find out alternative formats for the data exchange, possibly
more universal, and using a higher level of abstraction. Here using a Hardware De-
scription Language (HDL) seems to be the most obvious, and natural choice. Choosing
the right abstraction level for the intermediate format is an important task, because
vendor implementation software can change and “destroy” logical structures generated
by synthesis tools.

Behavioral HDL description seems to be the design specification format most pre-
ferred for design entry, nowadays. Because of its high abstraction level it allows the
designer to concentrate on proper description of the desired functionality. As a textual
format, following the standard of the chosen language, it is universal and portable
between technologies and software tools.

A number of experiments were carried out to examine various synthesis tools, and,
in particular, the effects of selecting different data exchange formats, on quality of
results. The tools were tested using the standard benchmarks [59]. The test circuits
were implemented in CPLD structures.

It turned out that, if behavioural description was used as the entry format, quality
of the solutions was not good. High abstraction level in behavioural modelling gives
much freedom to the software. Logical structures can easily be “spoiled” by vendor
implementation programs. During the experiments it turned out, that it is possible to
propose as the intermediate format in a style of VHDL description, lying at a lower level
of abstraction, than behavioural modelling, but still portable between software tools,
and comprehensdible to a human. The proposed style of VHDL modelling resembles
the dataflow description commonly known in the literature. More details are reported
in [33, 58, 66-67].

310 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

The prototype computer program PAILDec, developed during the research work,
enables a convenient interaction with vendor-specific tools. The program reads input
data in the Berkeley format (pla). Output data are generated as an appropriate descrip-
tion in a hardware description language.

Results of numerous experiments, and precision comparison of particular methods,
are reported in [28-36, 38-39, 49-51, 53-55, 58, 60-62]. In this paper only sample
results, for the popular benchmark rd84, will be presented. The results were obtained for
the simplest PAL-based CPLD structure available — the “Classic” family from Altera.
The basic building block of the Altera “Classic” devices is a macrocell containing
an 8-terms PAL structure with a tri-state output buffer controlled by an extra term.
Choosing those structures, which are quite old, is justified by the concern to preserve the
results from being blurred by extra CPLD functionality, like XOR gates, programmable
expanders etc. As a consequence, it was necessary to use an outdated synthesis tool
- MAX+PLUS IL It is worth to note that for CPLD-s Quartus Il gives results quite
similar to those obtained in MAX+ PLUS Ii.

The synthesis of the rd84 benchmark was carried out using the following four methods:
e description in the pla format, synthesis and implementation in the vendor tool

(M.KL),

e description in the pla format, synthesis in PALDec (DK+Z_GW strategy), imple-
mentation in the vendor tool (DK+Z_GW),

e description in the pla format, synthesis in PALDec (DW+Z_GW strategy), imple-
mentation in the vendor tool (DW+Z_GW),

e description in the pla format, synthesis in PALDec (1pTBW), implementation in
the vendor tool (IpTBW).

The symbols accompanying the methods listed above (M_KL, DK+Z_GW, etc.)
correspond to labels in the charts presented in Fig. 16. The figure presents in a synthetic
form a comparison of the results.

120 Logic blocks 12 Propagation time [ns]

100 100 4~
80 - 80 +—
60 - . 80 +—
40 — 407
| 20 4

28 | e O 0 ; .]

M_KL DK+Z GW DW+Z GW 1p_TBW M_KL DK+Z_GW DW+Z _GW 1p_TBW

Fig. 16. A comparison of synthesis results obtained for the rd84 benchmark, and different algorithms

The comparison was presented both for the resources used, and propagation delays.
As the charts show, in all of the cases synthesis in PALDec gives significantly better
results, than the commercial tool. With respect to the number of logic blocks used,
the Column Decomposition combined with elements of the optimization based on the
Graph of Output (DK+Z_GW) is the most efficient strategy.

Vol.

MA
whic

and

)
CPL
two-
synt
elemr
bloc
class

I
of P
logic
ilabl
whic

;
ciall
ways
emb
terist
ly c
exan

I
base
smal
numl
spee
are ¢
relat

R
is po
poss|

ETQ.

work,
input
scrip-

thods,
ample
ed for
\Itera.
ining
term.
ve the
mable
s tool

quite

thods:;
r tool

mple-

mple-

ion in

, etc.)
1thetic

ithms

lelays.

better
- used,
on the

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 311

The timing delays were determined by the static timing analysis module of
MAX+ PLUS IL In respect of propagation time, the unrivalled strategy is 1p_TBW,
which uses tri-state buffers.

Similar results were obtained also for other vendor-specific tools, both for simple
and complex CPLD-s [33].

7. CONCLUSIONS

The paper presents several different synthesis methods dedicated for PAL-based
CPLD-s. The proposed methods are an alternative to the classical approach, based on
two-level minimization of individual single-output functions. Subsequent steps of the
synthesis process are adapted to logical resources of PAL-based CPLD-s. Adjusting
elements of the synthesis process to logical resources characteristic for a PAL logic
block allows for significant improvement of synthesis effectiveness in relation to the
classical approach.,

Decomposition models presented in the paper are adapted to specific requirements
of PAL-based CPLD structures. The proposed partitioning of the design into PAL-based
logic blocks, allows for general improvement of synthesis methods for commonly ava-
ilable CPLD structures. The presented approach is not limited by final optimization,
which takes into account specific features of a target structure.

Authors do not claim, that the presented methods can instantly be used by commer-
cially available design systems. On the other hand, the results obtained show possible
ways of improving synthesis quality. Significant area reduction can be expected after
embedding in synthesis algorithms decomposition methods adjusted for CPLD-charac-
teristic logic resources. Unfortunately decomposition methods are very computational-
ly complex, and time consuming. Faster algorithms can hopefully be developed for
example by using BDD-s.

Results of the experiments presented in the paper prove, that the synthesis methods
based on decomposition are especially attractive for CPLD structures consisting of
small PAL-based blocks. In this case the solutions were minimal with respect to the
number of PAL-based blocks used. If the synthesis process is to be optimized for
speed, the methods utilizing three-state buffers should be applied. Tri-state buffers
are commonly available in modern CPLD devices, and the synthesis algorithms are
relatively simple and robust.

Results of research work conducted for many years show without doubt, that it
is possible to improve significantly quality of commercial synthesis tools. It is often
possible to obtain structures occupying much less resources, or much faster operating.

312 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETO.
8. REFERENCES
{.S.Chang,M. Marek-Sadowska, T. Hwan g Technology Mapping for TLU FPGA’s Based

9.

13.

14.

15.

19.

on Decomposition of Binary Decision Diagrams. IEEE Transactions on Computer-Aided Design,
Vol.15, No. 10, October 1996, pp. 1226-1235

A. Dzikowski, E. Hrynkiewicz Ziotona dekompozycja obszarowa zespotu funkcji logicz-
nych z wykorzystaniem diagraméw ROBDD. Krajowa Konferencja Elektroniki KKE'03, Kotobrzeg
(Poland), Czerwiec 2003, tom II, ss. 393 398

Y. Lai, K.R. Pan, M. Pedram: OBDD-Based Function Decomposition: Algorithms and Imple-
mentation. IEEE Transactions on Computer-Aided Design, Vol.15, No.8, August 1996, pp. 977-990
M. Rawski, H Selvaraj, T Luba, P. Szotkowski: Application of symbolic functional
decomposition concept in FSM implementation targeting FPGA devices. Sixth International Confe-
rence on Computational Intelligence and Multimedia Applications, 2005, Aug. 2005, pp. 153-158.
C. Scholl: Functional Decomposition with Application to FPGA Synthesis. Kluwer Academic
Publishers, Boston, 2001

H. Selveraj, T. Luba, M. Nowicka, B. Bignall: Multiple-valued decomposition and its
applications in data compression and technology mapping. Proceedings of ICCIMA’97, Gold Coast
(Australia), 1997, pp. 42-48

C. Yang, M. Ciesielski: BDS: A BDD-Based Logic Optimization System. IEEE Transactions
on CAD of Integrated Circuits and Systems, Vol.21, No.7, July 2002, pp. 866-876.

. M. Adamski, A. Barkalov: Architectural and Sequential Synthesis of Digital Devices. Uni-

versity of Ziclona Géra Press, 20006.
J.H. Anderson, S.D. Brown: Technology mapping for large complex PLDs. Proceedings of
Design Automation Conference, DAC’98, January 1998, pp. 698-703.

. A. Barkalov, L. Titarenko, S. Chmielewski: Reduction in the number of PAL ma-

crocells in the circuit of a Moore FSM. International Journal of Applied Mathematics and Computer
Science, Number 4, Volume 17, 2007.

.S.L.Chen, T.T. Hwang, C. L. Liu A technology mapping algorithm for CPLD architeciures.

IEEE International Conference on Field Programmable Technology, Hong Kong, December 2002,
pp. 204-210.

. S. Deniziak K. Sapiech a: An Efficient Algorithm of Perfect State Encoding for CPLD Based

Systems. IEEE Workshop on Design and Diagnostic of Electronic Circuits and Systems, DDECS’ 1998,
Szczyrk (Poland) 1998, pp. 47-53.

J.Kim, 8. Byun, H Kim: Development of technology mapping algorithm for CPLD under time
constraint. 6th International Conference on VLSI and CAD, ICVC 799, 1999, pp. 411-414.

H-S. Kim,J-J. Kim, Ch-H. Li n: An efficient CPLD technology mapping under the time constraint.
Proceedings of the 12th International Conference on Microelectronics, ICM 2000, 2000, pp.265 -268.
J-J. Kim, H-S. Kim, Ch-H. Lin: A new technology mapping for CPLD under the time constrainl.
Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC’01, 2001, pp.
235-238.

. A. Kaviani, S. Brown: Technology mapping issues for an FPGA with lookup tables and

PLA-like blocks. Proceedings of the 2000 ACM/SIGDA Eighth International Symposium on Field
Programmable Gate Arrays, Monterey, 2000, pp. 60-66.

. V.Salauyou, A. Klimowicz, T. Grze§, T Dimitrova-Grekow,l. Bulatowa

Badania efektywnosci metod syntezy automatéw skoriczonych zaimplementowanych w pakiecie ZUBR.
Miesiecznik Naukowo-Techniczny ,,Pomiary Automatyka Kontrola” nr 6 bis, 2006, ss. 44-46.

. W. Solowjew: Synthesis of sequential circuits on programmable logic devices based on new

models of finite state machines. Proceedings of the EUROMICRO Conference on Digital Systems
Design, 2001, pp. 170-173.

J.L. Kouloheris, A. E. Gamal: FPGA performance versus cell granularity. Proceedings of
the IEEE Custom Integrated Circuits Conference, May 1991, pp. 6.2/1 -6.2/4

Vol.

20. .

21

22.

23.

24.

25.

26. .

27.

28.
29.

30.

31.

32.

34,

35.

36.

37.

38.

39.

40.

42,

ETQ.

s Based
Design,

ji logicz-
olobrzeg

d Imple-
977-990
inctional
1 Confe-
3-158.
\cademic

n and its
1d Coast

nsactions
ces, Uni-
>dings of

PAL wa-
“omputer

itectures.

er 2002,

.D Based
CS’ 1998,

wder time

onstraint.
265 -268.
onstraint.
2001, pp.

bles and
on Field

atowa

ie ZUBR.

6.

[on new
Systems

edings of

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 313

20.

21

22.

23.

24.

25.

26.

27.

28.
29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

J.L. Kouloheris, A E. Gamal: PLA-based FPGA Area Versus Cell C+ Granularity. Proce-
edings of the IEEE Custom Integrated Circuits Conference, May 1992, pp. 4.3.1-4.34.

K. Yan: Logic synthesis for CPLDs and FPGAs with PLA-style logic blocks. Fourteenth International
Conference on VLSI Design, 2001, pp. 291-297.

K. Yan: Practical logic synthesis for CPLDs and FPGAs with PLA-style logic blocks. Proceedings
of the Asia and South Pacific Design Automation Conference, ASP-DAC 2001, 2001, pp. 231-234.
K.C.Chen,S. Muroga: Inpur assignment algorithm for decoded-PLAs with multi-input decoders.
IEEE International Conference on Computer-Aided Design, ICCAD’88, Digest of Technical Papers,
November 1988, pp. 474-477.

M.J. Ciesielski,S. Yang PLADE: A two-stage PLA decomposition. IEEE Trans. on Computer-
-Aided Design, Vol.11, No.8, 1992, pp. 943 954,

S.Devadas, A.R. Wang, A R. Newton, A. Sangiovanni-Vincentelli: Boolean
Decomposition of Programmable Logic Arrays. IEEE Custom Integrated Circuits Conference, May
1988, pp. 2.5.1 -2.5.5.

S. Devadas, A.R. Wang, A.R. Newton, A, Sangiovanni-Vincentelli: Boole-
an decomposition in multi-level logic optimization. Digest of Technical Papers, IEEE International
Conference on Computer-Aided Design, ICCAD-88, Nov 1988, pp. 290-293,

C. Yang, M. J. Ciesielski: PLA decomposition with generalized decoders. IEEE International
Conference on Computer-Aided Design, ICCAD-89, Nov 1989, pp. 312-315.

D. Kania: Two-level logic synthesis on PALs. Electronics Letters, 1999, Vol.35, No. 1 1, pp. 879-880.
D. Kania Two-level logic synthesis on PAL-based CPLD and FPGA using decomposition. Proce-
edings of 25-th Euromicro Conference, IEER Computer Society Press, Milan (Italy), 1999, pp. 278-281.
D. Kania: Multi-level logic synthesis on PAL-based devices with three state output buffers. Kwar-
talnik Elektroniki i Telekomunikacji, 2000, 46, 7.1, pp. 81-90,

D. Kania: Logic synthesis on PAL-based devices containing output buffers. Kwartalnik Elektroniki
i Telekomunikacji, 2002, 48, z.1, pp. 53-66

D. Kania: A p-stage Logic Synthesis for PAL-based Devices. Kwartalnik Elektroniki i Telekomu-
nikacji, 2004, 50, z.1, pp. 65-86.

D. Kania: The Logic Synthesis for the PAL-based Complex Programmable Logic Devices, Zeszyty
Naukowe Politechniki §lqskiej, Nr 1619, Wydawnictwo Politechniki Slaskiej, Gliwice 2004.

D. Kania: A New Approach to Logic Synthesis of Multi-Output Boolean Functions on PAL-based
CPLDs. Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI'07 Stressa — Lago
Maggiore (Italy), March 2007, pp.152-155. '

D. Kania: Method for Efficient Implementation of Multiple-Output Function in PAL-based Devices.
Kwartalnik Elektroniki i Telekomunikacji, 1999, 45, z. 3-4, pp. 433-444,

D. Kania: A technology mapping algorithm Jor MACH devices. Kwartalnik Elektroniki i Teleko-
munikacji, 2001, 47, z. 1, pp. 65-74.

D. Kania: Improved Technology Mapping for PAL-based Devices Using a New Approach to
Multi-Output Boolean Functions. DATE 02, IEEE Computer Society, Los Alamitos, 2002, p.1087.
D. Kania: Logic Synthesis of Multi-Output Functions for PAL-based CPLDs. IEEE International
Conference on Field-Programmable Technology, Hong Kong, December 2002, pp. 429-432.

D. Kania:An Efficient Approach 1o Synthesis of Multi-Output Boolean Functions on PAL-based De-
vices. IEE Proceedings on Computer and Digital Techniques, Vol. 150, No. 3, May 2003, pp.143-149.
S. Devadas, AL R. Newton: Exact Algorithms for Output Encoding, State Assignment, and
Four-Level Boolean Minimization. TEEE Transactions on Computer-Aided Design, Vol. 10, No. 1
January 1991,

’

- D. Kania: An Efficient Algorithm for Output Coding in PAL-based CPLDs. International Journal

of Engineering, Vol.15, No.4, November 2002, pp. 325-328.
G. Micheli: Synthesis and optimization of digital circuits. McGrew-Hill, Inc., 1994,

314 DARIUSZ KANIA, ADAM MILIK, JOZEF KULISZ, ADAM OPARA ETQ.

43. Ch.J. Shi, 3. A. Brzozowski: An Efficient Algorithm for Constrained Encoding and its Appli-
cations. IEEE Trans. on CAD, Vol. 12, No.12, December 1993, pp.1813-1826.

44. H. A. Curtis: The Design of switching Circuits. D.van Nostrand Company, Inc., Princeton, New
Jersey, Toronto, New York, 1962.

45. D. Kania Method for calculation of column multiplicity dedicated for CPLDs. Archiwum Infor-
matyki Teoretycznej i Stosowanej, Tom 17, z.1, 2005, pp. 65-76.

46. D. K ania: Coding capacity of programmable transcoder. Kwartalnik Elektroniki i Telekomunikacji,
1998, 44, 7.2, pp. 193-204.

47. D. Kania: Coding Capacity of PAL-based Programmable Transcoder with Uneven Number Terms
per Output. Kwartalnik Elektroniki i Telekomunikacji, 1999, 45, z.1, pp.73-84.

48. D. Kania: Coding capacity of PAL-based logic blocks included in CPLDs and FPGAs. IFAC
Workshop on Programmable Devices and Systems, PDS 2000, Ostrava, February 2000, Published for
the IFAC by PERGAMON, An Imprint of Elsevier Science, 2000, pp. 164-169.

49. D. Kania, A. Milik, I. Kulisz: Decomposition of Multiple-Output Functions for CPLDs.
Proceedings of Euromicro Symposium on Digital System Design, IEEE Computer Society Press,
Porto, September, 2005, pp. 442-449.

50. D. Kania: Logic Decomposition for CPLD Synthesis. IFAC Workshop on Programmable Devices
and Systems, PDS 2000, Ostrava, February 2000, Published for the IFAC by PERGAMON, An Imprint
of Elsevier Science, 2000, pp. 49-52.

51. D. Kania: Decomposition-based synthesis and its application in PAL-oriented technology map-
ping. Proceedings of 26-th Buromicro Conference, IEEE Computer Society Press, Maastricht, 2000,
pp. 138-145.

52. D. Kania, I Kulisz The row incompatibility and complement graph — a novel concept of graph

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Jor decomposition. Programmable Devices and Embedded Systems, PDES 2006, Brno, February
2006, pp.169-173.

D. Kania J. Kulisz, A. Milik: A novel method of two-stage decomposition dedicated for
PAL-based CPLDs. Proceedings of Euromicro Symposium on Digital System Design, IEEE Computer
Society Press, Porto, September, 2005, pp.114 121.

D. Kania: Row decomposition in logic synthesis for CPLDs. Kwartalnik Elektroniki i Telekomu-
nikacji, Tom 52, z.4, 2006, pp. 825-847.

D. Kania, J. Kulisz: A method of logic synthesis for PAL-based CPLD-s based on two-stage
decomposition. Programmable Devices and Embedded Systems, PDES 2006, Brno, February 2006,
pp- 163-168.

T. Sasao: FPGA Design by Generalized Functional Decomposition in Logic Synthesis and Opti-
mization. Kluwer Academic Publishers, Boston/London/Dotdrecht, 1993.

A. Milik, D. Kania: Application of BDD in Logic Synthesis for PAL-based Devices. Pomiary,
Automatyka, Kontrola vol. 53, nr 7, 2007, pp. 118-120.

A. Opar a: Dekompozycyjne metody syntezy uktadow kombinacyjnych wykorzystujqee binarne dia-
gramy decyzyjne, Rozprawa doktorska, Politechnika Slaska, 2009.

Collaborative Benchmarking Laboratory, Department of Computer Science at North Carolina State
University, http://www.cbl.ncsu/edu/

D. Kania: A technology mapping algorithm for PAL-based devices using multi-output function
graphs. Proceedings of 26-th Euromicro Conference, IEEE Computer Socicty Press, Maastricht, 2000,
pp. 146-153.

D. Kania,J. Kulisz Logic synthesis for PAL-based CPLD-s based on two-stage decomposition.
The Journal of Systems and Software 80, 2007, pp. 1129-1141.

A. Opara,D. Kania: Decomposiiion of multi-output function based on pseudo-MTBDD. Pomiary,
Automatyka, Kontrola vol. 54, nr 8, 2008, pp. 496-498.

A. Opara, D. Kania: A Novel Non-Disjunctive Method for Decomposition of CPLDs. Kwartalnik
Elektroniki i Telekomunikacji, Vol. 55, No. 1, 2009, pp. 95-111.

VYol

64.

65.

66.

67.

ETQ.

s Appli-
n, New
n Infor-
inikacji,
r Terms

s. IFAC
shed for

CPLD:s.
y Press,

Devices
Imprint

gy map-
t, 2000,

of graph
‘ebruary

ated for
omputer

lekomu-

vo-stage
'y 2006,

wd Opti-
omiary,
rne dia-
na State

function
1t, 2000,

DOSIHION.
Pomiary,

vartalpik

Vol. 55 - 2009 LOGIC SYNTHESIS DEDICATED FOR CPLD CIRCUITS 315

64. G. Saucier,P. Sicard, L. Bouchet: Multi-level synthesis on PAL’s. Proc. Buropean Design

65.

66.

67.

Automation Conference, Glasgow, March 1990, pp. 542-546.

G. Saucier,P. Sicard, L. Bouchet Multi-level synthesis on programmable devices in the
ASYL system. Euro ASIC "90, 1990, pp. 136-141.

R Czerwidski: The FSMs state assignment for PAL-based matrix programmable structures.
PhD Thesis, Gliwice, 2006.

R Czerwinski, . Kulisz State machine description oriented towards effective usage of
vendor-independent synthesis tools. IFAC Workshop on Programmable Devices and Embedded Sys-
tems 2009, PDES’09, February 2009, pp. 27-32

Har

| chine
in dev
(FPG:
used t
using
is dec
logic

Let u
maxin

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 317-333

Hardware reduction for Moore FSM implemented with CPLD

ALEXANDER BARKALOV, LARYSA TITARENKO, SEAWOMIR CHMIELEWSKI

University of Zielona Géra, Institute of Elecirical Engineering
ul. prof. Z. Szafrana 2, 65-516 Zielona Géra
A.Barkalov@iie.uz.zgora.pl; L. Titarenko @iie.uz. zgora.pl; S.Chmielewski @weit.uz.zgora.pl

Received 2009.01.08
Authorized 2009.03.27

A method of combined state assignment is proposed which targets on a decrease in
the hardware amount (the number of PAL macrocells) in combinational part of Moore
finite-state-machine (FSM). Some peculiarities of Moore FSM such as existence of pseu-
doequivalent states and dependence of output functions on states as well as a wide fan-in
of PAL macrocells are used to optimize the hardware amount. It allows hardware amount
decrease without decreasing in performance of the controlled digital system. An example
of application of proposed method is given. Some results of experiments based on the
probabilistic approach are demonstrated. It is shown that the proposed method always leads
to decrease in the hardware amount in comparison with the known methods of Moore FSM
synthesis.

Keywords: Moore finite-state-machine, synthesis, graph-scheme of algorithm, CPLD, PAL,
macrocell, pseudoequivalent states

1. INTRODUCTION

Control unit of any digital system can be implemented as a Moore finite-state-ma-
chine (FSM) [1,2]. Recent achievements in semiconductor technology have resulted
in development of such sophisticated VLSI chips as field-programmable logic arrays
(FPGA) and complex programmable logic devices (CPLD) [3-6]. Very often CPLD are
used to implement complex controllers [2,7]. In CPLD, logic functions are implemented
using programmable array logic (PAL) macrocells [5-7]. One of the issues of the day
is decrease in the number of PAL macrocells required for implementation of FSM
logic circuit [2,7]. A proper state assignment [8] can be used to solve this problem.
Let us point out that such characteristics of FSM as cost / area, power consumption,
maximum frequency (cycle time) depend significantly on this step outcome. Because

318 ALEXANDER BARKALOV, LARYSA TITARENKO, SLAWOMIR CHMIELEWSKI ETQ.

of their importance, state assignment methods are continually developed. There are
effective methods based on symbolic minimization [9-11], genetic algorithms [12,13]
and other heuristics [14,15]. To get a good solution, peculiarities of both FSM model
and logic elements in use should be taken into account [2]. The peculiarities of Moore
FSM are existence of pseudoequivalent states [14] and dependence of microoperations
only on FSM internal states [1]. The peculiarity of CPLD is a wide fan-in of PAL
macrocells [15]. Tt permits to use different sources for representation of a current state
code [16,17].

In this article we propose a method of combined state assignment, which is oriented
on decrease in the number of terms for both input memory functions and output
functions (microoperations) of Moore FSM. The further hardware amount decrease
can be reached using transformation of the pseudoequivalent states codes into codes
of their classes [14].

2. BACKGROUND OF MOORE FFSM

Let Moore FSM be represented by structure table [1] with the columns: a,, is a
current state, a,, € A, where A = {ay,...,ay} is a set of internal states; K(a,,) is a code
of state a,, having R = [log, M bits; ay is a state of transition; K(ay) is a code of state
ay € A; X;, is a conjunction of some elements of the set of logical conditions X (or
their complements) determining the transition (a,, a;), where X = {xy,...x.}; @, is a
collection of input memory functions from set ® = {D,, ..., Dg} which are equal to 1
to switch the automation memory from K(a,,) into K(a,); h =1, ..., H is the number
of table line. The column a,, contains collection of microoperations Y(a,,) G ¥, which
are generated in the state a,, € A, where Y = {y}, ..., yy}. This table determines Moore
FSM U, shown in Figure 1.

X
| Block of Input () T Block of Y
FMu:::nt(i)oan\s » RG “IMicroop eratio ns g
Start |
Clock

Fig. 1. Structural diagram of Moore FSM U,
In case of Uy, block of input memory functions (BIMF) generates functions

O = DT, X), H

and block of microoperations (BMO) generates functions

Vol. 5

H
Pulse
cause

T
follos
2],
R-dir
numt
are p
Gy A
repre
numt
ESPI
both
for B
for b

states
to in
FSM

wher
varia
(3) is

L
(2) a
ESPI
in fu
L
other

ETQ.

re are
12,13]
model
Moore
rations
f PAL
it state

riented
output
crease
codes

1, 1S a
a code
of state
, X (or
D, is a
al to 1
wmber
which
Moore

¢y

Vol. 55 -2009 HARDWARE REDUCTION FOR MOORE FSM IMPLEMENTED WITH CPLD 319

Y = Y(T). 2)

Here T = {T,...,Tg} is a set of state variables used to encode the states a,, € A.
Pulse Start is used to load the code of initial state @, € A into register RG. Pulse Clock
causes change of RG content.

The hardware amount in logic circuit of FSM U can be decreased using one of the
following state assignment approaches [2,14]. In the case of optimal state assignment
[2], classes of pseudoequivalent states are represented by generalized intervals of
R-dimensional Boolean space. It decreases the number of terms in system (1) up to the
number of transitions of equivalent Mealy FSM. Let us remind that states a,, a, € A
are pseudoequivalent states if identical inputs result in identical next states for both
ay and ag. In the case of refined state assignment [14], each microoperation y, € Y is

represented by a generalized interval of R-dimensional Boolean space. It decreases the
number of terms in system (2) up to N. In both cases, such well-known algorithm as
ESPRESSO [8] can be used for state assignment. Obviously, it is impossible to apply
both methods simultaneously. It means that hardware amount can be decreased either
for BIMF, or for BMO. In our article we propose a method allowing hardware decrease
for both combinational blocks of Moore FSM UJ .

3. MAIN IDEA OF PROPOSED METHOD

Let [Ty = {By, ..., B/} be a partition of the set A on the classes of pseudoequivalent
states. Let the symbol U; (T';) stand for the case when a model U; of Moore FSM 1is used
to interpret a GSA I j- Let the partition I14 = {By, ..., B;} be constructed for Moore
FSM Uy ('), where By = {a1}, By = {as, A1), By = {ai1,a13,ai), By = {as, A},
Bs ={ay, a4}, Be = {a7,as}, B7 = {ag, a)p). Let us form a system of Boolean equations

I
Bl’ = ‘Yl le'Am (l' = 1, ey]) , (3)

where C,,; is a Boolean variable equal to | iff a,, € B;, A, is a conjunction of state
variables corresponding to the code K(an). In the case of FSM U; (I')), the system
(3) is the following one:

By =A;By=As VA By =A VA3V Ay, @
By = A3V Ag; Bs = A; V Ay; Bg :A7\/Ag;B7 = Ay V Ajg.

Let us encode states a,, € A in such a manner that each equation from systems
(2) and (3) includes a minimal possible number of terms. The well-known algorithm
ESPRESSO [8] can be used to solve this problem. Let g(B;) be the number of terms
in function B; € I1,.

Let us represent the partition I14 as I, = g Ulle, where B; € I iff g(B) = 1,
otherwise B; € 1. Let us encode the classes B; € I1p by binary codes K(B;) using

320 ALEXANDER BARKALOV, LARYSA TITARENKO, SEAWOMIR CHMIELEWSKI ETQ.

Ry =[log:(Ip + 1)] (5)

variables 7, € 7, where Iz = |I1g]. The unit is added to number 75 (5) to reserve one
code indicating that B; ¢ Ilp. If condition

Ig>1 (6)

takes place, then GSA T'; can be interpreted using the Moore FSM model U, (Fig. 2)
proposed in this article.

L.

Block of (D Y
Input RG T | Block of
X » Memory o "| Microoperations
Functions
Start Block of Code
T Clock Transformer

Fig. 2. Structural diagram of Moore FSM U,

In FSM U,, block BIMF implements functions

D= DT, 1, X), (7

and block of code transformer (BCT) transforms codes of pseudoequivalent states
a, € B; into codes of the classes K(B;). To execute it, BCT generates functions

T=1(T). (3)

Let us name a combined state assignment the method of state encoding, which

decreases the hardware amount for blocks BIMF, BMO and BCT. In this case the total
number of terms in system @ is decreased till Hy, which is the number of transitions
for equivalent Mealy FSM [14]. If condition (6) does not take place, then structural
diagrams for U; and U, are the same and block BCT is absent.

The proposed method for FSM U, synthesis includes the following steps:
e Construction of the partition I, for given GSA T';.
Construction of the system of generalized formulae of transitions for classes of
pseudoequivalent states B; € [14.
Construction of systems (2) and (3).
Combined state assignment for states a,,, € A.
Construction of partitions Iz and Il¢.
Encoding of the classes B; € Ilp.

® © @ ©

Vol. 55

omitte

Le
HA Wi
R =
ration

where
Le
the G,

comb:

Le
ESPR
get th

ETOQ.

&)

Ve One

(6)
(Fig. 2)

O]

t states

(®)

- which

he total
1sitions
-uctural

sses of

Vol. 55 - 2009 HARDWARE REDUCTION FOR MOORE ESM IMPLEMENTED WITH CPLD 321

Construction of transformed structure table.

Construction of table for block BCT.,

Implementation of Moore FSM U, logic circuit using systems (2), (7), (8) and

given CPLD chips.

Let us point out that application of proposed method can decrease the number of
layers in FSM logic circuit and, therefore, increase the FSM performance. Obviously,
if condition (6) is not satisfied, then the steps 6 and 8 of the proposed method are
omitted and system (8) is absent.

4. EXAMPLE OF APPLICATION OF PROPOSED METHOD

Let us discuss the case of the Moore FSM Us(T'y) synthesis, where the partition
[I4 was presented in the previous section. It is clear, that A = {ay,...,au}, M = 14,
R = [logld1 =4, T ={Ty, .., T4}, D = {D1y, ..., D4}. Let us have the set of microope-
rations Y = {yj, ..., y7}, and let system (2) be represented as the following one:

Vi =A3V AsV Ag V Ay,

Y2=A VAV ALV A,

Y3=Aa VALV ARV Ay V Ay

Ya=As4V As VA3V Ajp V Ap;)
Vs =A3V Ag VA3V Ag V Ay
y6:A2\/A3\/A4\/A6\/A7;

Y7 = Ay V Az VApVApVA;.

Generalized formula of transitions [16] describes the transitions for class B; € Ty,
whereas the formulae of transition [1] describes the transitions for each state a,, € B;.

Let the following system of generalized formula of transitions be constructed for
the GSA I'y:

By — xjap V X1xa3 V X1 %05,

By — x3a1 V X3ay0;

By — X004 V XyXx3a7 V X3X3x406 V XaX3Xaa13;

By — ag; (10)
Bs — x3a3 v X309,

Be — xaa3 V Xaxsay; V XgXsxed|y V XaXsxedia;

By — x3x6a1 V x3Xsaz V X3xpaio V X3x2a.

Using the algorithm ESPRESSO [8], we can get the following outcome of the
combined state assignment (Figure 3).

Let us point out that equations (4) and (9) are used as the input constrains for
ESPRESSO [10, 11]. Using the state codes from Karnaugh map (Figure 3), we can
get the following systems of equations:

322 ALEXANDER BARKALOV, LARYSA TITARENKO, SLAWOMIR CHMIELEWSKI ETQ.

yi =TTy V _ﬂﬁ;yz =T\12T3V T715Ty;
3 =TTy vV T1ToT3,94 = T\ T3 V T3Ty;

= = , (1D
ys = 11Ty V ToTa; 96 = ToTy V T 1515,
vy = TT3Ty vV T T3Ty v T T 15Ty,
By = T\TyT4; By = ToT3Ty;
B3 = T7T5T4 vV T'T7T3; By = T\ TaTy; (12)

Bs = T\ TaTy; Bg = T1ToT3T4 vV TyT5T;
By = T\T,T5T4 Vv T2 T3 Ty,

T 00 01 11 10
TiT2
00 L oa | a *

01

a
a
1"ia,|lala,|a
10 | ¢

Fig. 3. Outcome of combined state assignment

Our analysis of the system (12) shows that Iz = {B3, Bg, B7}, [= 3, lI¢ = {B1, B>,
B4, Bs}. It means that condition (6) takes place, and FSM U, (I'y) has the structural
diagram shown in Figure 2. According to (5), Ry = 2, T = {11, 72}. To minimize the
number of terms in system (8), let us encode the classes B; € Il in the following
way: the more states the class B; includes the more zeroes its code contains. In our
particular case the following codes can be assigned: K(B3) = 10, K(Bg) = 10, K(B7)
= 11. The code 00 indicates that B; € Il.

The transformed structure table of Moore FSM U, is constructed using system of
generalized formulae of transitions. It includes the columns B;, K(B;), a;, K(ay), Xy,
®y, h, where H = Hy. Let the symbol H(I';) denote the number of lines for transformed
structure table for Moore FSM U;(I';). In our example, this table includes H, (I') =
20 lines (Table 1).

The column K(B;) contains the codes of classes B; € 114 represented as concate-
nations

K(B;) = K(Bj)p * K(Bi)c, (13)

where the part K(B;)p is represented by variables 1, € r, the subscript B means that
B; € Ilp; the part K(B;)¢ is represented by variables T, € T, the subscript C means

Vol. 5:

that 7
part]
B; €

from

K(B4
Table

into «
m. H
from

ETQ.

Y

(12)

mcate-

(13)

ns that
means

Vol. 55 - 2009 HARDWARE REDUCTION FOR MOORE FSM IMPLEMENTED WITH CPLD 323

that B; € Il¢; * is a concatenation sign. If 7, = 7, = 0, then B; € Tl¢, otherwise the
part K(B;)c is ignored. It is marked by signs “*” in the part K(B;)c. Codes of classes
B; € Il can be found in the following order. For example, Boolean equation for B,
from system (12) shows that 7; =Ty, = T4 = 0 and T5 is absent. Thus, K(B))¢ =
= 0 * 00. Using the same approach, the following codes can be found: K(By)c = *110,
K(Bg)c =00 * 1, K(Bs)e = 10 * 1. These codes are present in the column K(B;) of
Table 1. The codes of states a, € A are taken from the Karnaugh map (Figure 3).

Table 1

Transformed structure table of Moore FSM Us(I'))

B; K@®B)) a, | K(ay) Xp Dy, h
7172 | T\ T 5T,
a, | 1001 Xy DDy 1
B,| 00 0*00 az | 0001 i /x; x» D, 2
as | 0110 | /x(/x, DyD4 3
B, | 00 *110 a(| 0000 X3 - 4
a9 | 1010 /X3 D,D; 5
ay | 1011 X DD;Dy | 6
a; | 1000 /X7X3 D, 7
Bs| 01 ook ag | 0011 | /xo/x3xy D3Dy 8
a3 | 0100 | 7x9/x5 /x4 D, 9
By 00 00*] ag | 1111 1 DiD,D3Dy | 10
asz | 0001 X3 Dy 11
Bs| 00 10*1 ag | 1101 /X3 DD;Dy (12
a; | 1001 X4 DDy 13
ay; | 1100 /X4Xs DD, 14
Be| 10 ok app | 1110 § /x4/x5%¢ | D/Dy Dy |15
ap | 0101 | /x4/xs/xg DyDy 16
a, | 0000 X3Xg - 17
az | 0001 X3/Xg Dy 18
B, | 11 Hokeok ok ap ! 1010 | /x3x, D, D3 19
ap | 1110 | /x3/%5 D,D;Ds {20

The table of block BCT reflects the law for transformation of state codes K (ay)
into class codes K(B;), where a,, € B;. It includes columns an, K(an), By, K(B;), Ty,
m. Here the column 7, includes variables 7, € 7, which are equal to | in code K(B,)
from the m-th line of the table. In case of FSM U,(T'}), the table of block BCT has
Iy =7 lines (Table 2).

324 ALEXANDER BARKALOV, LARYSA TITARENKO, SLAWOMIR CHMIELEWSKI ETQ.

Table 2
Table of block BCT for Moore ESM U,(I'y)
an K(am) Bi K(Bl) Tm m
ay 1100 Bz 01 T2 1
a;z | 0100 2
a4 0101 3
az 1000 Bg 10 Ty 4
ag | 1111 5
ady 1101 B~ 11 Ty T2 6
a0 7
In common case, value [y, can be found as
/
Iy =) m-C (14)
i=1

where n; = |B;|, C; is a Boolean variable equal to 1 iff B; € IIz. This table is used to
derive the equations (8). In our particular case, the following system of equations can
be found:

T = AV AV Ay V Ajg = T1ToTa vV T1To Ty
T = AoV AV ALV AV A = ToT3 vV T, T5T
This system was minimized using the Karnaugh map from Figure 3.
System (2) is represented by equations from the system (11). Equations from system
(7) depend on terms F, (h = 1,..., H, (I';)) corresponding to the lines of transformed
structure table. These terms are represented as:

(15)

— Rl lr/) N drh 6
Fh—/\l’l' OAIT, ® X, (16)
= =

r

where [,;,, d,, € {0, 1, x} are respectively the values of the r-th bit of codes K(B;) and
K(a,,) from the h-th line of the table: 79 =T, Trl =7, T? =T,, T,l =T, 7 =T =1

In our particular case the following equation, for example, can be derived from
Table 1:

Dy=F\VF,VFsVFgVFoVF I VFoVF3VFegVFig=tin[1T3T4x V..V
T1T2X4X5X V T|ToX3Xg-

Let us point out that in our particular case there are no codes K(B;) with “don’t
care” [8] values of bits. But in common case, it is quite possible.

Implementation of Moore FSM U, (I';) logic circuit is reduced to implementation
of logic circuits for systems (2), (7) and (8) using some CPLD chips. This step is well
presented in literature [7,15] and we do not discuss it in this article.

Vol.

for
of 1
den

of ¢

the
colu
FSM
the |
laye
The
FSM

ETQ.

Table 2

(14)

used to
ms can

(15)

system
formed

(16)
B;) and
T: =1
d from

, “don’t

ntation
s well

Vol. 55 - 2009 HARDWARE REDUCTION FOR MOORE FSM IMPLEMENTED WITH CPLD 325

5. ANALYSIS OF PROPOSED METHOD

Let us start from analysis of our particular example. Let the symbol H; (f) stand
for the number of terms in function f € T U T U Y for Moore FSM U;. The number
of PAL macrocells having ¢ terms which is needed to implement function f can be
denoted as m;(f, ¢). Using results [7], we can find that

nfoq) = [M] i1
q-1

Let us note that subscript i determines the type of Moore FSM model. The results
of our calculations are shown in Table 3.

(17)

Table 3

Characteristics of different models

U, U Us Uy
D, 17 8 Il 5 12 6 18 9
D, 14 7 8 4 8 4 13 6
Ds 19 9 8 4 9 4 13 6
Dy 19 9 10 5 10 5 12 6
¥i 4 2 2 | 3 { 2 1
V2 4 2 2 1 3 1 2 1
Ya 3 2 2 1 2 1 2 [
Y4 5 2 2 1 3 1 2 I
Vs 5 2 2 1 3 1 2 1
Yo 5 2 2 1 2 1 2 1
¥7 5 2 3 I 5 2 2 1
T 0 0 2 1 0 0 0 0
T2 0 0 2 1 0 0 0 0
BIMF 33 2 18 2 19 2 27 2
BMO 14 2 7 1 8 2 7 1
BCT - - 1 - - - -
FSM 47 4 27 3 27 4 34 3

In case of Moore FSM U, states are encoded in an arbitrary way. Let in case of
the FSM U, (I'y) we have K(a,) = 0000, K(ay) = 0001, ..., K(ajs) = 1101. The first
column in Table 3 shows the values H;(f) and the second shows the values n:{(f, q) for
FSM U/(I'}). The first column in line BIMF shows the total number of macrocells in
the logic circuit of block BIMFE. The second column in this line shows the number of
layers in this circuit. The same characteristics are shown for blocks BMO and BCT,
The total number of macrocells and layers in logic circuit of FSM is shown in the line
FSM.

326 ALEXANDER BARKALOV, LARYSA TITARENKO, SEAWOMIR CHMIELEWSKI ET.O.

In our experiments, the PAL macrocells with ¢ = 3 are used. In this case the
number of layers L(f, g) for implementation of function f is determined as

L(f. @) = Tlogsni(f, 1. (18)

The characteristics of FSM U,(I'|) are found from Table 1 and systems (11) and
(15).

Using the algorithm ESPRESSO for optimal state assignments, the following codes
for the FSM U;(I'}) can be obtained (Figure 4).

00 01 11 10
T1T2

00| a |a,|4d,]| *

01| a, | a;| ayl *

1" a7 Cl8 Cl9 alo

10 aS a6 aZ 4

Fig. 4. Outcome of optimal state assignment

Application of ESPRESSO for refined state encoding (model Us) produces the
same results as for combined state encoding (Figure 3).

Analysis of Table 3 shows that, in case of GSA I';, application of the combined
state assignments produces the best solution. The logic circuit of FSM Us(I'y) has less
hardware than logic circuits of U;(I'}) and U4 (') was well as less layers than all other
logic circuits analyzed in our example.

The next step in our research was application of probabilistic approach to find an
area where the model Us; consumes less hardware than other models. There are three
key points in the probabilistic approach [17,18]:

1. Use of the class of graph-schemes of algorithm instead of a particular graph-scheme
of algorithm I". Each class is characterized by the parameter p;, which is treated
as a probability that a particular vertex of the graph-scheme of algorithm I' is an
operational one.

2. Use of matrix realization of the logic circuit of FSM [1] instead of the implemen-
tation using some standard VLSI chips. In this case we can find a hardware amount
as the area of matrices for a given structure of logic circuit of FSM.

3. To study relation S(U;) / S(U,), where S(U;, S(U;) are the areas of the matrices for
finite-state-machines U; and U, respectively. It is proved in [18] that such relations
for the cases of matrix realization are the same as for circuits implemented with
standard programmable logic devices, such as PAL, PLA or PROM.

Vol. ¢

syste
isac
to co
s a
M1 d
BMC

It
equiv
imple
are I

expre

ETQ Vol. 55 -2009 HARDWARE REDUCTION FOR MOORE FSM IMPLEMENTED WITH CPLD 327

Matrix realization of Moore finite-state-machine U 1 is shown in Figure 5.
se the g
X & 1 (I) & 1
—) F T A, | Y
(18) M’! Mz _ RG M3 M4

1) and Start l

Clock
codes

Fig. 5. Matrix realization of Moore FSM U,

Here M, is a conjunctive matrix that implements the system F of terms of the
system (1); M, is a disjunctive matrix that implements functions of the system (1); M3
is a conjunctive matrix that implements the system Ao, where each function corresponds
to conjunction A,,(m = 1,..., M) respective to the code K(a,,) of the state a,, € A; My
is a disjunctive matrix that implements the functions (2). It is clear that the matrices
M, and M, represent the block BIMF, and matrices M3 and M, represent the block
BMO. The complexity of these circuits can be expressed as

S(BIMF), =2(L+R)-H+H -R: (19)
SBMO)y =2-R-M+M-N. 20)
Matrix realization of Moore FSM U, is shown in Figure 6.
es the
X & 1 & Y
nbined M F o M (D, RGLT, M3
as less ! 2
1 other . T
Start
ind an —Glock_|
> three |
Fig. 6. Matrix realization of Moore FSM U,
cheme |
tre.ated “ In case of Uy, let F include Hy elements, where Hy is the number of transitions for
-~ is an equivalent Mealy FSM [14]. We assume that each function of systems (2) and (5) is
implemented using in average k PAL macrocells. Because of it, both BMO and BCT
lemen-

are represented by conjunctive matrix M3. The complexity of these circuits can be
imount expressed as

;:es for S(BIMF), = 2(L+R)) - Hy + Hy - R: (21)
lations
d with
S(BMO); = 2R(N + R,) - K. (22)

328 ALEXANDER BARKALOV, LARYSA TITARENKO, SLAWOMIR CHMIELEWSKI ET.Q.
Now we should analyze the following function:
S(BIMF), + S(BMO
S)2 +5()2 (23)

"~ S(BIMF), + S(BMO),

To reduce the number of variables in (23), we can use results from [16,17], where

parameters L, R, H, Hy, R; are expressed as the following functions:

L=(-p)-K/1,3;

R =[logpi - KT;
H=17,4+1,7p,-K;
Hy=4,4+1,1-p, -K;

Ry = [logy(2,75+0,34 - p, - K)].

In expressions (24)-(28), parameter K is equal to the number of vertices in
GSAT. Some results of our experiments are shown in Figure 7 — Figure 12.

f 0.64
e = 4
Zi o hﬂ,,,*r"’*—ﬂ"*——”;L
0.5 / / /
0.52 / './ /
N ayd
ol S

Ve

0.44

p1=05

0.42
100 200 300 400 500 600 700 800 900 1000 K

Fig. 7. Comparison of U, and U, (p;=0,5)

(24)

(25)

(26)

@7

(28)

initial

vol.

alwa
gnm
of K
oper

of ft

to 0]

alwa
gain
num

p1)
N in

ETOQ.

(23)

where

(24)

(25)

(26)

27

(28)

initial

Vol. 55 -2009 HARDWARE REDUCTION FOR MOORE FSM IMPLEMENTED WITH CPLD 329

06—

057 T———

0.54

051

V74
s

0.42 —
100 200 300 400 500 600 700 800 900 1000 K

N =50

Fig. 8. Comparison of U, and U, (N=50)

As it follows from Figure 7 and 8, application of the combined state assignment
always leads to decrease in hardware amount in comparison to the arbitrary state assi-
gnment (Uy). The gain is increased with decrease in the number of vertices (decrease
of K}, increase in the number of microoperations (increase of N) and in the number of
operational vertices (increase of py) in interpreted GSA T'. For example, if p; = 0.7,
N =50, K = 400, the hardware amount is decreased up to 44% in comparison with
Uy. Let us point out, that small values of k (k < 4) practically do not affect the value
of function f.

The matrix realization of Moore FSM Us is the same as shown in Figure 5. Due
to optimal state assignment, the following relations are true:

S(BIMF)3 = S(BIMF),; (29)

S(BMO); = S(BMO),. (30)
Now we should analyze the following function:

_ S(BIMF), + S(BMO),
- S(BIMF)s + S(BMO);

f (31)

It is clear from Figure 9 and Figure 10, that application of the proposed method
always gives less amount of hardware than the method of optimal state assignment. This
gain is increased with decrease of the number of vertices of GSA T and increase of the
number of operational vertices of graph-schemes of algorithm I" (increase of parameter
p1) (Figure 9). This gain is increased with increase of the number of microoperations
N in interpreted GSA T (Figure 10).

330 ALEXANDER BARKALOV, LARYSA TITARENKO, SEAWOMIR CHMIELEWSKI ETQ. Vol.

Z::z N= V W e
0.8 / /
‘0.8 / /
0.7 ‘N;g/ //
o werog
0.64 /
/ pi=05

06

100 200 300 400 500 600 700 800 900 1000 K |

Fig. 9. Comparison of U; and Uj (p,=0.,5)

f 0.96

B nd

=0 e,
. /7/ e
// p; =05
/S

0.76

N4
/
4

064

N =50
0.6 T T T T T T T
100 200 300 400 500 600 700 800 900 1000 K

Fig. 10. Comparison of U, and U; (N=50)

The matrix realization of Moore FSM U, is the same as it is shown in Figure 6,
but outputs r are absent. It leads to the following relations:

S(BIMF)s = S(BIMF)y; (32) ,
alwa)

=2.R.-N. gnme
S(BMO)4 =2 -R-N-k. (33) of K
in th

Now we should analyze the following function:

ETQ.

igure 6,

(32)

(33)

Vol. 55 - 2009 HARDWARE REDUCTION FOR MOORE FSM IMPLEMENTED WITH CPLD 331

_S(BIMF), + S(BMO),

f (34)

~ S(BIMF), + S(BMO),’

&
N=10 Py =05 |
0.57 -
100 200 300 400 500 600 700 800 900 1000 K
Fig. 11. Comparison of U, and U, (p,=0,5)
FOoS T

0.635 M e
063

0.625

0.62

0615 ———
0.61
0.605
P13
08]
W= 0.5
0.505 P
N=50
0.59 T T T T T T T T T
100 200 300 400 500 600 700 800 D00 1000 K

Fig. 12. Comparison of U, and U, (N=50)

As it follows from Figure 11 and 12, application of the combined state assignment
always leads to decrease in hardware amount in comparison with the refined state assi-
gnment (Uy). The gain is increased with decrease in the number of vertices (decrease
of K), decrease in the number of microoperations (decrease of N) and with increase
in the number of operational vertices (increase of py) in interpreted GSA T.

332 ALEXANDER BARKALOV, LARYSA TITARENKO, SEAWOMIR CHMIELEWSKI ETQ.

To check the correctness of these experiments, we developed some original software
tools oriented on industrial CPLD chips [4,5]. This software uses the standard package
Web Pack of Xilinx [S] and VHDL models of Moore FSM U, — U,. Some standard
benchmarks [19] were used to conduct our experiments. The experiments conducted
using this software confirm correctness of tendencies represented in Fig. 7 Fig. 12.
The only difference is a slightly less gain in comparison with theoretical experiments.
In all our experiments the gain was approximately 7% — 10% less than in cases of
theoretical experiments.

6. CONCLUSION

The proposed method of combined state assignment is oriented on decrease in
hardware amount for both blocks of input memory functions and microoperations of
Moore FSM. If necessary, the codes of some classes of pseudoequivalent states are
generated by the block of code transformer. In this case a PAL property such as a wide
fan-in is used to operate with two sources of class codes. Our experiments show that
proposed method always produces logic circuits with less amount of PAL macrocells
than any known methods for Moore FSM design, in particular the methods based on
refined and optimal state assignments.

Let us point out, that decrease of hardware amount is very often combined with
decrease in the number of layers of resulted combinational circuit. It results in decrease
of FSM cycle time and, therefore, increase of its performance as well as performance
of the whole digital system. As the code transformation is executed in the same time
when system data-path executes some operation, it does not lead to slowing down of
digital system with Moore FSM.

Our future research is connected with exploration of possibility for the application
of proposed method in the digital systems where a control unit is implemented using
technology of FPGA [3.,4].

7. REFERENCES

1. S. Baranov: Logic and System Design of Digital Systems. Tallinn: TUT Press, 2008.

A. Barkalov and M. Wegrzyn: Design of Control Units with Programmable Logic. Zielona
Goéra: University of Zielona Géra Press, 2006.

C. Maxfield: The Design Warrior’s Guide to FPGAs. Amsterdam: Elsevier, 2004.

7. Navab i Embedded Core Design with FPGAs. N.Y.: McGraw Hill, 2007.
http://www.altera.com

http://www.xilinx.com

D. Kania Logic Synthesis Oriented on Programmable Logic Devices of the PAL type. Gliwice:
Silesian Technical University, 2004, (in Polish).

G. De Micheli: Synthesis and Optimization of Digital Circuits. N.Y.: McGraw Hill, 1994.

S. Devadas, H-K. Ma, R. Newton, A, Sangiovanni-Vincentelli: State Assi-
gnment of Finite State Machines Targeting Multilevel Logic Implementations. IEEE Transactions on
Computer-Aided Design, 1988, vol. 7, pp. 1290-1300.

NowE e W

© %

AT LA D LA e e DA e

PR T o L N~ ™ B o T N |

— o P el

ETQ.

ftware
ackage
andard
ducted
ig. 12.
ments,
ises of

2ase in
ions of
tes are
a wide
w that
rocells
sed on

d with
ecrease
rmance
1€ time
own of

ication
d using

. Zielona

Gliwice:

)94,
ate Assi-
tions on

Vol. 55 -2009 HARDWARE REDUCTION FOR MOORE FSM IMPLEMENTED WITH CPLD 333

10.

T. Kam, T. Villa,R. Brayton, A. Sangiovanni-Vincentelli: Syathesis of Finite
State Machines: Functional Optimization. Boston/London/Dordrecht; Kluwer Academic Publishers,
1998.

. T. Villa, T Kam, R. Brayton, A, Sangiovanni-Vincentelli: Synthesis of Finite

State Machines: Logic Optimization. Boston/London/Dordrecht: Kluwer Academic Publishers, 1998.

. S. Chattopadhyay: Area Conscious State Assignment with Flip-Flop and Output Polarity

Selection for Finite State Machine Synthesis: A Genetic Algorithm Approach. The Computer Journal,
2005, vol. 48, no 4, pp. 443-450.

. Y. Xia and A. Almaini: Genetic algorithm based state assignment for power and area optimi-

zation. IEEP. — Comput. Dig. T., 2002, vol. 149, pp. 128-133.

- A. Barkalov: Principles of Optimization of logical circuit of Moore FSM. Cybernetics and system

analysis. 1998, no 1, pp. 65-72 (in Russian).

. V. Solovjev: Design of Digital Systems Using the Programmable Logic Integrated Circuits. Mo-

scow: Hotline — Telecom, 2001, (in Russian).

- A. Barkalov, L. Titarenko, S. Chmielewski: Reduction in the number of PAL ma-

crocells in the circuit of a Moore FSM. International Journal of Applied Mathematics and Computer
Science, 2007, vol. 17, no 4, pp. 565-675.

. A.Barkalov,L. Titarenko,S.Chmielewski: Optimization of Moore FSM on System-on-

-Chip. IEEE East-West Design & Test Symposium, Kharkov, 2007, pp. 105-109.

- A. Barkalov: Design of Mealy finite-state-machines with the transformation of objects codes.

International Journal of Applied Mathematics and Computer Science, 2005, vol. 15, no 1, pp. 151-158.
S. Yang: Logic Synthesis and Optimization Benchmarks User Guide. Microelectronics Center of
North Carolina, Research Triangle Park, North Carolina, 1991,

T
intro
mabl

enco
the d
[1, 6.
throu
that’s

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 335-354

Improvements to Symbolic Functional Decomposition
Algorithms for FSM Implementation in FPGA Devices

PIOTR SZOTKOWSKI, MARIUSZ RAWSKI

Institute of Telecommunications
Warsaw University of Technology, Poland
{p.szotkowski, rawski}@tele.pw.edu.pl

Received 2009.02.20
Authorized 2009.03.28

The method of symbolic functional decomposition for FSM implementation in FPGA
devices yields better results than the currently widespread, two-step approaches based on
state encoding and mapping of the resulting binary function. This paper presents the method
using an example FSM and briefly discusses the existing algorithms, along with results ob-
tained for benchmark FSMs. The paper also proposes a heuristic algorithm for input selection
as well as a new, clique-based algorithm for the construction of the crucial decomposition
blankets.

Keywords: finite state machine, FPGA, FSM, symbolic functional decomposition

1. INTRODUCTION

The method of symbolic functional decomposition of finite state machines, first
introduced in [5], is a novel approach to the implementation of FSMs in field program-
mable gate array (FPGA) devices. Contrary to the classic, two-step solutions based on
encoding the machine’s states and then mapping the resulting binary function into
the device’s LUT cells (ideally using the method of binary functional decomposition)
[1, 6, 8], the symbolic method maintains the multi-valued representation of the states
throughout the whole decomposition process and encodes the states partially, in a way
that’s optimal in the given mapping iteration.

336 P. SZOTKOWSKI, M. RAWSKI ETQ.

The implementations of this method presented in [10, 11, 12] yield better results
than the classic approaches. Unfortunately, while proving the high quality of the re-
sults obtained using this method, these soluions are not really viable for larger FSMs
without additional algorithms implementing heuristic input selection; the algorithms
constructing the crucial blankets used in the method can also be subtantially improved
upon.

Fig. 1. Symbolic Functional Decomposition with Blankets

After a brief introduction of the existing symbolic functional decomposition algo-
rithms, this paper proposes the algorithms for input selection heuristics and a new,
clique-based algorithm for blanket construction.

2. SYMBOLIC FUNCTIONAL DECOMPOSITION

2.1. DEFINITIONS

Symbolic functional decomposition of an FSM can be described similarly to serial
decomposition of a Boolean function defined using blanket algebra (see [1] and [6]
for details on these two concepts). Let X be the set of primary inputs, ¥ be the set of
primary outputs of a certain FSM specified by a state transition table. Let Q and Q' be
multi-valued variables representing present and next state of this FSM. Let U and V
be two subsets of X, such that U UV = X. Let Qy and Qy be multi-valued variables
encoding variable Q. Let By and By be blankets induced by the primary input subsets
V and U. Let B¢, and g, be blankets induced by the multi-valued variables Qy and
Qu. Let By and By be blankets induced by the primary output sets and by the next
state multi-valued variable Q’.

Vol. 55 -

Theorer
The .
if there

Br = Py
Fig.
abovems

The
machine
cells (be
the sum
number
implemc
into a bi
no more
requring
H FSM
encodin
directly
and/or /
decomp
and the

As't
ess, eve
represer
state val
G funct
the (par
same tis
decomp

As 1
positior
vices) a
out the
states, ¢

All
such as

ETQ.

>r results
f the re-
er FSMs
gorithms
improved

ion algo-
d a new,

/ to serial
] and [6]
the set of
ind Q' be
U and V
variables
1t subsets
s Qv and
- the next

Vol. 55 - 2009 IMPROVEMENTS TO SYMBOLIC FUNCTIONAL DECOMPOSITION ... 337

Theorem 1 Existence of the symbolic functional decomposition [7].
The FSM has a symbolic functional decomposition with respect to (U, Qu, Qv, V)
if there exists a blanket B such that By e Bo, < Bc and By e By, ® B < Br, where

Br =PBreBy.

Fig. ?? presents an outline of the symbolic functional decomposition with the
abovementioned blankets.

2.2. MAIN CONCEPTS BEHIND THE METHOD

The main idea behind the symbolic decomposition method is to take a finite state
machine which cannot be directly implemented in the target FPGA device’s LUT
cells (because after encoding the machine’s states with a minimal-length encoding
the sum of the encoding’s width and the number of binary inputs is greater than the
number of inputs of the device’s LUT cells — otherwise the FSM would be directly
implementable, requiring at most a trivial parallel decomposition) and decompose it
into a binary function G and a smaller finite state machine H. Ideally, the G function has
no more inputs than the widest LUT cells (and thus is directly implementable in them,
requring at most a trivial parallel decomposition); the same goal applies to the desired
H FSM ~ if the number of its inputs added to the number of bits in a minimal-length
encoding of its state variable is not greater than the width of the widest LUT cells, H is
directly implementable (again, requiring at most a trivial parallel decomposition). If G
and/or H does not fulfill these goals, the given block undergoes another iteration of the
decomposition process (the “classic”, binary serial decomposition for the G function
and the symbolic functional decomposition for the H finite state machine).

As the finite state machine undergoes the symbolic functional decomposition proc-
ess, every iteration partially encodes the initial FSM’s state variable: every iteration
represents the state variable using the Qy and Qy variables, of which Oy becomes the
state variable of the H state machine and Qy is binary encoded to create inputs to the
G function. This concept makes the whole iterative process of decomposition maintain
the (partial) symbolic representation of the initial FSM’s state variable, while at the
same time encoding it gradually in a way that is optimal for the given iteration of the
decomposition process.

2.3. ADVANTAGES OF THE METHOD

As mentioned in the introduction, the advantages of the symbolic functional decom-
position method (when applied to implementation of finite state machines in FGPA de-
vices) are the ability to retain symbolic representation of the machine’s states through-
out the multi-level decomposition process and the partial encoding of the machine’s
states, optimal for a given level of decomposition.

All of the currently widespread methods of implementing FSMs in FPGA devices,
such as the ones described in [2, 4, 13], are based on a two-step approach. First, the

338 P. SZOTKOWSKI, M. RAWSKI ETQ.

FSM'’s states are encoded (in various ways, depending on the method used) to binary
representation; next, the binary function (a result of replacing the states and next-states
with their encoded representations) is mapped to the FPGA device’s logic cells — with
the (classic, binary) functional decomposition regarded as the most effective method
implementing this mapping. '

The main disadvantage of the two-step approach comes from the multi-level nature
of the synthesis process. It’s very hard to project the impact of a given encoding on
more than the first level of decomposition; all of the approaches which encode the
states beforehand are based on some amount of guessing about what encoding strategy
would result in a good overall decomposition.

The symbolic functional decomposition method addresses this problem by skip-
ping the encoding step and maintaining the multi-value representation of the states,
effectively partially encoding the states on each step of the decomposition process in
a way that’s optimized for this particular iteration.

The other disdvantage of the current solutions is the choice of the number of
bits used to encode the FSM’s states. Contrary to naive assumptions, minimal-bit
approaches (such as simple sequential encoding of the states, an encoding based on
the Gray code or a random, minimal-lenght solution) do not neccessarily yield good
results. This observation led to creation of the one-hot encoding, which goes to the
other extreme and uses n bits to encode n states (with one of the bits set to 1 and all the
others set to 0). For some FSMs this approach yields better results than minimal-lenght
encodings, but in most cases the optimal encoding length lies somewhere between the
two extremes.

This characteristic of FSM implementation in FPGA devices is also addressed
by the symbolic functional decomposition method. In this method the states of the
machine are partially encoded on every step of the mapping process without assuming
any particular number of bits, so the final encoding lenght is not determined beforehand,
nor it is directly related to the number of states; instead, the encoding is adapted to
(and depends on) the needs of particular decomposition iterations encountered during
the mapping process, and so leads to better results than methods which must assume
a particular encoding length before the mapping process even begins.

2.4. EXAMPLE FINITE STATE MACHINE

Along with the description of each of the steps of an example graph-based al-
gorithm, an illustration based on an example finite state machine is presented. The
example FSM’s state transition table is given in Table 1.

The example finite state machine has ten states (init0, initl, init2, init4, Owait,
RMACK, WMACK, read0, readl and write0). The previous, two-step approaches of
implementing this state machine would either encode the states with the (seemingly)
minimal number of bits — four (the Jedi and Nova methods) — or would use ten bits,
one for each state (the one-hot method) [2, 4, 13].

Vol.

bols
stat

va
th

ETQ.

binary
t-states
— with
method

| nature
ling on
ode the
strategy

y Skip-
> states,
)Cess in

nber of
imal-bit
ased on
ld good
5 to the
1 all the
I-lenght
reen the

dressed
; of the
suming
rehand,
ipted to
| during
assume

1sed al-
ed. The

[Owait,
iches of
mingly)
ten bits,

Vol. 55 - 2009 IMPROVEMENTS TO SYMBOLIC FUNCTIONAL DECOMPOSITION . .. 339

The graph-based symbolic functional decomposition algorithm generates two sym-
bols for the By, blanket and four for the By, blanket, effectively encoding the machine’s
states on three bits (one for the Qy set and two for the Qy set).

Table |
State Transition Table of the Example FSM

AL X2 X3 Xg o o Yioy2
If- - 0 0 init0 initl 0 0
20 1 0 0 init1 init] 00
3- - 1 - initl init2 1 0
491 - 1 0 init2 init4 [0
50- 1 1 1 init4 init4 1 0
6]- - 0 1 init4 [Owait 0 1
710 0 0 - IOwait | IOwait 0 |
8|1 0 0 - IOwait init! 0 1
910 1 1 0 IOwait read0 0 0
0t 1 0 0 IOwait writeO 1 1
[P0 1 1 1 IOwait | RMACK | |
12/1 1 0 | IOwait |WMACK 0 0
13- 0 1t - IOwait init2 0 1
14/0 0 I 0 RMACK |RMACK 1 1
I5/0 1 1 1 RMACK/| readd 0 0
161 1 0 0 WMACK|WMACK 0 0
I7(1 0 0 1 WMACK| write0 0 1
1810 0 0 1 read0 readl 11
1910 0 I 0 readl IOwait 0 |

2000 1 0 O write0 [Owait 0 1

3. EXAMPLE ALGORITHM

3.1. DVERVIEW OF THE ALGORITHM

The algorithm operates on blankets induced by input, output and intermediate
variables (presented on Fig. 2?). Some of the blankets can be easily computed based on
the state machine’s definition and the choice of the U and V subsets (which are defined

340 P. SZOTKOWSKI, M. RAWSKI ETQ.

for a single run of the algorithm), the rest is constructed by creating incompatibilty
graphs, in which the vertices represent the blankets’ blocks, while the edges connect
the blocks that can’t (or shouldn’t) be merged.
The algorithm consists of four steps:
1. Computation of the blankets induced by the finite state machine (in particular, B¢
and Br) and the direct and indirect input variable subsets (8 and By).
2. Construction of By, , the blanket representing the direct subset of the state variable
encoding.

3. Construction of S, the blanket representing the separations provided by the G block.

4. Construction of B¢, , the blanket representing the indirect subset of the state variable
encoding.

In the final implementation, steps 2-4 are repeated so that different possible By, B
and Sy, blankets are constructed, while the whole algorithm is repeated for different
selections of the U and V sets. Then, the best (for the given target architecture) de-
composition is selected and the G and H tables are built; if the H table is too big to be
implemented in the target architecure directly, it undergoes the whole process again,
acting itself as the FSM to be decomposed.

3.2. BLANKETS INDUCED BY THE FINITE STATE MACHINEE
AND BY THE DIRECT AND INDIRECT VARIABLE INPUT SETS

First step of the algorithm consists of computing the blankets induced by the finite
state machine’s transition table. The B, and Br blankets, as well as the By and By
blankets (for defined U and V sets) are used further in the algorithm as the basis for
construction of the three blankets that define a particular decomposition — By, B¢ and
B Qv+

In this step, the algorithm computes the required blankets based on the blankets
induced by individual columns of the FSM’s transition table. In the case of the example
FSM and the chosen U = {xp,x4} and V = {x;,x3} sets, the following relations hold
true and allow the computation of the “base” blankets: Sy = By o8y, eB,,, Bu = By, ®fx,
and By = B,, @ B,,. Thus, the By, Br, Bu and By blankets equal

Bo = (1;2,3;4;5,6,7,8,9,10,11,12,13;14,15; 16,17; 18; 19; 20},

Br = {1,2,3;4,5,6,7,19,20;8;9,15;10; 11,14: 12,16; 13; 17; 18},

Bu = {1,2,3,4,9,10,16,20;1,3,4,7,8,13,14,19;3,5,6,11,12,15;3,6,7,8,13,17,18},
By = (12,6,7,18,20;1,6,8,10,12,16,17;3,4,5,13;3,5,9,11,13,14,15,19}.

Vol.

bei
IBQU
bla
the

Bo-

inp
fou
are
the
con
mo
thu

rep
pro
alre

ver

ap
be

COr

equ
nui
alg
this
anc
the
exa

pro

ETQ.

tibilty
onnect

ar, Bp
iriable

‘block.
ariable

0vs Ba
fferent

re) de-
7 10 be
again,

e finite
ind Sy
isis for
BG and

lankets
xample
s hold

3X2 .ﬁfﬂl

Vol. 55 - 2009 IMPROVEMENTS TO SYMBOLIC FUNCTIONAL DECOMPOSITION ... 341

3.3. BLANKET REPRESENTING THE DIRECT SUBSTET
OF THE STATE VARIABLE ENCODING

The first blanket that has to be constructed by the algorithm (as opposed to just
being computed from the state machine’s representation and the U and V sets) is
Bo,» the blanket representing the direct subset of the state variable encoding. This
blanket, being constructed by merging of the blocks of the Bo blanket, has to satisfy
the Bo < Bg, condition — it cannot provide any separations not already provided by
Bo-

The more “merged” this blanket is (i.e., the fewer blocks it has), the fewer binary
inputs will be required to implement it in the final decomposition (if it has ten blocks,
four binary inputs are required; if it’s merged down to eight blocks, three binary inputs
are enough). At the same time, all separations required by the F function (i.e., by
the Br blanket) and not provided by either 8y or Bo, have to be provided by B (the
condition of By e By, e B < Br has to be satisfied); the more Bo, is “merged”, the
more separations have to be provided by f;, the number of Bc’s blocks is larger, and,
thus, the G block requires more outputs in the final implementation.

To construct the By, blanket, an incompatibility graph is created with vertices
representing the Sy blocks and edges connecting these of the vertices/blocks which
provide separations required by the F function (except for the separations provided
already by the S, blanket). At the same time, the edges of this graph are weighted
with weights representing the number of separations lost when merging the related
vertices/blocks.

Given this approach, any disconnected pair of vertices can be merged at no cost
(merging them lessens the number of separations provided by the By, blanket, but the
lost separations are either not required by the F function or are already provided by the
Bu blanket); once the graph is complete the algorithm starts merging the vertices on
a lowest-weight-first basis. This approach leads to a significant reduction of the number
of blocks of the By, blanket, while still providing as many separations (required by
the F function) as possible.

For the example finite state machine from Table 1, the algorithm first tries to find
a pair of vertices that are not connected with an edge (so the represented blocks can
be merged “at no cost”); the 1 and 5_,6 blocks form such a pair. Once the graph is
complete, the algorithm finds a pair with the lowest edge weight and merges it.

The number of binary inputs required for implementation of any given blanket is
equal to the base-two logarithm from the number of states (rounded up); thus, the inital
number of binary inputs for encoding the ten-block Bo, blanket would be four. The
algorithm merges the blocks until the number of the binary inputs is smaller (so, in
this case, until there are at most eight blocks, and, thus, three binary inputs suffice)
and then tries to construct the corresponding B¢ and By, blankets. Once this is done,
the algorithm returns to this step and makes the Sy, blanket smaller again (in this
example, merges it down to four blocks), and repeats the B and By, creation. This
process is repeated until a set of possible decompositions is obtained.

342 P. SZOTKOWSKI, M. RAWSKI ETQ.

In the case of the example finite state machine and the selected U and V sets,
the best decomposition was obtained once the By, blanket was merged down to two
blocks, yielding a final B¢, blanket of

Uy iy

Bo, = 11,2,3,4,5,6,18;7,8,9,10,11,12,13,14,15,16,17,19,20}.

Fig. 2. The Initial Incompatibility Graph for the 8; Blanket

3.4, BLANKET REPRESENTING THE G BLOCK

Once the By, blanket is defined, the S; blanket can be constructed. This blan-
ket describes the output of the G block — it has to provide all of the separations
required by the B blanket except for the ones already provided by Sy and S, — the
Bu ® Bo, ®Bc < Pr condition has to be satisfied.

As the inputs to the G block consist of the Sy and By blankets (the latter possi-
bly merged down to form Sy, in the next step), to construct the B blanket a new
incompatibility graph is created. The vertices of this graph consist of the blocks of the
Bv e Bp blanket (the B¢ blanket has to fulfill the By e Sy < B¢ condition), while edges
connect these of the vertices/blocks which cannot be merged (because they provide
a separation required by the 8 blanket and not provided by either By or By,).

VYol.

the

phy:
fits
in {
vert
bloc
sorr

Bu

froi
1S S
no

pre

ETQ.

V' sets,
to two

s blan-
wrations
, — the

- possi-
A new
s of the
e edges
provide

Vol. 55 - 2009 IMPROVEMENTS TO SYMBOLIC FUNCTIONAL DECOMPOSITION . . 343

Once this graph is constructed, every disconnected pair of vertices can be merged,
the number of blocks of the B; blanket can be made smaller and thus the number of
physical binary outputs from the G block can be brought down to a number that better
fits the target architecture.

In the case of the example finite state machine and the Bo, blanket constructed
in the previous step, the initial graph for the Bc blanket is presented in Fig. 2. Its
vertices represent the blocks of the Sy e Bo blanket, while edges connect these of the
blocks/vertices which have to be separated (if the Br blanket requires a separation of
some of the vectors from these blocks, and that separation is not provided by either

Bu or Bo,,).

4,6,9,11, 13

14,15, 16, 17 3,8,10, 12

1,2,5,7,18, 19, 20

Fig. 3. The Resulting Incompatibility Graph for the 8; Blanket

Again, the number of blocks of this graph governs the number of binary outputs
from the G block, and again the algorithm merges them until the number of the outputs
is smaller than with the initial graph (or the graph becomes complete, as in this case
no more blocks can be merged).

In the case of the example FSM, the graph is merged down to the four-vertex graph
presented in Fig. 3. Thus, the resulting B blanket is equal

&1 & & &4

Be = {1,2,5,7,18,19,20;3,8,10,12;4,6,9,11,13;14,]5,16,17}.

344 P. SZOTKOWSKI, M. RAWSKI ETQ.

1.5. BLANKET REPRESENTING THE INDIRECT SUBSET
OF THE STATE VARIABLE ENCODING

Once the Bg, and B blankets are constructed, the final step of the algorithm
constructs the Bg, blanket. This blanket has to provide the B blanket with all the
separations it requires and which are not provided by the By blanket (i.e., it has to
fulfill the By ® By, < B¢ condition).

This blanket is constructed from the blocks of the Bp blanket (to satisfy the
Bo < Bo, condition) and, again, the idea is to merge it down so it provides all the
separations that are required by B¢ (and are not provided by fBy), while having as few
blocks as possible.

7,8,9, 10,11, 12, 13 16,17

2,3 14, 15

Fig. 4. The Initial Incompatibility Graph for the B, Blanket

To construct this blanket, again an incompatibility graph is created. The vertices
of this graph represent the blocks of the Bg blanket, while the edges connect these
of the vertices/blocks which have to be separated to provide the B¢ blanket with the
required separations (which are not already provided by the By blanket). Once this
blanket is constructed, the vertices that are not connected with an edge can be freely
merged together (much in the same way the vertices of the B¢ blanket were merged

Vol. 55

in the
the ﬁ G

In
graph
blanke
edges

A
numb
graph
equals

defin
of th
prese
one ¢
will |
is no
and 1

ETQ.

rithm
11 the
1as to

y the
11 the
s few

>rtices
these
th the
e this
freely
erged

Vol. 55 — 2009 IMPROVEMENTS TO SYMBOLIC FUNCTIONAL DECOMPOSITION 345

in the previous step); thus, this blanket is being merged down to lessen the number of
the Bg, blocks — which also lowers the number of binary inputs to the G block.

In the case of the example FSM and the B blanket computed above, the inital
graph for the S, blanket is presented in Fig. 4. Much like with the graph for the Bo,
blanket, the vertices of this graph represent the blocks of the By blanket, while the
edges connect these of the blocks/vertices that have to be kept separated.

Again, this graph is merged down until it’s implementable with the minimum
number of binary inputs; in the case of the example graph from Fig. 4, the resulting

graph has four vertices and is presented in Fig. 5. Thus, the resulting Sy, blanket
equals

5,6,19

14,15, 16,17

4,7,8,9,10, 11,12, 13

1,2,3,18,20

Fig. 5. The Resulting Incompatibility Graph for the 8,, Blanket

vy vy V3 V4
Bo, = {1,2,3,18,20;4,7,8,9,10,11,12,13;5,6,19;14,]5,16,17}.

3.6. THE FINAL DECOMPOSITION

Once the By, Bc and By, blankets are constructed, the final decomposition is
defined and the tables representing the G and H blocks can be constructed. In the case
of the example finite state machine from Table 1, the final encoding of the states is
presented in Table 2. As can be seen, the inital ten states are encoded to two variables,
one of which has two values, while the other has four; this means that the final encoding
will have three bits per state. The encoding of different states to the same set of values
is not an error — in the case of the example finite state machine, the states of init0, init]
and read0 can be merged together and treated as one without any loss in functionality.

346 P. SZOTKOWSKI, M. RAWSKI ET.Q.

In the case of the example finite state machine and the encoding from Table 2, the
final tables for the G and H blocks are presented in Table 3. The G block can be directly
implemented in a four-input, two-output LUT cell and the H block can be (parallelly)
implemented in five five-input, one-output LUT cells; if the target architecture does not
have five-input cells, further symbolic functional decomposition of the FSM represented
by the H block is required.

Table 2

State Encoding Table

Q Qu Ov
IOwait | uy v,
RMACK | uy vy
WMACK | 4y vy

init0 U v
initl U Vi
init2 U vy

init4 Uy V3
read(Uy v
readl U 3

write0 | up vy

4. BLANKET CONSTRUCTION ALGORITHMS

4.1. BLANKETS INDUCED BY THE FSM

The initial blankets, induced by the finite state machine, can be easily computed
based on the FSM’s state transition table. The 3, blanket, induced by the state varia-
ble, represents the separations provided by the unencoded states of the FSM. The Sr
blanket, induced by the machine’s binary output and the next-state variable, defines the
separations that must be provided to successfully implement the finite state machine.

The By and By blankets depend on the selection of inputs for the U (free) and V
(bound) subsets of the FSM’s binary inputs. These of the separations required by the 8r
blanket which are provied by the 8y blanket do not have to be provided by either 8,
or B (the By e B, © B < Br requirement of the symbolic functional decomposition
theorem above); likewise, these of the separations required by the S blanket which
are provided by the By blanket do not have to be provided by the Sy, blanket (the

By @ By, < B requirement).

Vol.

pro

ETQ Vol. 55 — 2009 IMPROVEMENTS TO SYMBOLIC FUNCTIONAL DECOMPOSITION ... 347
2. the 4.2. CONSTRUCTED BLANKETS
irectly
Tlelly) Detailed algorithms for the construction of the Boys Bc and By, blankets were
y proposed in [10, 11, 12].
)ES not :
sented Table 3
Final Decomposition of the FSM from Table 1
Table 2 (a) the H Block, (b) the G Block
(2) (b)
X2 x4 G Qul|Qy Oy »i »n Xx3 Qv|G
|- 0 81 U U\ Vi 0 0 0 0 Vi [&
2(1 0 g wulu vi 00 0 0 wv|g
3/ - - & w |y v 10 0 0 vi|g
4|1 - 0 & U Uy V3 I 0 0 0 Va | 81
SIL L g w|uw v 1 0 01 v |g&
6l - 1 g w|m v, 0 1 0 1 w|gs
710 - & Uy Hy Vo 0 1 0 1 Vi 1 &
810 - & wm u v, 0 1 O 1 wigm
911 0 8 iy Uy Vi 0 0 1 0 Vi 1 &1
10/1 0 & wmiw v 1 1 I 0 w &
L 1 g ulu ve 11 I 0 v g
12/1 1 & wiuw v 0 0 I 0 ve gy
1310 - 8 Uz i 1%) 0 1 1 1 Vi | &
1410 0 g w [up vy 1 1 | R
1501 1 g w|uw v, 0 0 11 wvlg
1611 0 g w|w vi 0 0 | gle
nput.ed 170 1T g wluw v, 0 1
- varia-
Fhe ﬁF 1810 1 81 Uy Uy v3 1 1
nes the 1990 0 g w|wu v, 0 1
chine. 2000 0 g | v O 1
and V
the Br
er Bo,
osition
which
et (the

348 P. SZOTKOWSKI, M. RAWSKI ETQ

Table 4

Experimental Results for an Architecture with 5/1 LCs

FSM |art décomp Secode Gray Jedi bin
bbara 10 12 1 15 15
bbtas 5 5 5 5 5
beecnt 8 6 8 9 10
dk15 7 7 7 77
dk17 6 6 6 6 6
dk27 5 5 5 5 5
lion 3 3 3 3 3
$8 1 1 6 5 5
> 45 45 51 55 56

The construction of the Sy, blanket, which de facto introduces a partial encoding
of the state variable, is crucial for the whole decomposition process. If the blanket has
too many blocks, the resulting A function will represent an FSM with many states,
hard to implement in the subsequent decomposition iteration; at the same time, if By,
does not introduce enough separations required by Br (and not provided by Sy), the
missing separations will have to be provided by the S5 blanket, which will have too
many blocks to be efficiently implemented in the target FPGA architecture.

[10] presents an algorithm for By, construction based on the concept of r-admis-
sibility, which represents the lower bound of the number of binary inputs required
by the subsequently-constructed S blanket. This implementation is quite fast, but the
algorithm is not simple and the resulting S; blanket more often than not crosses the
lower r bound. [11] proposes a simple graph based algorithm for By, construction
based on merging of the By blocks represented as vertices in an incompatibility graph;
this solution gives better results and is simpler, but at the same time is slower than the
r-admissibility one.

As for the S and By, construction, [10] proposes a simple and fast uniform method,
based on coloring of incompatibility graphs corresponding to the requirements for both
of these blankets. [11] proposes another method, based on vertex merging of these
graphs, the same it uses for 5, construction.

The most sophisticated method for S and By, construction is proposed in [12].
This method builds both blankets concurrently, using an innovative bipainting algorithm
which partially side-steps the dependencies between S and B¢, creation.

Vol.

thal
mo
ben
in |
13]

two
also
met|

tion

desc
is a
than
mor
cons
the :

ETQ.

Table 4

ncoding
nket has
y states,
, if IBQU
Bu), the
ave too

-admis-
required
but the
sses the
truction
y graph;
than the

method,
for both
of these

in [12].
gorithm

Vol. 55 - 2009 IMPROVEMENTS TO SYMBOLIC FUNCTIONAL DECOMPOSITION . .. 349

5. EXPERIMENTAL RESULTS

The experimental results obtained with a prototypical program art décomp confirm
that the symbolic functional decomposition method yields better results than the com-
mon two-step approach. Tables 4 and 5 present a comparison of results for standard
benchmark finite state machines obtained using the state assignment method described
in [3] and [9] (the Secode column) and different encoding methods proposed in [2, 4,
13].

Table 5

Experimental Results for an Architecture with 5/1 and 4/2 LCs

FSM | art décomp Secode Jedi Nova -i Nova -io one-hot
bbara 9 7 11 13 14 15
bbtas 4 4 5 3 4 6
beecnt 7 6 9 8 9 12
dki5 7 12 11 i3 13 17
dk17 6 10 11 9 (1 17
dk27 3 3 3 4 3 6
lion 2 2 2 3 2 3
s8 i I I ! ! 9
> 39 45 53 54 57 85

The tables contain the number of LUT cells used to implement the given FSM in
two different FPGA devices; one with only five-input, one-output cells, the other having
also four-input, two-ouput cells. As can be seen, the symbolic functional decomposition
method and the algorithms proposed in this paper yield the best overall results.

6. PROBLEMS WITH THE EXISITING ALGORITHMS

There are two main problems with the existing algorithms: the lack of input selec-
tion heuristic and the problem of independent blanket construction.

The first problem is the exhausitve nature of the general algorithm. The approach
described above assumes all of the possible U and V set combinations are tested; this
is a feasible solution for small FSMs (and proves that the method yields better results
than others), but the process of symbolic decomposition of larger FSMs takes much
more time than the classic, two-step solutions. The computational complexity of blanket
construction grows with the number of states (the actual growth factor depending on
the algorithm); at the same time, the number of possible U and V set combiantions

350 P. SZOTKOWSKI, M. RAWSKI ETQ.

grows with the factorial of the number of inputs (as well as the factorial of the FPGA
architecture’s inputs), which makes the algorithms unsuitable for medium and large
FSMs.

The second problem is that the construction possibilities (especially regarding the
number of required pins) of the Sy, blanket depend heavily on the construction of the
B blanket, which, in turn, depends heavily on the construction of the B¢, blanket. The
Bo, /B dependency is (at least to some extent) addressed by the bipainting algorithm
mentioned above; still, the possibilities of the construction of both blankets depend
heavily on ¢, and 8o, is not being constructed in a way that would optimize S and

ﬁQv'

The following sections of this paper address these two problems.

7. INPUT SELECTION HEURISTICS

As mentioned in the previous section, the current algorithms simply run the de-
composition process on all possible combinations of the U and V sets. The number of
these combinations grows with the factorial of the number of binary FSM inputs (as
well as with the factorial of the width of the FPGA architecture); thus, a heuristic for
input selection is needed to consider the method feasible for larger FSMs.

7.1. BLANKET SEPARATIONS

Both algorithms described below depend on the common idiom of separations —
on one hand, required by the 8y blanket; on the other, provided by the input blankets.

The B blanket can be interpreted as a requirement for the existence of certain
separations between the FSM'’s transition table’s rows. For example, 8r = {1,2; 3; 4,5}
requires the separation of 1 from both 4 and 5, but does not require the 4|5 separation.

At the same time, the input blankets can be interpreted as providing certain sepa-
rations. If B, = {1,2; 3,4,5} and B, = {1,2,3,4; 5}, then B,, provides both 1|4 and 1[5
separations (and does not provide the unnecessary 4|5 separation), while ,, provides
the 4|5 separation, but does not separate 1 from 4.

In general, the above Sy requires the following eight separations: 1{3, 114, 115, 2|3,
2|4, 2|5, 3|14 and 3|5. By, provides six of them (1|3, 114, 115, 2|3, 2|4 and 2|5), while ,,
only two (1|5 and 3|5); the other two separations provided by S, — 2|5 and 4|5 — are
not required by Sr. Thus, all of By, s separations (and only half 8,,’s) are substantial.

Clearly, in this simple example, x| is a better choice for the U set (as this means
Bo, and B will only have to provide 3|4 and 3|5). On the other hand, if U = {x,}, then
Bo, and B will have to provide the six separations required by S5 and not provided
by Bx,; what’s more, U = {x, xo} wouldn’t be much better than U = {x,}, because £,
already provides half of ,,’s substantial separations.

Vol. !

requ
inpu
that
the .

V s¢
com
usef

be 1
pro

a st

eler
ther
by .
of ¢

gen
it v
sep

pro

firs
of 1
tha

inp

ETO.

FPGA
large

1g the
of the
t. The
rithm
epend
;G and

he de-
ber of
its (as
tic for

ions —
inkets.
certain
3; 4,5)
ration.
| sepa-
nd 1|5
ovides

5, 213,
ile 5,
y — are
fantial.
means
1, then
ovided
use Sy,

Vol. 55 - 2009 IMPROVEMENTS TO SYMBOLIC FUNCTIONAL DECOMPOSITION ... 351

7.2. SIMPLE ALGORITHM

The simple algorithm for heuristic input selection first computes the separations
required by Br and then computes the ones provided by each of the inputs. Next, every
input is assigned the number of substantial separations (i.e., the number of separations
that are also required by Br). Once these values are computed for each of the inputs,
the general usefulness of every input can be estimated.

Thanks to the above metric, instead of testing every possible combination of U and
V sets, the general decomposition algorithm can now start testing the most promising
combinations first by putting the “most useful” inputs in the U set and the “least
useful” (hopefully also “most compressible™) inputs in the V set.

With this metric, the x; input (with By, providing six substantial separations) would
be roughly three times more useful when put in the U set than the x, input (with B,
providing only two substantial separations).

7.3. ADVANCED ALGORITHM

A more through (at the cost of higher computational complexity) algorithm can go
a step further when creating the input metric.

As shown above, x; is roughly three times more useful than x, when being the sole
element of the U set — but if x; is already chosen to be a part of U, then adding x,
there brings only a single additional substantial separation, as 15 is already provided
by x;. Thus, a better metric for the inputs would be one that computes the usefulness
of a given input based on the ones already selected for the U set.

This metric can be computed in two ways. An iterative way would first compute the
general metric for all of the inputs and select the best one of them into the U/ set; next,
it would re-compute the metric for the rest of the inputs, disregarding the substantial
separations already provided by the U set.

Another approach would be to compute all of the substantial separations provided
by the input blankets, and then try to select a group of inputs which, as a whole,
provides the largest number of substantial separations.

7.4. REVERSE APPROACHES

Note that both algorithms can be reversed, and the least useful inputs can be chosen
first for the V set. This could be a better solution for cases when the number of inputs
of the target FPGA architecture (which bounds the size of the V set) is much smaller
than the number of inputs of the FSM.

For the advanced algorithm, this approach would additionally simply remove any
inputs that do not provide unique substantial separations.

352 P. SZOTKOWSKI, M. RAWSKI ETQ.

7.5. SIMILARITY METRIC

Another metric that should yield a good input selection heuristic would be one
based on the similarity between sets of substantial separations provided by inputs.

If two inputs provide similar sets of substantial separations, then at least one of the
inputs might be a good candidate for the V set. If the number of substantial separations
is small, then neither input is very useful and both should go into the V' set; if the
number of substantial separations is significant, it should suffice if only one of the
inputs is an element of the U set — the other input, being similar, doesn’t provide many
additional significant separations.

8. LOOK-AHEAD BLANKET CONSTRUCTION

The other problem with the existing algorithms is the fact that the Sg, blanket
construction algorithms are based solely on the separations required by the B blanket
(and not provided by the By blanket), and does not take into account the impact a given
Bo, blanket’s final form has on the subsequent construction of the B¢ and o, blankets.
(A similar dependency between the S and B¢, blanket construction is at least partially
addressed by the bipainter algorithm proposed in [12].)

In most situations there are several forms of the By, blanket providing a given set
of substantial separations and implementable on a given number of binary pins, but
yielding very different optimization possibilities for the B¢ (and, subsequently, 8o,)
blanket optimization. The current algorithms take the first generated Bg, blanket, and
discard the whole decomposition if its counterpart B¢ and g, blankets do not yield
a sensible result.

This problem can be addressed by a new algorithm for the Bg, blanket, one which
takes into account fp,,’s impact on the construction possibilities of the S blanket (the
same algorithm could be also used to construct the S blanket in a way that optimises
Bo, construction).

8.1. CLIQUE-BASED BLANKET CONSTRUCTION

The general idea behind the By, B¢ and Bp, construction is to create blankets that
provide as many substantial separations as required (or possible), while at the same
time being implementable on as few binary pins as possible. The latter basically means
keeping the number of blocks smaller or equal to a power of two, as the number of
binary pins required to implement a blanket equals base-two lograrithm of the number
of its blocks (rounded up).

After examining the incompatibility graphs used for S and By, construction, it
can be seen that the the number of blocks in these blankets cannot be smaller than the
clique number of the graphs: only disjoint vertices can be merged (or colored with the

Vol. 5

same
grapl
B
creat
the s
yield
grapl
numl
Be 11
blocl
curre
1
and
subst
a sin
incor
splitt
prov:
COrre
blocl
is ec
sepal
be s
the 1

tione
curre
FPG
mak
cons
of S

'

the i
mini
tatio
metl

ETQ.

be one
uts.

> of the
irations
. if the
of the
e many

blanket
blanket
a given
lankets.
artially

iven set
ins, but
lya ﬁQv)
et, and
ot yield

> which
ket (the
timises

ets that
e same
/ means
mber of
numbet

ction, it
han the
with the

Vol. 55 - 2009 IMPROVEMENTS TO SYMBOLIC FUNCTIONAL DECOMPOSITION . .. 353

same color) to form a single block, so all of the vertices of the largest clique in the
graph have to belong to separate blocks in the generated blanket.

Because every block merge of the initial 8, blanket (during the Sy, construction)
creates additional edges in the fB;’s incompatibility graph, two Bp, merges yielding
the same substantial separations outcome (and, of course, the same block count) can
yield two very different clique outcomes for the B incompatibility graph. If the Bo,
graph was constructed not only based on the substantial separations it provides and the
number of its blocks, but also based on the size of the largest clique in the subsequent
Bc incompatibility graph, a given decomposition could be implementable on fever
blocks; in some situations, a sensible decomposition could be obtained where the
current algorithms do not yield one.

The By, construction algorithms proposed previously start with 8, equal to Bo
and iteratively merge By’s blocks to produce smaller blankets while losing as few
substantial separations as possible. Contrarily, the clique-based algorithm starts with
a single-block (i.e., fully merged) Bo, blanket, which corresponds to the densest Ba
incompatibility graph. The algorithm then iteratively introduces new separations by
splitting the blanket’s blocks (initially, the single block) in a way that both makes it
provide the most substantial separations and makes it cut the largest cliques in the
corresponding S icompatibility graph; this reduces the lower bound for the number of
blocks in the final version of B;. As the number of binary pins required by a blanket
is equals the rounded-up, base-two logarithm of the number of its blocks, the new
separations can be introduces in increasing quantities: first the initial single block can
be split into two, but then another two blocks can be introduced in one iteration, and
the next one can introduce further four blocks.

9. CONCLUSIONS

The results obtained with the existing algorithms implementing the symbolic func-
tional decomposition method prove that the method yields better results than the
currently widespread, two-step approaches to finite state machine implementations in
FPGA devices. Unfortunately, these algorithms lack any input selection heuristic, which
makes them unsuitable for use with larger FSMs. At the same time, the By, blanket
construction algorithms do not yield blankets optimised for the subsequent construction
of B and B, , which is supposed to further improve the results.

This paper addressed both of these issues by describing various algorithms for
the input selection heuristic, as well as an algorithm for By, construction targeted at
minimising the clique number of the B blanket’s incompatibility graph. The implemen-
tation of these algorithms should enable the application of the symbolic decomposition
method to arbitrarily-sized finite state machines and yield even better results.

354 P. SZOTKOWSKI, M. RAWSKI ETQ.

10. ACKNOWLEDGEMENTS

This paper was supported by the Ministry of Science and Higher Education of

Poland — research grant no. N N517 030735 for 2008-2009.

11. REFERENCES

J.LA. Brzozowski, T. L uba: Decomposition of boolean functions specified by cubes. Journal
of Multiple-Valued Logic and Soft Computing, 9:277-417, 2003.

. G. de Micheli, R. K. Brayton, A. Sangiovanni-Vincentelli: Optimal state

assignment for finite state machines. IEEE Trans. on CAD, pp. 269-284.

CL.J6zwiak A. Stusarczyk: A new state assignment method targeting FPGA implementations.

Proc. EUROMICRO Symposium on Digital System Design DSD 2000, pp. 50-59.

. B. Lin, A. R. Newton: Synthesis of multiple level logic from symbolic high-level description

languages. Proc. of IFIP Int. Conf. on VLSI, pp. 187-196.

. M. Rawski: The novel approach to FSM synthesis targeted FPGA architectures. Proceedings of

IFAC Workshop on Programmable Devices and Systems PDS 2004, pp. 169-174, 2004.

. M. Rawski,L. J6Zwiak, T. L uba: Functional decomposition with an efficient input support

selection for sub-functions based on information relationship measures. Journal of Systems Architec-
ture, (47):137-155, 2001.

.M. Rawski,H Selvaraj, T. L uba, P. Szotkowski: Multilevel synthesis of finite sta-

te machines based on symbolic functional decomposition. International Journal of Computational
Intelligence and Applications, 6(2):257-271, 2007.

. C. Scholl: Functional Decomposition with Application to FPGA Synthesis. Kluwer Academic

Publishers, 2001.

. A. Slusarcz y ki Decomposition and Encoding of Finite State Machines for FPGA Implementa-

tion. Technische Universiteit Eindhoven, 2004.

. P. Szotkowski, M. Rawski: Symbolic functional decomposition algorithm for FSM imple-

mentation. Proceedings of the International Conference on Computer as a Tool EUROCON 2007,
pp. 484-488, 2007.

. P.Szotkowski, M. Rawski: A graph-based symbolic functional decomposition algorithm for

FSM implementation. To be published in proceedings of the Conference on Human System Interaction
HST 2008, 2008.

. P.Szotkowski, M. Rawski, H Selvaraj: A graph-based approach to symbolic functional

decomposition of finite state machines. To be published in proceedings of the International Conference
on Systems Engineering ICSEng 2008, 2008.

. T. Villa,A. Sangiovanni-Vincentelli: Nova: state assignment of finite state machines

SJor optimal two-level logic implementation. IEEE Trans. on CAD, pp. 905-924.

I
dida
They
as ir
[11]
arith
cent

grant

ETQ.

ion of

Journal
al state
tations.
cription
lings of

support
rchitec-

iite sta-
tational

cademic
ementa-

[imple-
N 2007,

ithm for
eraction

nctional
ference

achines

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 355-361

New Trinomials X"+ X + 1 and X" + X2 + |
Irreducible over GF(2)*

PIOTR BARTOSIK, ANDRZE) PASZKIEWICZ

pbartos@elka.tele.pw.edu.pl
anpa@tele.pw.edu.pl
Institute of Telecommunications, Warsaw University of Technology

Received 2009.01.05
Authorized 2009.03.30

We extend the limit of investigations for trinomials irreducible over GF(2), having the
form X" + g(X), where deg(g(X)) = 1 or deg(g(X)) = 2 and complete the existing list of
irreducible trinomials with that form by a dozen of new elements. We checked all degrees
n below 500000 while searching for that polynomials. A large part of computations were
performed by a new programming package developed especially for computations in finite
fields with characteristic two. This package is a bit more than twice faster than Shoup’s NTL
package for trinomials and about six times faster than NTL in the case of pentanomials. We
also complete the list of Mersenne irreducible polynomials for which a trinomial does not
exist by pentanomials and irreducible polynomials which are lexicographicaly youngest.

Keywords: Finite fields, binary fields, sparse irreducible polynomials over finite fields, primi-
tive polynomials, irreducible trinomials

1. INTRODUCTION

Irreducible trinomials with coefficients over small number fields are perfect can-
didates for effective implementations of algorithms using the finite field arithmetic.
They are in particular willingly applied in fast algorithms of coding [2], [3] as well
as in modern ciphers for example in ciphers based on elliptic curves geometry [7],
[11], [14]. Also classical stream ciphers [6] have in natural way as their base the
arithmetic of irreducible polynomials over the simplest two element field GF(2). Re-
cent applications in cryptography forces applying of large finite fields GF(2") with n

* This paper was supported by the Ministry of Science and Higher Education of Poland - research
grant no. N517 003 32/0583 for 2007-2010

356 PIOTR BARTOSIK, ANDRZEJ PASZKIEWICZ ETQ.

being about ten thousand or higher, because of which many authors presented tables
containing irreducible trinomials. Blake, Gao and Lambert [4] explored the existence
of irreducible trinomials up to degree 5000. Seroussi [11] extended the computation
of irreducible trinomials up to degree 10000. The second author generated for each n
below 10000 an irreducible trinomial and pentanomial [8]. Recently the computations
were extended up to degrees n not exceeding 30000 [9].

For security reasons in applications which are close to cryptography the degrees n
of irreducible trinomials are chosen as a prime number. If n is the index of Mersenne
prime number then each irreducible polynomial of degree n is also primitive. This is
a good reason to search for irreducible Mersenne polynomials, especially with only
few nonzero coeflicients. Unfortunately in general case for about one half degrees n
an irreducible trinomial does not exist. The second best way in that case is to choose
irreducible pentanomials that is polynomials with exactly five nonzero coefficients. As
it has been pointed out by the second author [10], the irreducible pentanomials always
exist (at least for degrees n not exceeding 30000) and the number of such polynomials
of degree n seem to be a quadratic function of n. Taking this in mind we were looking
for irreducible pentanomials in such cases, as well as irreducible polynomials for which
the power of the second monomial with nonzero coefficient is as small as possible.
Such polynomials are called lexicographicaly youngest.

Irreducible over GF(2) trinomials of the form X" + X + 1 were investigated by
N. Zierler [13]. He generated a table containing all 33 values of n < 30000 for which
such a trinomials exist. H. Fredricksen R. Wisniewski [5] listed the 19 values of n,
for which the trinomial X" + X? + 1 is irreducible over GF(2). The main result of that
work is the following fact.

COROLLARY. Let X" + X* + 1 be irreducible over GF(2) withn=3orn=5.If e is
the smallest positive integer for which X + X2 + 1 divides the binomial X¢ + 1 (e is
called a period of the trinomial X”+X2+1 and 2"~ 1 is divisible by e) then X" +X?* +1
is irreducible for all numbers r having all of its prime factors divisors of the period
and none of its prime factors divisors of the index of the trinomial X" + X2+ 1, where
by index we mean the number (2" — 1) / e.

22 o

Other words if n =3 orn=5,2" -1 =e-q{'q5"...q;", where e is period of the
trinomial X" +X2?+1 and ged(e,q) = 1, (i = 1,2,..., 5) then X" + X% + 1 is irreducible
for all integers r = q‘f‘ quq[f for nonnegative integers 8; (i = 1.2,..., s).

Our main goal was to extend existing tables of irreducible over GF(2) polynomials
of the form X”+X +1 and X"+ X?+1 taking the advantage of new computer technology
and new package, developed for fast arithmetic in finite fields by the first author. The
ideas underlying the construction and some applications of that package were earlier
described in our joint paper [1].

Vol. .

mil:
irres

ETQ.

d tables
xistence
putation
each n
utations

grees n
[ersenne
This is
ith only
grees n
 choose
ents. As
s always
nomials
looking
r which
ossible.

ated by
r which
es of n,
t of that

5. If e is
-1 (e is
X 41
> period
|, where

d of the
>ducible

nomials
hnology
1or. The
e earlier

Vol. 55 -2009 NEW TRINOMIALS X¥ + X + 1 AND X" + X2+ IRREDUCTION OVER GF(2) 357

2. METHOD OF APPROACH AND RESULTS

Trinomials X" + X + 1 and X" + X? + 1 can be effectively sieved by applying the

following deep result due to Swan [12]. It has to be pointed out that the result of Swan
was stated earlier by Stickelberger.

THEOREM. (Stickelberger-Swan) Let 0 < k < n. The trinomial X” + X* + | has an
even number of factors over GF(2) in each of the following cases

a. n is even and k is odd, n # 2k and (nk/2) =0 or 1 (mod 4);

b. nis odd, k is even, k t 2n and n = +3 (mod 8), or

¢. nis odd, k is even k[2n and n = =1 (mod 8).

Simple conclusions which can be deduced from the Stickelberger-Swan theorem
are as follows:

e For n divisible by 8 a trinomial irreducible over GF (2) does not exist;
e There are no irreducible trinomials X" + X + 1 for n = 2 {mod 8);

o X"+XF+ 1 with n= 23 (mod 8) and k even can be irreducible only for k2n. If k
is odd we use n — k instead of k;

¢ For na prime number, n = 13 (mod 24) or n = 19 (mod 24) there are no irreducible
trinomials of degree n.

By detailed study the discriminant of other polynomials types one can derive si-

milar to the above Stickelberger-Swan criterions describing parity of the number of
irreducible factors.

Table 1
Integers n <500000 such that the trinomial X* + X + I is irreducible over GF(2)

3 4 6 7
5 22 28 30
46 60 63 127 153
172 303 471 532 865
900 1366 2380 3310 4495
6321 7447 10198 11425 21846
24369 27286 28713 32767 34353
46383 53484 62481 83406 87382
103468 198958 248833

358 PIOTR BARTOSIK, ANDRZEJ PASZKIEWICZ ETQ.

Table 2

Integers n <500000 such that the trinomial X"X? + 1 is irreducible over GF(2)

5 1 21 29 35
93 123 333 845 4125

10437 10469 14211 20307 34115

47283 50621 57341 70331 80141

Detailed analysis of tables 1 and 2 show us that the rate of both types of trinomials
still decreases. In our previous paper [1] where we analyzed irreducible over GF(2)
polynomials f (X) = X" + g (X), such that degree of g (X) is as small as possible
positive integer. These polynomials were called lexicographicaly young and the degree
of polynomial g (X) we called internal degree. For increasing values of n the probability
that one can find irreducible polynomial of degree n and small internal degree is a
monotone falling function. The situation can be illustrated by the following Figure 1.

One can suppose that for a given integer m the probability that there exist an
irreducible polynomial with degree n and internal degree m asymptotically tends to
zero as n tends to infinity. It is also visible that the number of irreducible over GF(2)
polynomials with a given lowest internal degree and degrees n in for consecutive
disjoint intervals of degrees has an escaping maximum. For example in the interval
[1,10000] the maximum is for internal degree equal to 12 (see curve S1), in the interval
[10001,20000] the maximum is for 13 (curve S2), and in the interval [20001,30000]
(curve S3) the maximum is located at the point 14. The general situation is illustrated
by the curve S4 which is related to the whole interval [1,30000].

NUMBER OF Soiot
POLYNOMIALS ene
Serie2
Seriel
MSeried

INTERNAL DEGREE 16 17

Fig. 1. The number of irreducible over GF(2) polynomials with a given lowest internal degree and
degrees n in the interval [1, 30000]. The curve S1 illustrates the interval [1,10000], the curve S2 —
interval [10001,20000], the curve S3 — interval [20001,30000], the curve S4 — the interval [1,30000]

Vol.

irreq
for ¢
gen:
prin
deg!

ETO. Vol. 55 -2009 NEW TRINOMIALS X" + X + | AND XV + X*+ IRREDUCTION OVER GF(2) 359
Table 2 As it has been remarked at the beginning there is a special interest to consider
irreducible trinomials of degrees being exponents of Mersenne prime numbers. Not
for every Mersenne prime exponent n an irreducible trinomial exist. For that reason we
generated for all exponents n up to 216091 for which Mersenne number M,=2"-1is
prime, one irreducible pentanomial and one irreducible polynomial with lowest internal
degree. The results are illustrated in the Table 3.
Table 3
Searching results of different types irreducible Mersenne polynomials
omials Degree n Trinomials Pentanomial Young
GF(2) 2 ! - 1,0
ossible 3 | n 10
degree 5 2 32,10 2,0
yability 7 1;3 3,2,1,0 1,0
ee 1S a 13 - 4,3,1,0 4,3,1,0
ure 1. 17 3:5:6 3,2,1,0 3,0
Xist an 19 - 5,2,1,0 52,1,0
nds to 31 3;6;7;13 3,2,1,0 3,0
GF(2) 61 - 52,10 52,1,0
ecutive 89 38 6,5,3,0 6,5,3,0
nterval 107 - 9,7,4,0 7.5,3,2,1,0
nterval 127 1,7,15;30;63 7,3,1,0 1,0
30000] 521 32;48;158;168 9,7,2,0 9,6,5,3,1,0
strated 607 105;147,273 12,9,7,0 9,7,6,3,1,0
1279 216,418 16,8,3,0 11,9,8,5,3,2,1,0
2203 - 14,6,5,0 11,10,6,4,1,0
— 2281 715;915;1029 20,18,4,0 9,8,7,6,2,0
3217 67,576 21,9,7,0 11,10,9,8,6,5,4,3,2,0
4253 - 21,12,11,0 12,10,7,5,4,0
4423 271,369;370;649,1393;1419;2098 24,5,2,0 14,12,10,9,6,5,1,0
9689 84;471;1836;2444;4178 21,19,16,0 13,11,10,8,3,2,1,0
9941 - 29,12,10,0 9,6,5,4,1,0
: 11213 - 19,11,10,0 10,9,7,5,4,2,1,0
; 19937 881;7083;9842 29,27,21,0 13,8,7,5,2,0
L 21701 - 33,26,2,0 14,12,10,9,6,0
] 23209 1530;6619;9739 55,49,48,0 13,12,9,8,7,6,2,0
44497 8575;21034 28,20,9,0 15,12,10,9,7,5,3,2,1,0
86243 - 54,39,9.0 16,14,13,12,10,9,7,4,1,0
110503 25230;53719 40,12,4,0 18,13,11,10,7,6,2,0
132049 7000;33912;41469;52549;54454 43,36,14,0 15,14,10,9,8,7,3,2,1,0
B 216091 - 36,28,22,0 14,13,12,11,6,4,1,0
e and
S2 —
0000}

360 PIOTR BARTOSIK, ANDRZEJ PASZKIEWICZ ETQ.

The time devoted for finding the following irreducible polynomial with nine nonzero
coeflicients

Fiiosos(X) = X11003 4 x18 4 x84 x4 x10 4 X7+ X0+ X2+ 1

which is lexicographicaly youngest took about 8 hours on a home computer of the first
author.

3. SOME CONCLUSIONS

Irreducible over GF(2) trinomials play important role in coding theory, cryptogra-
phy, telecommunications, informatics and several other areas. Therefore investigating
these irreducible polynomials is interesting. We extended existing tables of the simplest
trinomials of the form X" + X + 1 and X" + X? + 1, finding twelve new (See Tables 1
and 2. The new elements are written in bold letters). All degrees n up to 500000 were
tested with the aim to find new trinomials with internal degree equal to 1 or 2. The
distribution of that polynomials does not show any peculiarities distinguishing them
from standard behavior of irreducible polynomials which are lexicographicaly young
(see Figure 1). Existing of an irreducible over GF(2) polynomial with small internal
degree and very large degree is rather rare phenomena.

There is also interesting to study irreducible Mersenne polynomials. If M, = 2" -1
is prime for some n, then every irreducible over GF(2) polynomial of degree n is also
primitive. The last feature gives great advantages in representing elements of finite
fields as powers of the simplest nontrivial element of a Galois Field. Table 3 collects
primitive polynomials of Mersenne degrees — trinomials (if exist), pentanomials and
polynomials lexicographicaly young.

The investigations can be easily extended, say to degrees 1000000 by distributed
computing methods.

4. REFERENCES

1. PBartosik, A. Paszkiewicz A study on irreducible polynomials of high degrees over GF(2),
tools and results, Telecommunication Review, Telecommunication News, 12(2008), pp. 1059-1065,
(in polish).

2. E.R. Berlekamp: Algebraic coding theory, McGraw-Hill, New York, 1968.

3. R. Blahut: Theory and Practice of Error Control Codes, Addison-Wesley Publishing Company,
Reading, Massachusetts, Repr. with Correction 1984.

4, LF Blake, S. Gao, R.J. Lambert: Construction and Distribution Problems for Irreducible
Trinomials over Finite Fields; in D. Gollman (ed.) Applications of Finite Fields, Clarendon Press,
Oxford (1996) pp. 19-32.

5. H. Fredricksen andR. Wisniewski: Ontrinomials x* + x* + 1 and x3*! +x* +1 Irreducible
over GF(2), Inform. and Control 30, 58-63 (1981).

6. S. W. G olomb: Shift Register Sequences, Holden Day, San Francisco, 1967, Reprinted by Aegean
Park.

Vol. !

9.

10.

L1

12.
13.
14.

[S S N« T N o o T S N T e

ETQ.

onzero

he first

ptogra-
igating
implest
ables 1
0 were
2. The
g them
young
nternal

- 2" 1
is also
f finite
collects
als and

ributed

r GF(2),
59-1065,
“ompany,

reducible
on Press,

reducible

y Aegean

Vol. 55 -2009 NEW TRINOMIALS X" + X + 1 AND XV + X%+ IRREDUCTION OVER GF(2) 361

7.

8.

12.
13.
14.

A J. Menezes et al.: Handbook of Applied Cryptography, CRC Press, Boca Raton, New York
1997.

A. Paszkiewicz Some observations concerning irreducible trinomials and pentanomials over
Z,, Tatra Mountains Publications 32 (2005), pp. 129-142,

A. Paszkiewicz On some properties of irreducible trinomials over small number fields, (a
paper being recently in press).

A. Paszkiewicuz Irreducible pentanomials and their applications to effective implementations
of arithmetic in binary fields, (this issue).

. G. Seroussi: Table of Low-Weight Binary Irreducible Polynomials. Hewlett-Packard, HPL,

pp. 98-135, August 1998.

R. G. S wan: Factorization of polynomials over finie fields, Pacific J. Math. 12, 1099-1106.
N. Zierler: On x" + x + | over GF(2), Inform. and Control 16, 502+505 (1970).

NIST. FIPS 186-2 draft, Digital Signature Standard (DSS), 2000;

Ir

and 1
been

of Pol

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 363-375

Irreducible Pentanomials and their Applications to Effective
Implementations of Arithmetic in Binary Fields”

ANDRZEJ PASZKIEWICZ

Institute of Telecommunications, Warsaw University of Technology
anpa@tele.pw.edu.p!

Received 2009.01.07
Authorized 2009.03.26

There are only few main classes of irreducible polynomials which are used for designing
arithmetic in Galois Fields with characteristic two. These are: irreducible trinomials, penta-
nomials, all-one polynomials (AOP) and equally spaced irreducible polynomials (ESP). The
most critical and time consuming arithmetical operations in Galois Fields are multiplication
and modular reduction. A special structure of the modular polynomial defining the arith-
metic allows significant speedup of these operations. The best class of binary irreducible
polynomials are trinomials, but for about one half of degrees below 30000 an irreducible
trinomial does not exist. By exhaustive computation we established that for all degrees n
between 4 and 30000 an irreducible pentanomial always exists. Therefore using irreducible
pentanomials for defining the arithmetic of Galois Fields have practical interest. In the
paper we investigate a function describing the number of binary irreducible pentanomials
of a given degree n greater than 3 and study its propertics. We also analyze the complexity
of a circuit (the number of XOR and AND gates) implementing multiplication in the finite
field represented by general irreducible pentanomials.

Keywords: Finite fields, binary fields, sparse irreducible polynomials over finite fields, primi-
tive polynomials, irreducible trinomials and pentanomials

1. INTRODUCTION

Trinomials and pentanomials over finite fields are polynomials with exactly three
and respectively five nonzero terms. Their computational advantages have frequently
been pointed out by several authors [31, [6], [7], [10]. Primitive and irreducible poly-

* The computational part of his paper was supported by the Ministry of Science and Higer Education
of Poland - research grant no. N517 003 32/0583 for 2007-2010

364 ANDRZEJ PASZKIEWICZ ETQ.

nomials which are sparse (polynomials with only few nonzero terms) play important
role in coding theory [1], [2] and cryptography [6], [8], [10], and in particular in
elliptic curve cryptography. The application in cryptography should by secure and
because of it, large finite fields are preferred. It is especially important in the case
of binary fields GF(2"), for which fast and efficient algorithms of evaluating discrete
logarithms were designed [5] and implemented [4], [9]. The reasonable solution in
the case of fields GF(2") relays on constructing very large finite fields with 2'%0%
elements or higher. It is a common practice to choose an irreducible trinomial for
representing finite field, providing that one exists. The reduction operation can be very
effective speeded up in these cases. If an irreducible trinomial of a given degree n
does not exist, then the next best polynomials are pentanomials. It has to be pointed
out that trinomials and pentanomials are recommended by IEEE(2000) — the Standard
Specification for Public-Key Cryptography (Technical Report IEEE Std. 1363-2000,
Institute of Electrical and Electronics Engineers, Inc., 3 Park Avenue, New York, NY
10016-5997 USA).

Important operations in finite fields are addition, multiplication, division and com-
puting multiplicative inverse. The first operation is very simple and can be implemented
by using of a simple XOR circuit. Multiplication is the most important and complicated
one. Other operations such as exponentiation, division and multiplicative inverse can be
performed by computing multiplication iteratively. It is evident that efficient multiplier
architectures are especially crucial for the speed of operations and lots of architectures
for implementing a multiplier have been proposed in the literature [8].

Several authors presented tables containing irreducible trinomials or pentanomials
useful to implement arithmetic in binary fields [3], [6], [7], [10]. Blake, Gao and
Lambert [3] explored the existence of irreducible trinomials up to degree 5000. Sero-
ussi extended the computation of irreducible trinomials up to degree 10000. Important
remark is that below 10000 there exist 5148 (a bit higher than one half) numbers for
which an irreducible trinomial exist. For those degrees not exceeding 10000 for which
we do not have an irreducible trinomial there always exist an irreducible pentano-
mial. Paszkiewicz [7] generated for each n below 10000 an irreducible trinomial and
pentanomial. Also all irreducible trinomials up to degree 4000 have been generated.
In the same paper the functions 5(n) and T's(n) were investigated where #5(n) denote
the number of irreducible pentanomials of degree n, while T's(n) is the number of all
irreducible pentanomials of degree not exceeding n.

Recently Paszkiewicz' extended the computations reported in [7] and [10] of all
irreducible trinomials up to degree n not exceeding 30000. The numerical experiments
revealed some computational errors in the paper [3] which remained unnoticed in
the later paper [10]. It has also been generated for each n belonging to the
interval [10000, 30000] one irreducible randomly chosen pentanomial. There exist

" A. Paszkiewicz, On some properties of irreducible trinomials over small number fields, (a paper
being recently in press).

Al
pol
of

is

In
obt

ETQ.

ortant
lar in
e and
> case
screte
ion in
10000
al for
e very
oTee N
ointed
indard
-2000,
k, NY

| com-
1ented
icated
can be
tiplier
ctures

omials
0 and
Sero-
ortant
rs for
which
ntano-
al and
rated,
lenote
of all

of all
ments
ced in
o the
> exist

a paper

Vol. 55 - 2009 IRREDUCIBLE PENTANOMIALS AND THEIR APPLICATIONS... 365

5123 irreducible trinomials of degree in the interval [10001,20000] and the same
number of irreducible trinomials of degree in the interval [20001,30000]

Most of the architectures introduced so far in the literature are benefited from using
special irreducible polynomials which greatly reduces the complexity of the multi-
plication. The most important typés are irreducible trinomials, pentanomials, all-one

polynomials (AOP) and equally spaced polynomials (ESP). We define the four classes
below.

Trinomial: f(X) = X"+ X" + 1;
Pentanomial: f(X) = X" + X" + X* + X' + 1
AOP: f(X)=X"+X" 4 X" 24 4+ X +1:
ESP: f(X) = X" + X%-Dd | x2d | xd 1.

It is evident that AOP are a special case of ESP — polynomials. The problem with
these polynomials is that they are not available for many degrees n. For example there
are only 67 values of n below 1000 for which an irreducible AOP of degree n exists.
By more advanced theory one can prove, that for large real number x, the number of
all values of n not exceeding x for which an irreducible AOP of degree n exists is not

greater than A—Hx— where A is called Artin’s constant and is approximately equal to
X
0,3739558136... .

As we mentioned before irreducible trinomials and pentanomials are most popular
in several applications. It is not an accident that from the five polynomials suggested
by NIST for Elliptic Curve Digital Signature Algorithm [11] two are trinomials and the

other three are pentanomials. Therefore the study of arithmetic based on pentanomials
are of practical interest.

2. MODULAR MULTIPLICATION BASED ON PENTANOMIALS

Let f(X) = X" +X"+ X"+ X' +1 be a general irreducible pentanomial and
A(X), B(X) are two elements of the field GF(2"). They can be represented as two
polynomials of degree at most n-1 with binary coeflicients. A classical multiplication
of two polynomials over a field with two elements consists of 2 steps. The first of them
is an “ordinary” multiplication. We obtain a polynomial C(X), of degree at most 2x-2
where C(X) = A(X) - B(X) and

n—1 n—1 2n-2 m
CO =D aX) Xt = 3 Ol ajb, pxr. ()
J=0 k=0 m=0 ;=0

In the second step we reduce the polynomial C(X) by the basis polynomial £(X) to
obtain a polynomial D(X), where

D(X) = C(X)(mod f (X)).)

366 ANDRZE] PASZKIEWICZ E.TQ.

This step is totally dependent on the choice of the modular polynomial F(x). By above
notations the equality (2) leads to the following equations:

X X X" O<i<n-—m)y;
Xi + Xi+l + Xi~n+m + Xian-}—m%—l + Xi—n+m+k + Xi—n+2m’ (Fl —m<i< l’l‘“k);
n+i__ i i+l i—n+k i—~ptk+1 i—n+2k i—n+m i—n+m+l En+2m
XM= X'+ X"+ X + X + X + X + X +X ,
n—k<i<n-I)
Xi + Xi—n+l + Xi«n+2[+ Xi~n+k + Xi—n+2k + Xi—rH—m + Xi—n+2m,(” —l<i< n__z)
3)
One can prove that the total number AND and XOR gates in a circuit performing
the modular multiplication via the above scheme (3) are as follows:
P

AND GATES = n?,
XOR GATES = (n — 1)%,

while the

Total Delay = Tayp + ceil(log,n) - Txor,

where ceil(x) in the above formula is defined as the smallest integer greater than or
equal to x.

The fundamental and crucial problem of the existence of at least one irreducible
pentanomial of a given degree n greater than 3 over the field with two elements still
remain unsolved. Trying to answer to that question we performed a vast computation
for searching at least one irreducible pentanomial of degree n over GF(2) up to large
degrees.

3. EXHAUSTIVE SEARCH FOR BINARY IRREDUCIBLE PENTANOMIALS

Denote by f5(n) the number of irreducible pentanomials of a given degree n over
GF(2). Let Ts(n) by the number of all irreducible binary pentanomials with degrees
not exceeding #.

Ts(n) =) t5(k) @
k=4

Nowadays it is not known if the function #s(n) has positive values for all integers n
greater than 3. A spare contribution to resolve that question are computations performed
by the author. For every n < 800 we determined the value of #5(n) and for all other
800 < < 30000 we found exactly one irreducible pentanomial. The initial part of this
job was performed in my earlier paper [7] where we established that #5(n) has positive
values for n < 10000. All earlier and recent computations were performed in a small

Vol.

loc:
Mic
we

of ¢

and
prin
his
and

we
the

belc
Fig.

ETOQ.

above

n—-2).
3)

rming

han or

lucible
ts still
itation
> large

ALS

n over
egrees

(4)

>gers 7l
ormed
| other
of this
ositive
 small

Vol. 55 - 2009 IRREDUCIBLE PENTANOMIALS AND THEIR APPLICATIONS... 367

local computer network consisting of about 10 Pentium PC computers working on
Microsoft Windows operation system. During recent as well as earlier computations
we used the following simple and well known algorithm for verifying the irreducibility
of a given binary polynomial f(x) of degree n.

Algorithm for testing irreducibility
of the polynomial f(X) over GF(2)

AX) « X
for j « 1 to n do
{
AX) « A(X)* mod f(X)
it GCD(AX) + X, f(X)) = 1
then return “reducible’”’
}
if A(X) = X then return “irreducible”
elsereturn “reducible”

Additionally we determined the value of the #5(n) for some isolated values n=1279
and n=2203, which as it easily can be seen are indices of two consecutive Mersenne
prime numbers. The value #5(n) for n=2203 has been found by P. Bartosik while testing
his package for effective operations on binary polynomials. We have #5(1279)=1411790
and #5(2203)=2027566 for these values of 7.

4. COMPUTATIONAL RESULTS

We present results of all computations in short, compact form. On Figures 1-17
we illustrate the behavior of the function f5(n), while the Fig. 18 shows the graph of
the function T'5(n).

It is interesting to remark that the general graph of the function f5(n) (see Fig. 1
below) is a superposition of several independent graphs. The graph on the bottom of
Fig. 1 corresponds to all arguments n divisible by 8.

368

ANDRZE] PASZKIEWICZ

ETQ.

t5(n)

700000 5
600000 i
500000
400000
300000
200000
100000

0

T T

0 100 200 300 400 500 600 700 800

n

Fig. 1. Graph of the function f5(n)

Degrees of the form 8k

180000
150000
120000
90000
60000 P

30000 ot

0 sasat
0 100 200 300 400 500 600 700 800
n

Fig. 2. Graph of the function #s(n), n = 8k

Degrees of the form 8k+1

600000
400000

"

200000

o™

0 100 200 300 400 500 600 700 800
n

0

Fig. 3. Graph of the function #s(n), n = 8k + 1

Vol.

ETQ.

Vol. 55 - 2009

IRREDUCIBLE PENTANOMIALS AND THEIR APPLICATIONS...

369

Degrees of the form 8k+2

400000

300000

200000 A

100000 | .‘;rl’
0

0 100 200 300 400 500 600 700 800
L n

Fig. 4. Graph of the function t5(n), n = 8k + 2

—
Degrees of the form 8k+3
300000
200000
100000 A "> g i
o s
0 100 200 300 400 500 600 700 800
n

Fig. 5. Graph of the function t5(n), n = 8k + 3

Degrees of the form 8k+4

800000

600000 - W

400000 -

200000 -

el
O T T
0 100 200 300 400 500 600 700 800

n

Fig. 6. Graph of the function #5(n), n = 8k + 4

370

ANDRZE} PASZKIEWICZ

ETQ.

Degrees of the form 8k+5

300000 : 'gy
200000 W’é
100000 -~

0 WMMMM

0 100 200 300 400 500 600 700 800

n

Fig. 7. Graph of the function ts(n), n = 8k + 5

Degrees of the form 8k+6

400000
300000 -

200000
100000

0 ;
0 100 200 300 400 500 800 700 800

n

Fig. 8. Graph of the function 5(n), n = 8k + 6

Degrees of the form 8k+7

600000

400000

200000 -
st
0

0 100 200 300 400 500 600 700 800

n

Fig. 9. Graph of the function #s(n), n = 8k +7

Vol

ETQ Vol. 55 - 2009 IRREDUCIBLE PENTANOMIALS AND THEIR APPLICATIONS... 371

t5(n)in"2

0.6
0,5 -
0,4 -
e e N A S
0,2 1
0,1 4
0,0 i

0 100 200 300 400 500 600 700 800

n

Fig. 10. Graph of the function t5(n)/n°, n = 8k

t5(n)/n*2
1.6
1,2
0,8 - A stueiignasndaiafangstofstdiess
0,4 4
0,0
0 100 200 300 400 500 800 700 800
n

Fig. 11. Graph of the function t5(n)/n°, n = 8k + 1

T t5(n)/in 2

1,0
0,8
0,6 1
0,4 -
0,2 -
0,0

0 100 200 300 400 500 600 700 800

n

Fig. 12. Graph of the function #s(mn?, n = 8k + 2

372

ANDRZEJ] PASZKIEWICZ

ETQ.

t5(n}in"2

1.0

0.8

0,6

ali

s
o

Botert Il rediolitititnsnd

04 155

0,2

0,0

0 100 200 300 400 500 600 700 800

n

Fig. 13. Graph of the function ts(n)/n*, n = 8k + 3

t5(n)/in"2

1.6

1.2

038 W A

0,4 I

0,0

0 100 200 300 400 500 600 700 800

n

Fig. 14. Graph of the function ts(n)/n*, n = 8k + 4

t5(n)/n"2
1,0
0,8
0,6
0.4 fmwmmm
0,2 %
0,0
0 100 200 300 400 500 600 700 800
n

Fig. 15. Graph of the function f5(n)/n*, n = 8k + 5

Vol.

ETQ.

Vol. 55 - 2009

IRREDUCIBLE PENTANOMIALS AND THEIR APPLICATIONS...

373

t5(n)in*2

1.0 [!
08—t g |

GessE=sc

| | ;

0,2 3
0 100 200 300 400 500 600 700 800

0,0
T |

Fig. 16. Graph of the function t5(n)/in?, n = 8k + 6

[_'*‘*Mﬁ“ t5(n)inA2

1,6
1,2 ‘L—R |
0.8

0,4 1
0,0

i

0 100 200 300 400 500 600 700 800

n

1

Fig. 17. Graph of the function r5(n)/n?, n = 8k + 7

] T5(n)in"3 1
| —
0 200 400 600 800
n

Fig. 18. Graph of the function Ts(n)/n°,

374

ANDRZE] PASZKIEWICZ ETQ.

5. CONCLUSIONS

Irreducible pentanomials over GF(2) play important role in developing circuits for

effective implementations of binary arithmetic. We established by computations the
following facts:

1.

For all 4 < n < 30000 there exist at least one irreducible pentanomial of degree n
over GF(2); '

Graph of the function f5(n) defining the number irreducible pentanomials of degree
n over GF(2) (see Fig. 1-17) splits into several independent sub-graphs;

The function #5(n) is a quadratic function of the variable n depending on the rest
class modulo §;

The function Ts(n) defining the number of all irreducible pentanomials of degree
not exceeding n over GF(2) is similar to the cubic function of n;

For the values 1279, congruent to 7 modulo 8 and 2203, congruent to 3 modulo
8 we have £5(1279)/1279% = 0,86303 and 15(2203)/2203 = 0,41777 respectively.
This remains with excellent agreement with results of our computations for small
arguments of the function f5(n) (see Figure 17 and Figure 13 for comparison).

6. ACKNOWLEDGEMENTS

The author is very grateful to Piotr Bartosik for computing the value of #5(2203)

within the scope of a students project. Thanks are also due to Mrs. Danuta Ojrzefiska
Woijter for free access to the Divisions Laboratory during weekends.

7. REFERENCES

. E.R. Berlekamp: Algebraic coding theory, McGraw-Hill, New York, 1968.

R. Blahut: Theory and Practice of Error Control Codes, Addison-Wesley Publishing Company,
Reading, Massachusetts, Repr. with Correction 1984.

I.F. Blake,S. Gao, R.J. Lambert: Construction and Distribution Problems for Irreducible
Trinomials over Finite Fields; in D. Gollman (ed.) Applications of Finite Fields, Clarendon Press,
Oxford (1996) pp. 19-32.

. M. Borowski: Application of the Rivest-Chor Cipher for Securing Information in Special Tele-

communication Networks, PhD Thesis, MUT, Warszawa 1993 (in polish).
D. Coppersmith: Fast Evaluation of Logarithms in Fields of Characteristic Two, IEEE Trans.
Inform. Theory, vol. IT-30, pp. 587-594, 1984.

. A.J. Menezes et al.. Handbook of Applied Cryptography, CRC Press, Boca Raton, New York

1997.
A. Paszkiewicz Some observations concerning irreducible trinomials and pentanomials over
Z;, Tatra Mountains Publications 32 (2005), pp. 129-142.

. F. Rodriguez-Henriques, C. K. Koc: Parallel Multipliers Based on Special Irreducible

Polynomials, ITEEE Trans. On Computer, 52(12), Dec. 2003, pp. 1535-1542.
M. Sadowski: Analysis and Implementation of the Coppersmith’s Algorithm for Finding Discrete
Logarithms in GF(2"), Master Thesis, WUT, Warszawa, 2006 (in polish).

ETQ,

its for
1S the

Tee n
legree
e rest
egree

odulo
tively,
small

2203)
enska

npany,

lucible
Press,

[Tele-
Trans.
v York
s over
lucible

iscrete

Vol. 55 - 2009 IRREDUCIBLE PENTANOMIALS AND THEIR APPLICATIONS... 375

10. G. Seroussi: Table of Low-Weight Binary Irreducible Polynomials. Hewlett-Packard, HPL,
pp. 98-135, August 1998,

H1. NIST. FIPS 186-2 draft, Digital Signarure Standard (DSS), 2000;

resu
that
of th
radic
spec
sche

arc

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2009, 55, no 2, pp. 377-387

Optimal Transmission Time of Secondary User in an Overlay
Cognitive Radio System

BABAK ABBASI BASTAMI, EBRAHIM SABERINIA

Department of Electrical and Computer Engineering
University of Nevada, Las Vegas, NV 89154 USA
abbasiba@unlv.nevada.eduy
Ebrahim.Saberinia@univ.edu

Received 2009.02.20
Authorized 2009.03.286

Optimal Opportunistic channel access of the unlicensed users has been a major problem
in a cognitive radio system. In this paper, we consider an overlay cognitive radio system,
where the secondary user senses the channel for an empty slot and transmits a constant power
for a time period without sensing the channel again. We obtain the optimal transmission
time of the secondary user to achieve the maximum data rate while keeping the interference
on the primary user under a given threshold. We derive closed-form expressions for the
interference at the primary receiver and the achievable data rate for the secondary user.
Our analysis is based on a Markov model for the primary user active and idle times and
we consider the probability of error in sensing by the secondary user. Computer simulation
results of the system show the validity of our analysis.

Keywords: cognitive radio, overlay system, interference analysis, imperfect sensing

1. INTRODUCTION

Current scheme of allocating radio frequency bands for different wireless services
resulted in an inefficient system. Recent measurements in the United States have shown
that 70% of the allocated spectrum is not fully utilized [1]. To improve the utilization
of the radio spectrum, a different allocation scheme has been proposed using cognitive
radio systems [1]. In such a system, cognitive or secondary users share the licensed
spectrum: opportunistically with the primary users that hold the license. While this
scheme has the capability to increase the overall utilization of the spectrum, there
are several challenges that should be answered before it can be implemented. The

378 BABAK ABBASI BASTAMI, EBRAHIM SABERINIA ETQ.

main B. A. BASTAMI, E. SABERINIA E.T.Q. challenge is to control the amount of
interference on the primary user (PU) caused by the secondary user (SU). Generally,
two main approaches have been proposed to control the interference on the PU. In
the spectrum overlay scenario, the SU access the spectrum whenever it senses that
the PU is idle. The PU can transmit at any time and the cognitive user should have
the ability to monitor the channel status and decide whether to transmit or not. On
the other hand, in the spectrum underlay technique, the secondary user can transmit
at any time, but the power spectral density (PSD) of the transmitted signal should
be low enough, preferably at noise level, for small interference on the PU. However,
even in the overlay scheme, channel sensing is used to increase the capacity of the
SU. Using channel information, a power control scheme can be designed for the SU
such that it maximizes its transmission capacity while keeping the interference on
the PU below a threshold [2]. On the other hand, a perfect overlay system can have
zero interference. This requires the SU to have the capability to detect the channel
status without any error. Furthermore, it should have the ability to detect immediately
a PU transition from idle to active and suspend its own transmission. Designing such a
system is very complicated. In practical scenarios, we have to consider some possibility
of sensing errors for the SU. Furthermore, we can assume that the SU transmits its
signal for a limited period of time without sensing once it detects a free channel [3].
This means that there will be some interference on the PU. In this paper, we study
this interference and design a system that maximizes the secondary user’fs capacity
while keeping the interference below a threshold. We consider an overlay cognitive
radio system where the SU may have error in sensing the channel. Also we assume
that the SU does not perform any sensing when it is in transmission mode. We derive
closed-form expressions for the interference on the PU and the achievable data rate of
the SU. Our main objective is to maximize the data rate of the secondary receiver under
the primary user interference limit constraint and derive the optimal secondary user
busy time duration in terms of the primary user timing parameters and probabilities
of imperfect sensing. We assume that the primary user active and idle mode durations
obey an exponential distribution like Markovian models.

Some recent studies consider similar problems in overlay cognitive radio systems. In
[5], the interference and capacity of the SU are analyzed assuming errorless sensing by
the SU. The idle and the active durations of the PU have been modeled as exponential
random variables. Extension of [5] to a general distribution for the idle and busy times
of the PU is presented in [3]. In this paper, we analyze the interference on the primary
user and the capacity of the secondary user considering the possibility of error in
sensing. In [4], an analysis has been done for the outage capacity of the secondary
user taking into account the possibility of sensing errors. However, the work in [4]
does not cover the amount of interference on the PU.

The paper is organized as follows: in section 2, we introduce the system model.
The formulas for the interference on the PU and the achievable data rate of the SU
are obtained in section 3. We also discuss the optimization problem in this section.

Vo

In
an

ar
as

€ex
TI

is
th
ar
th
th

tw
ar
se

~N =

de
18
ra
ar
1C
th
th
th

ETQ,

unt of
erally,
PU. In
s that
1 have
ot. On
ANSIMit
should
wever,
of the
he SU
ce on
1 have
1annel
liately
such a
ibility
its its
el [3].
study
pacity
nitive
ssume
derive
ate of
under
v user
ilities
ations

ms. In
ng by
ential
times
imary
o1 in
ndary
in [4]

1odel.
e SU
ction.

Vol. 55 ~ 2009 OPTIMAL TRANSMISSION TIME OF SECONDARY USER IN AN OVERLAY... 379

In section 4, we provide the simulation results and compare them with the derived
analytical results. Section 5 concludes the paper.

2. SYSTEM MODEL

We consider a wireless communication system where the primary users can be
inactive for some portion of the time. The busy and idle periods of the primary channel
are modeled with two random variables 7, and t, respectively. The idle period, 7y, is
assumed to have exponential distribution. The length of the transmitted packet of the
PU is usually considered as a random variable with a long tail distribution. Hence,
exponential distribution would be a good choice for the busy period, 7,, as well [3].
Therefore, the distribution function for the r; and 7, f(r), i =1, 2, can be written as:

S(T) = A exp(—A;1), (1)

where, 41 = l and Ay = —l-— and Topr and Toy are respectively the average PU
.~ Torr Ton
idle and active durations.

The secondary user successively senses the channel until it detects that the channel
is in idle mode. Then, it transmits a packet for duration of 7. We assume that during
this transmission time the SU cannot sense the channel. To be more general in our
analysis, we do not assume perfect sensing. The probability of incorrect sensing by
the SU when the PU is idle is assumed to be Py, (probability of false alarm) and
the probability of the incorrect sensing when the PU is busy is assumed to be P,
(probability of miss detection). Let’s denote the sensing duration of the SU with 7.
We assume that the value of 7 is small compared to Topp, Ton and T.

The value of the transmission time, 7, is a system design parameter. It affects
two important system performance parameters. The first performance parameter is the
amount of interference on the PU from the SU. Since the SU does not perform any
sensing during its transmission period, it is probable that the PU starts transmitting
within the transmission time of the SU. Apparently the larger the transmission time
T, the higher is the probability of the interference. The second performance parameter
which is affected by 7 is the bit rate of the SU. The longer the SU transmits once it
detects an idle channel, the higher its achievable data rate is. In this paper, our goal
is to find the optimal transmission time 7, in the sense that it provides the highest bit
rate for the SU while keeping the interference on the PU below some threshold. Our
analysis of the system is based on the alignment of the time line of the SU compared
to the time line of the primary user. Figures 1(a) and 1(b) show typical time lines of
the primary and secondary users. The PU alternates between idle and busy periods, but
the secondary user time line shows different behavior. After each sensing interval of
the SU, we may have a transmission interval or another sensing interval based on the
output of the sensing information. On the other hand, after any transmission interval

380 BABAK ABBASI BASTAMI, EBRAHIM SABERINIA ETQ.

we definitely have a sensing interval. In other words, the switching between sensing
and transmission time follows a Markov model which makes analysis complicated.
Simpler analysis is possible, if we change our point of view of the secondary user time
line.

o FU ‘
T I SO RSN ORS00 B NS
OV N WO A i 2 13 A S WO 2 A A A 1123123 5 Y

] wuide PUacis || Susersing [od 8l scive

Fig. 1. Typical time lines of the primary and secondary users

Let T, be a sensing interval that follows with another sensing interval and 7}, be
a combination of a sensing interval that follows with a transmission interval and the
transmission interval itself. Therefore, T, has a duration equal to 7 and T}, has a
duration equal to T + Ty. Figure 1(c) shows this alternate point of view of the SU
time line. With this point of view, the intervals T, and T, can follow each other
independently. Meaning that at any point of time, regardless of what type of interval
we had before, we can have either an interval of T, or 7). Suppose P, and P, represent
the probability of the occurrence of each of the intervals type T, and T}, respectively.
During a total time of Troy, the average portions of the time which are occupied
PaTa PbTb

e Tpott. aNA Ty
Pa Ta N PbTh Total PaTa i PbTI) Total

respectively. Therefore, the average number of the types T, and T}, intervals during
T 1o Would be:

with 7, and T, types of intervals would be

P aTTotal
o= e B O 2
L PaTa + PbTIJ ()

and
_ _ DT
PczTa + PbTb

respectively. We will use these equations in our analysis of interference and bit rate in
the following sections.

@)

nrp

3. SYSTEM PERFORMANCE EQUATIONS

In this section we evaluate the system performance equations based on the system
model parameters described in the previous section.

ETQ.

nsing
cated.
- time

T/, be
d the
has a
e SU
other
terval
resent
tively,
upied
'TTotal

iuring

2)

€)

ate in

ystem

Vol. 55 - 2009 OPTIMAL TRANSMISSION TIME OF SECONDARY USER IN AN OVERLAY... 381

N e S
NN o

%

]

Fig. 2. Joint timing between the primary and the secondary user
3.1. INTERFERENCE ANALYSIS OF THE PRIMARY USER

The interference on the PU is proportional to the overlapping time in which both
PU and SU are simultaneously transmitting. In other words we have:

Ip = KTy “®

where, 7, is the expected value of the interference and T, is the expected value of
the overlapping time. Constant K; denotes the interference per unit of the overlapping
time and depends on the power spectral density of the SU transmitted signal and the
distance between the primary receiver and the secondary transmitter.

In order to calculate the overlapping time we consider different scenarios of conflict
in the system. Figure 2(a) shows a scenario where the PU starts transmission while the
SU is in transmission period. In this case, the sensing by the SU was done when the
primary user was in idle mode. Suppose 1z, is the point in time where the last sensing
has ended for the SU during previous PU idle duration. Apparently, f15 < 7] <ty +7.
If we define T| = 71 = I as a random variable that represents the remaining time

of the PU idle period, the probability that 7| is less than an arbitrary value A can be
calculated as:

P(Tllx <A) :f(;l =Tt <Al <71y <715 + 7))
_ 1= exp(=A/Topr) O<A<T (5)
I — exp(~T/TopF)

Equation (5) represents the cumulative distribution function (CDF) of }. The overlap-
ping time in this scenario can be written in terms of 71, 72 and T as follows:

382 BABAK ABBASI BASTAMI, EBRAHIM SABERINIA ETQ.

T -1, T-1, <1
TOVI:{ ! i : (6)

T T—1,>1

Evaluating the expectations in (6), we obtain

Toy = E(Tovl) =
Ton Torr exp(=T/Torr) — Ton exp(~=T/Ton) + (Ton — Torr) (7)
(Ton — Topp)(1 — exp(~=T/ToFr))

Another scenario of overlapping active transmission times is where the SU starts trans-
mitting when the primary channel was already busy (Figure 2(b)). This scenario only
happens if there is a wrong sensing by the SU during the busy interval of the PU.
Let 7oy collectively indicates the overlapping time during the busy interval of the PU
other than the overlapping time in the previous scenario. We can use Equations (2)
and (3) to calculate the expected value of 7,,,. When the PU is busy, type T, interval
happens when the sensing by the SU is correct and type 7', interval happens when the
sensing by the SU is incorrect. Therefore, P, = 1 — P,, and P, = P,,. For a given 1,
the total duration within which the secondary user may make a wrong decision causing
interference is 75 — Toy1. Therefore, the total numbers of T, and T}, intervals are:

— (1 - Pm)(TZ - 7'ovl)
(l - Psn)Ta + PmT:’) (8)

_ T2 — Tovl
(1 - Pm)Ta + Pme

Nq

Ny

Noting that a sensing time (Ts) exists in both 7, and T}, intervals, the total average
time of sensing during the time 13 — 7oy would be (N, + N)T;. Hence, the average
overlapping time in this case would be

Tov2 = T2 =~ Toyt — (Ny + Np)T
(T2 = Tovi) T (9)
(1 _Pm)Ta"'PmTh ’

=T~ Tovl —
Therefore, the expected value of this overlapping time would be

(Ton = Tov1)
Tos = E(tos) = Tox — Tovt — T, 10
ov2 (Tov2) ON ovl (A= P)T,+ P, T, (10)

Considering the overlapping times in the two scenarios, the total expected value of the
overlapping time would be:

Toy = Toyi + Tovz =
- Torr exp(~T/Torp)~Ton exp(=T/Ton)+(Ton—Torr)
(Tox - Tox Ton—Tom) (I —exp-T/Tor)) an

(1 - Pm)Ta + Pme >

Ton —

Vi

tt

d
a
tt

I¢

o

al

ETQ.

(©)

7

rans-
only
> PU.
e PU
s (2)
erval
n the
n 7y,
1sing

®)
rage

rage

©)

(10)

f the

an

Vol. 55 - 2009 OPTIMAL TRANSMISSION TIME OF SECONDARY USER IN AN OVERLAY... 383

3.2. DATA RATE ANALYSIS OF THE SECONDARY USER

The data rate of the SU is proportional to the amount of time that the SU transmits
without overlapping with the PU. Let Tnov denotes the none-overlapping time in which
the secondary user is transmitting within the idle period of the PU. The data rate, C,,
of the SU is

Cs = K> Thov, (12)

where Ty = E(1,0y) is the expected value of the non-overlapping time. Constant K,
denotes the data rate per unit of the non-overlapping time and depends on factors such
as modulation type and symbol duration of the secondary user. In order to evaluate
the data rate of the SU, first, consider the scenario shown in Figure 2(c), where the
PU switches to its idle mode and the SU is still transmitting because of a bad sensing
result when the PU was busy. Suppose 71, is the last sensing end point of the SU
during 7, and let T5 =Ty~ Tie. Since Trs2 18 the end time of the last sensing interval,
we should have 11 < 7, < Tis2 + T. Therefore, the probability that 7; is less than an
arbitrary value A can be calculated as:

P(ty < A) = P(t, ~ T2 <At <12 <10 + T)
1._ —

_ exp(—A/Ton) O<A<T (13)
I —exp(=T/Ton)

Equation (13) represents the distribution of 75. The non-overlapping time then depends
on the 75, 7| and T as follows

T— T/Z T~ TIZ < T
= ; 14
Thovl { T T — T, > T (14)

Manipulating (14), we have

Tnovl = E(Tnovl) = .
- Ton exp(=T/Ton) ~ Torr exp(~T/Tyymorr) + (Topp — Ton) (15)
OFF .
(Torr — Ton)(1 — exp(=T/Ton))

Now consider the scenario as shown in Figure 2(d) in which the SU senses and transmits
during the idle interval of the PU. Let Thov2 indicates the collective non-overlapping
time during the idle period of the PU other than the non-overlapping time in previous
scenario. When the PU is idle, type T, interval happens when the sensing by the SU is
correct and type 7, interval happens when the sensing by the SU is incorrect. Therefore
Py=1-Ps and P, = Prq. Given 11, the total duration within which the secondary
user may make a correct decision causing interference is equal to 7| — 7,4,(. Therefore,
the total numbers of 7, and 7, intervals are:

384 BABAK ABBASI BASTAMI, EBRAHIM SABERINIA ETO.

N’ = Pfa(Tl = Tnovl)

“ PfaTa + (1 - Pfa)Tb

N/ = - Pfa)(Tl ~ Tnovl) (16)
b PfaTa + (1 - Pfa)Tb.

Since the sensing time exists in both T, and T, intervals, the average number of sensing
during the time 7| — Tyoy1 Would be (N, + N))T,. Hence, the non overlapping time is
equal to:

Thov2 = T1 — Tnovl — (N:, + N;:)Ts
(T1 = Thovt) . (17

=Ty = Thovl — 5
: novl PfaTa + (1_ Paf)Tb

The expected value of this non-overlapping time is equal to

. (Torr = Thovt)
T = FE(t =Tope — T, - T,. 18
nov2 (n0v2) OFF novl PfaTa " (1 — Pfa)Tb K ()

Hence, the resulting total expected value of the non-overlapping time would be

Thov = Thovt + Toovr =
(T T Ton exp(~T/Ton)~Torr exp(~T/ T()FF)“*”(TOI‘F_TON>)
OFF OFF (Torr—Ton)(1- exp(~T/Ton)) T
s

PfaTa + (1 - Pfa)Tb ‘

(19)

Torr —

3.3. OPTIMAL TRANSMISSION TIME OF THE SECONDARY USER

Our objective is to obtain the value of the SU busy period, T, which maximizes the
data rate of the SU and maintains the average interference on the PU receiver smaller
than a target value. We assume that the average values of the busy and idle durations
of the PU, the sensing information probabilities and the length of the sensing period
of the SU are given known values. It can be easily verified that both Ty and T,, are
increasing function respect to 7. Hence, the optimum value of 7" which maximizes the
SU data rate for a given interference threshed 7 is equal to T ().

4. SIMULATION RESULTS

In order to verify our analysis, we have performed a simulation of the system
described in section 2 using MATLAB. In our simulations, the mean values of the PU
idle and busy periods are assumed to be Tton = 1 and Topr = 2 which gives the ratio
of @, = 66% for the idle period. The false alarm and miss detection probabilities of
the sensing process are assumed to be 0.2. The sensing duration of the SU is set to
0.01. We run two systems simultaneously and calculate overlapping busy time of both
as well as busy time of the secondary user without overlapping with the primary user.

of

I

ETQ.

(16)

nsing
me is

(I7)

(18)

(19)

'S the
1aller
tions
eriod
. are
s the

stem
= PU
ratio
s of
et to
both
user.

Vol. 55 - 2009 OPTIMAL TRANSMISSION TIME OF SECONDARY USER IN AN OVERLAY.. 385

- Analytical Resuit

02 i i i i
0 0.2 0.4 0.6 0.8 1
T

Fig. 3. The average overlapping time of the Pu and SU busy periods as an indicator of the average
interference on the PU

Figure 3 shows the simulation results for the overlapping busy period as a function
of the SU transmission time and compares it with the analytical results of equation

(11).

~ Analytical result

T

Fig. 4. The average non-overlapping time when the SU is transmitting in the idle period of the PU as an
indicator of the data rate of the SU

Figure 4 shows the simulation result for the busy time of the SU without over-
lapping with the PU and compares it with the analytical results of equation (19). The
simulation results have a very good agreement with the analytical results.

386 o BABAK ABBASI BASTAMI, EBRAHIM SABERINIA ETQ.

nov
I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

ov

Fig. 5. The relationship between the system performance parameters

Figure 5 shows the relationship between the maximum data rate of the secondary
user with the interference threshold of the primary user. For a given threshold on
the interference and system parameters, we can calculate maximum overlapping time.
Using Figure 5, we can find the corresponding transmission time of the SU without

overlapping with the PU which can be translated to the total data rate of the secondary
user.

5. CONCLUSION

We calculated the optimal transmission time of the secondary user in a practical
overlay cognitive radio system. In our assumed system, the secondary user does not
sense the channel when it is transmitting. There is also a non-zero probability of error
in sensing. We derived closed-form expressions for the interference on the primary
receiver and the achievable data rate of the secondary user. The maximum data rate of
the cognitive user under the primary user interference constraint has been derived. Our

obtained performance expressions are in a promising agreement with the simulation
results.

6. REFERENCES

1. S. Hay kin: Cognitive radio: Brain-empowered wireless communications, IEEE J. Selected. Areas
of Communications, Vol. 23, no. 2, pp. 201-220, February 2005.

2. K. Hamdi, W. Zhang, K. Ben Letaief: Power Control in Cognitive Radio Systems Based
on Spectrum Sensing Side Information, IEEE International Conference on communications, pp. 24-28,
June 2007.

!
i
i
i
i

ETQ.

dary
1 on

hout
dary

fical

not
ITOr
1ary
e of
Our
tion

|
|
%
!

Vol. 55 -2009 OPTIMAL TRANSMISSION TIME OF SECONDARY USER IN AN OVERLAY... 387

. S. Huang, X. Liu, Z. Ding: Opportunistic spectrum access in cognitive radio networks, Pro-

ceedings of the 27th IEEE Conference on Computer Communications, pp. 1427-1435, April 2008,
R. Urgaonkar, M. J. Neely: Opportunistic Scheduling with Reliability Guarantees in Co-
guitive Radio Networks, Proceedings of the 27th IEEE Conference on Computer Communications,
pp. 1301-1309, April 2008.

- Q Yang, S Xu K. S. Kwak: Ouage Performance of Cognitive Radio with Multiple Receive

Antennas, IEICE Transaction on Communications, Vol. E91.B, pp. 85-94, January 2008.

- S. Srinivasa S. A Jafar Soft Sensing and Optimal Power Control Jor Cognitive Radio, IEEE

Global Telecommunications Conference, pp. 1380-1384, November 2007.
S.Srinivasa, S.A. Jafar: Cognitive Radio Networks: How Much Spectrum Sharing is Optimal?,
IEEE Global Telecommunications Conference, pp. 3149-3153, November 2007.

- W.S. Jeon, D. G. Jeong: An efficient quiet period management scheme Jor cognitive radio

systems, JEEE Transactions on Wireless Communications, Vol. 7, issue 2, pp. 505-509, February
2008.

- Q. Zhao, L. Tong, A. Swam i: Decentralized cognitive Mac for Dynamic spectrum access, First

IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN
2005, pp. 224-232, Nov 2005.

I. Hillenbrand, T. A, Weiss, F. K. Jondral: Calculation of detection and false alarm
probabilities in spectrum pooling systems, IEEE Communications. Letters, Vol. 9, no. 4, pp. 349-351,
April 2005.

- ROEtkin A Parekh, D. Tse: Spectrum sharing for unlicensed bands, First IEEE International

Symposium on Dynamic Spectrum Access Networks, DySPAN, pp. 251-258, 2005.

Q. Zhao,S. Geirhofer,L. Tong, B.M. Sadler Optimal dynamic spectrum access via
periodic channel sensing, in Proc. Wireless Communications and Networking Conference (WCNC),
2007.

ELECTRONICS AND TELECOMMUNICATIONS QUARTERLY, 2008, 54, no 3, pp. 389-392

XXIT IEEE-SPIE Symposium on Photonics and Web
Engineering 30-31 January 2009, Warsaw, FE&IT WUT

Participants of one of sessions during the 23" IEEE-SPIE Symposium on Photonics and Web
Engineering, Faculty of Electronics and Information Technologies, Warsaw University of Technology,
FE&IT, WUT, 31.01.2009, in front of the prof. J. Groszkowski bust monument, patron of the Faculty.

There are sitting (1 to r): mgr Tomasz Czarski, dr Maciej Linczuk, prof. T. Morawski - invited speaker,
prof. R. Romaniuk — symposium Chair, dr Krzysztof PoZniak, mgr Arkadiusz Kalicki.

During the weekend days of 30-31 January 2009, at the Faculty of Electronics and
Information Technologies, Warsaw University of Technology, there took place the next
23" Symposium on Advanced Applications of Photonic and Electronic Control and
Measurement Systems. The Symposium was attended by over 50 young researchers, a
number of them members of IEEE. The young researchers originate from WUT and
collaborating institutions like DESY, CERN, Max-Planck Institute, etc. There were
presented over 40 research papers. The Symposium official language is English. The
Symposium is organized under the eminent patronage of domestic institutions: PSP
— Photonics Society of Poland, Committee of Electronics and Telecommunications
of Polish Academy of Sciences, FE&IT WUT, as well as international institutions:
IEEE-R8, and SPIE-Europe. The Symposium has been organized two times a year,

390 XXIIRP [EEE-SPIE SYMPOSIUM ON PHOTONISCS AND WEB. .. ETO.

for 12 years. The proceedings are published in the USA in the series of Proc.SPILE,
and in Poland as special issues of Elektronika Monthly - a professional journal of the
Association of Polish Electrical Engineers, and Electronics and Telecommunications
Quarterly — a Journal by Polish Academy of Sciences.

The subject of WILGA Symposium series are advanced applications of photonic and
electronic distributed, large, control and measurement systems in high energy physics
research, astrophysics of elementary particles, superconducting accelerator technology,
laser technology of FEL machines, etc. The Symposium participants usually take part
in various large research experiments around the globe like: LHC and CMS, E-XFEL
and FLASH, ILC and CLIC, Auger Observatory and Chandrayaan satellite, ALBA,
GSI, FAIR and CBM, BESSY, PITZ, and others. Two times a year they meet face
to face at home in WILGA to discuss the results and work development. Usually,
during the everyday work course, only the video conferences are possible, as well as
e-mails. The best of young researchers, who show exceptional skill in the team work
and display research creativity have big chances in doing their M.Sc and Ph.D. theses
at one of the biggest experiments. Quite a number of PERG/ELHEP students spend
their vacations in big European HEP research institutions like DESY in Hamburg and
CERN in Geneva, also in Fermilab in Chicago. They participate in summer student
programs. The experience gained there is exceptional and uncompared.

International Research Collaboration “Pi-of-the-Sky” (with participation of members
from PERG/ELHEP Laboratory) discovered in March 2008 an exceptionally massive
gamma ray burst (GRB) with an accompanying optical flash. The GRB was catalogued
as 080319. The GRB was probably associated with formation of a super-massive black
hole. The distance from the event was estimated for 7,5bIn light years, i.e. half of the age
of our universe. The flash was visible with a naked eye for a minute. The observation
was done by a system of four-coupled wide angle super-sensitive cameras constructed
by the collaboration and ELHEP Ph.D. students. The cameras were positioned in ESO’s
Las Campanas facilities. The discovery was published in NATURE, nr.455, 2008.

International Research Collaboration on CMS — The Compact Muon Solenoid (with
participation of PERG/ELHEP members) finished in November 2008 the construction
of the detector at LHC in CERN. The ELHEP Laboratory took part in building of
the muon trigger. A 300 pages manual on The CMS was published by TOP/SISSA
in October 2008. A number of ELHEP members and Ph.D. students are active in the
works on the construction and upgrade of the LHC. The work goes on Linac 4, SPS
accelerator, LHC booster, also on a new generation of the safety system (Infer Lock)
for the LHC.

International research consortium organized around the Indian Moon satellite Chandra-
yaan-1, with participation of PERG/ELHEP Ph.D. students, and coordinated by Max
Planck Institute of Solar Research, has finished work on some apparatus for the satellite.

ETQ.

oc.SPIE,
al of the
vications

onic and
physics
mology,
ake part
- XFEL
ALBA,
cet face
Usualiy,
well as
m work
. theses
S spend
urg and
student

embers
nassive
logued
e black
the age
rvation
tructed
ESO’s
)8.

| (with
‘uction
ing of
SISSA
in the
L, SPS
Lock)

andra-
 Max
ellite.

Vol. 54 — 2008 XXIIRP [EEE-SPIE SYMPOSIUM ON PHOTONISCS AND WEB. .. 391

The satellite was launched and positioned on an orbit around the Moon in December
2008 and started regular measurements. A Ph.D. student from ISE (P. Sitek) partici-
pated in construction of the SIR-1 near infrared spectrometer. SIR-1 actually collects
measurement data from the Moon’s surface.

ELHEP Laboratory (Photonics and Electronics for HEP Experiments) traditionally
closely cooperates with a number of institutions in this country which participate in
large, international research experiments. These are, among others: Sottan Institute for
Nuclear Studies (IPJ) in Swierk/Otwock, Institute of Experimental Physics at Warsaw
University. The young researchers from these institutions actively participate in the
WILGA Symposium. Some of the Ph.D. students of WUT are employed at IPJ in order
to continue their research and to supplement for modest university Ph.D. fellowship.
During their stays with the experiments they are paid per diem for short stays and they
get experiment fellowships during longer stays.

The WILGA Symposia, organized in winter - smaller but international and with more
focused topical range, and the spring ones, organized during the whole last week of
May, much bigger, fully international, play in this country a completely unique role.
During the most popular years, the May Symposia gather more than 350 young rese-
archers from this country and from allover Europe. These are very special meetings of
young researchers, indeed. The meetings are completely void of any formalities and any
idealistic approach. They are devoted only to the science, research, new technologies
and the conditions of research work for young scientists in different parts of Europe and
IEEE-Region 8. During more than a dozen of years of WILGA Symposium activities,
it has gathered a few thousand of young researchers. The results of their work were
published in nearly 20 volumes of Proc.SPIE accessible via Internet data bases of the
American Institute of Physics, IEEE eXplore, Scitopia, SPIE Digital Library, Amazon,
Scopus and others. The young researchers which went through WILGA school may
be encountered all over the world in big research experiments and advanced engine-
ering and technology businesses like in: Spain, Italy, England, Switzerland, France,
Argentina, Germany, USA, India and other places.

The XXII™ Symposium had a special invited speaker, who was professor Tadeusz
Morawski, professor of radioelectronics, a prolific author of research literature, but also
a very well known palindromist. The occasion was the presentation of his new book
on the history of Polish palindromes. The book entitled “Kobyta ma maty bok — czyli
o Polskich Palindromach” has been issued recently as vol No. 24 of the “Biblioteczka
Rozrywki”. This is the fifth book on palindromes by professor Morawski. During the
session the author presented the book and after that signed and dedicated the book for
the session participants.

The Symposium organizers express solid hope that the IEEE-SPIE WILGA Symposium
cycle will be successfully continued. The next Symposium from the series is schedu-

392 XXIIRP IBEE-SPIE SYMPOSIUM ON PHOTONISCS AND WEB. .. ETQ.

led for the last week of May, 25-31.05.2009. It will be held traditionally in WILGA
on the Vistula River near Warsaw in the WUT creative work resort. The organizers
warmly invite B.Sc., M.Sc., Ph.D. students, young researchers and their tutors/mentors
to WILGA. The Symposium is nearly cost free. There is no entrance fee. Cheap nights
and cheap, but extremely good, food is offered by the summer WUT WILGA Resort
staff. A unique research-gastronomical specialty of WILGA Symposium are late night
topical working sessions combined with a grill sponsored by Photonics Society of
Poland and IEEE. SPIE funds special awards for the best presentations during the
Symposium, Full information about WILGA are accessible through the Symposium
web: http://wilga.ise.pw.edu.pl.

professor Ryszard S.Romaniuk, Warsaw University of Technology, ISE
WILGA Symposium Chairman

ETQ.

WILGA

|
|
|
|

ganizers
mentors
: INFORMATION FOR AUTHORS
p nights A
. R
S‘SOI‘t An article published in other magazines can not be submitted for publishing in E.T.Q. The size of an article can
fe nlght not exceed 30 pages, 1800 character each, including figures and tables.
:lety of Basic requirements
mg the The article should be submitted to the editorial staff as a one side, clear, black and white computer printut in two co-
. pies. The article should be prepared in English. Floppy disc with an electronic version of the article should be enclo-
Posium sed. Preferred wordprocessors: WORD 6 or 8.
Layout of the article:
- Title

- Author (first name and surname of author/authors)
Workplace (institution, address and ¢-mail}y

— Concise summary in a language article is prepared in (with keywords).
i — Main text with following layout:
e Introduction
o Theory (if applicable)
e Numerical results (if applicable)
o Paragraph |
e Paragraph 2
L]
9
o

Conclusions
Acknowledgements (if applicable}
e References
— Summary in additional languag

» Author (firs name initials and surname)

o Title (in Polish, if article was prepared in English)

» Extensive summary, hawever not exceeching 3600 characters (along with keywords) in Polish, if artide was prepared
in English). The summary should be prepared ina way allowing a reader to obtaoin essential information contained
in the artide. For that reason in the summary author can place numbers of essential formulas figures and tables from
the article.

Pages should have continues numbering.

Main text

Main text cannot contain formatting such as spacing, underlining, words written in capital letters (except words that are
Commonly written in capital letters). Author can mark suggested formatting with pencil on the margin of the article
using commonly accepted adjusting marks.

Tables

Tables with their titles should be placed on separate page at the end of the article. Titles of rows and columns should
be written in small letters with double line spacing. Annotations concerning tables should be placed directly below the
table. Tables should be numbered with Arabic numbers on the top of each table. Table can contain algorithm and prog-
ram listings. In such cases original layout of the table will be preserved. Table should be cited in the text.

Mathematical formulas

Characters, numbers, letters and spacing of the formula should be adequate to layout of main text. Indexes should be
; properly lowered or raised above the basic line and clearly written. Special characters such as lines, arrows, dots sho-
i uld be placed exactly over symbols which they ar attributed to. Formulas should be numbered with Arabic numbers
placed in brackets on the right side of the page. Units of measure, letters and graphic symbols should be printed
according to requirements of [EE (International Electronical Commission) and [SO (International Organisation of
Standardisation).

References

References should be placed at the and of the main text with the subtitle "References”, References should be numbe-
red (without brackets)adequately to references placed in the text. Examples of periodical (@], non-periodical {2] and
book {3} references:

{. F. Valdoni: A new milimetre wave satellite. ET.T. {990, vol. 2, no 8, pp. 141 148

2. K. Anderson: A resource allocation framework. XVI International Symposium (Sweden). May 1991, paper A 2.4
3. Y. P. Tvidis: Operation and modeling of the MOS transistors. New York, McGraw-Hill, 1987, p. 553
Figures

Figures should be clearly drawn on plain or milimetre paper in the format not smaller than 9x12 cm. Figures can be

{editor ~ CorelDRAW). Photos or diapositives will be accepted in black and white format not greater than 10x15 em.
On the margin of each drawing and on the back side of ecach photo author name and abbreviation of the title of article
Should be placed. Figure’s captures should be given in two languages (first in the language the article is writes in and
then in additional language). Figure's captures should be also listed on separate page. Figures should be cited in the text.

