On Secrecy Performance for Energy-Harvesting Multi-Antenna Relaying Networks with a Dual-Use Source

Authors

  • Gaofeng Pan
  • Jiliang Zhang
  • Yiyuan Xie

Abstract

This paper studies the secrecy performance of an energy-harvesting relaying system in the presence of a dual-use source node and an eavesdropper. Specifically, the source has dual roles in the dual-hop communication: 1) to transmit confidential information in the first hop; 2) to generate jamming signal to interfere the eavesdropper in the second hop. Moreover, the multi-antenna relay deploys a power-splitting harvesting scheme to coordinate the information receiving and energy harvesting, and adopts maximal ratio combining technique to process the multiple copies of signals. Considering decode-and-forward protocol and transmit antenna selection scheme, we derive an analytical expression for secrecy outage probability, and perform Monte Carlo simulation to validate the analysis. Analytical results show that the SOP performance with the dual-use source node can be effectively improved when the relay-destination channel does not have absolute advantage over the relay-eavesdropper channel.

Downloads

Published

2018-01-31

Issue

Section

Wireless and Mobile Communications