Generation of large-area arrays of aperiodic functional micro/nano structure using phase shift interferometry

Pearly Princess, Alfred Kirubaraj, Christina Sophia, senith S, Jino Ramson

Abstract


Phase shift interferometry (PSI) derived from interference technique as greater surface characterization technique based on the interference informationrecorded during a controlled phase shift. This research shows the development of micro/nano structures using phase shift interferometry. (PSI) is the process of developing the complex pattern structure using variable phase angle between two or more beams aligned to obtain functional aperiodic arrays. We have designed and modelled the PSI and simulated through MATLAB in 2D and 3D pattern structures. The PSI was performed in two process analysis. First, without PSI referring normal interference technique. Second, with PSI referring position of laser beams in quadrant based alignment. The obtained results show the minimum feature structure was measured as 12 nm. This feature size developed under phase shift interferometry (PSI) produces minimum feature size compared to the existing interferometry technique. This study gives the promising increased fabrication area could develop large area arrays structures.

 


Full Text:

PDF

References


. A Asenbaum, P., Overstreet, C., Kovachy, T., Brown, D. D., Hogan, J. M., & Kasevich, M. A. (2017). Phase Shift in an Atom Interferometer due to Spacetime Curvature across its Wave Function. Physical Review Letters, 118(18), 1–5. https://doi.org/10.1103/PhysRevLett.118.183602.

. Adela Habib, Rensselaer,Harikrishnan Vijayamohanan, Chaitanya K. Ullal, and Ravishankar Sundararaman. (2020). Coupled Electromagnetic and Reaction Kinetics Simulation of Super-WResolution Interference Lithography. J. Phys. Chem. B 2020, 124, 35, 7717–7724. https://doi.org/10.1021/acs.jpcb.0c05194

. Adrien Chauvin et al.(2017). Large scale fabrication of porous gold nano wires via laser interference lithography and dealloying of Gold-Silver-Nano-alloys. Micromachines 2017, 8(6),168. https://doi.org/10.3390/mi8060168.

. AndreasWinter1, YasinEkinci2, Armin Gölzhäuser3 and Andrey Turchanin (2019). Freestanding carbon nano-membranes and graphene monolayers nano-patterned via EUV interference lithography. IOP Publishing Ltd 2DMaterials, 6(2). https://doi.org/10.1088/20531583/ab0014

. Baek, Y., Lee, K., Yoon, J., Kim, K., & Park, Y. (2016). White-light quantitative phase imaging unit. Optics Express, 24(9), 9308. https://doi.org/10.1364/oe.24.009308.

. Chauvin, A., Stephant, N., Du, K., Ding, J., Wathuthanthri, I., Choi, C. H., … El Mel, A. A. (2017). Large-scale fabrication of porous gold nanowires via laser interference lithography and dealloying of gold-silver nano-alloys. Micromachines,8(6). https://doi.org/10.3390/mi8060168.

. Jywe, W. Y., Wang, M. S., & Wu, C. H. (2016). Application of blue laser direct-writing equipment for manufacturing of periodic and aperiodic nanostructure patterns. Precision Engineering, 46, 263–269. https://doi.org/10.1016/j.precisioneng.2016.05.006.

. Chiara Valsecchi *,Luis Enrique Gomez Armas and Jacson Weber de Menezes.(2019). Large Area Nano-hole Arrays for Sensing Fabricated by Interference Lithography. Optical Chemical Nanosensors, Sensors 2019, 19(9),2182;https://doi.org/10.3390/s19092182.

. D’Amico, G., Rosi, G., Zhan, S., Cacciapuoti, L., Fattori, M., & Tino, G. M. (2017). Canceling the Gravity Gradient Phase shift in Atom Interferometry. Physical Review Letters, 119(25), 1–6. https://doi.org/10.1103/PhysRevLett.119.253201.

. Deng, X., Hu, Z., Xiu, G., Song, Z., Weng, Z., Xu, J., … Wang, Z. (2010). Five-beam interference pattern model for laser interference lithography. 2010 IEEE International Conference on Information and Automation, ICIA 2010, (Cd), 1208–1213. https://doi.org/10.1109/ICINFA.2010.5512128.

. Di, J., Li, Y., Xie, M., Zhang, J., Ma, C., Xi, T., … Zhao, J. (2016). Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. Applied Optics, 55(26), 7287. https://doi.org/10.1364/ao.55.007287

. Guo, L., Jiang, H. B., Shao, R. Q., Zhang, Y. L., Xie, S. Y., Wang, J. N., … Sun, H. B. (2012). Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon, 50(4), 1667–1673. https://doi.org/10.1016/j.carbon.2011.12.011.

. Guo, T., Li, F., Chen, J., Fu, X., & Hu, X. (2016). Multi-wavelength phase-shifting interferometry for micro-structures measurement based on color image processing in white light interference. Optics and Lasers in Engineering, 82, 41–47. https://doi.org/10.1016/j.optlaseng.2016.02.003

. Hassan, S., Sale, O., Lowell, D., Hurley, N., & Lin, Y. (2018). Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell. Photonics, 5(4). https://doi.org/10.3390/photonics5040034

. Hayasaki, Y., Nishitani, M., Takahashi, H., Yamamoto, H., Takita, A., Suzuki, D., & Hasegawa, S. (2012). Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing. Applied Physics A: Materials Science and Processing, 107(2), 357–362. https://doi.org/10.1007/s00339-012-6801-1

. Jun Wu OrcI D,Zhaoxin Geng,Yiyang Xie Zhiyuan Fan,Yue Su ,Chen Xu and Hongda Chen (2019). The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography. Nanomaterials 2019, 9(1),73;https://doi.org/10.3390/nano9010073


Refbacks

  • There are currently no refbacks.


International Journal of Electronics and Telecommunications
is a periodical of Electronics and Telecommunications Committee
of Polish Academy of Sciences

eISSN: 2300-1933