Optimization of animal detection in thermal images using YOLO architecture
Abstract
Full Text:
PDFReferences
J. Witczuk et al. “Exploring the feasibility of unmanned aerial vehicles andthermal imaging for ungulate surveys in forests - preliminary results. International Journal of Remote Sensing”. In: International Journal of Remote Sensing 39.15-16 (2018), pp. 5504–5521. doi: 10.1080/01431161.2017.1390621.
A. Vecvanags et al. “Ungulate Detection and Species Classification from CameraTrap Images Using Reti-naNet and Faster R-CNN”. In: Entropy 24.3 (2022), p. 353. doi: 10.3390/e24030353.
Mateusz Choiński et al. “A First Step Towards Automated Species Recognition from Camera Trap Images of Mammals Using AI in a European TemperateForest”. In: (2021), pp. 299–310. doi: 10.1007/978-3-030-84340-3 24.
M. Ivansic-Kos, M. Kristo, and M. Pobar. Human Detection in Thermal Imaging Using YOLO. 5th International Conference on Computer and Technology Applications, pp. 19-24. 2019. doi: 10.1145/3323933.3324076.
M. Kristo, M. Ivasic-Kos, and M. Pobar. “Thermal Object Detection in Difficult Weather Conditions Using YOLO”. In: IEEE Access PP.3 (2020), pp. 125459–125476. doi: 10.1109/ACCESS.2020.3007481.
Ippalapally R., S. H. Mudumba, and H. R. Adkay M. Nandi Vardhan. Human Detection in Thermal Imaging Using YOLO. Object Detection Using ThermalImaging, 17th India Council International Conference (INDICON), pp. 19-24, New Delhi, India. 2020. doi: 10.1145/3323933.3324076.
A. Ulhaq et al. “Automated Detection of Animals in Low-Resolution AirborneThermal Imagery”. In: Remote Sensing PP.3 (2021), pp. 125459–125476. doi:10.1109/ACCESS.2020.3007481.
Popek, L., Perz, R., and Galiński, G. “Comparison of Different Methods of Animal Detection and Recognition on Thermal Camera Images”. In: Electronics12.270 (2023), pp. 125459–125476. doi: 10.3390/electronics12020270.
J. Cilulko, P. Janiszewski, and M. et al. Bogdaszewski. “Infrared thermal imaging in studies of wild animals”. In: European Journal of Wildlife Researche 59 (2013), pp. 17–23. doi: 10.1007/s10344-012-0688-1.
L. Tan, T. Huangfu, and L. et al. Wu. “Comparison of RetinaNet, SSD, and8 YOLO v3 for real-time pill identification”. In: BMC Med Inform Decis Mak (2021). doi: 10.1186/s12911-021-01691-8.
Jocher Glen. YOLOv5 by Ultralytics (Version 7.0) [Computer software]. access: 13.06.2023. 2014. doi: 10.5281/zenodo.3908559.
Isa, I. S. et al. “Optimizing the Hyperparameter Tuning of YOLOv5 for Underwater Detection”. In: IEEE Access 10 (2022), pp. 52818–52831. doi: 10.1109/ACCESS.2022.3174583.
Kaichao You et al. “How does learning rate decay help modern neural networks?”In: arXiv preprint arXiv:1908.01878 (2019). doi: 10.48550/arXiv.1908.01878.
Bryan Lim, Stefan Zohren, and Stephen Roberts. “Enhancing time-series momentum strategies using deep neural networks”. In: The Journal of Financial Data Science (2019). doi: 10.3905/jfds.2019.1.015.14
Thomas M Breuel. “The effects of hyperparameters on SGD training of neuralnetworks”. In: arXiv preprint arXiv:1508.02788 (2015). doi: 10.48550/arXiv.1508.02788.
Imran Khan Mohd Jais, Amelia Ritahani Ismail, and Syed Qamrun Nisa. “Adam optimization algorithm for wide and deep neural network”. In: Knowledge Engineering and Data Science 2.1 (2019), pp. 41–46.
E. Bisong. “Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform”. In: (2019)
.
Q. Xu et al. “Effective Face Detector Based on YOLOv5 and Superresolution Reconstruction.” In: Computational and mathematical methods in medicine (2021) doi: 10.1155/2021/7748350.
Refbacks
- There are currently no refbacks.
International Journal of Electronics and Telecommunications
is a periodical of Electronics and Telecommunications Committee
of Polish Academy of Sciences
eISSN: 2300-1933