A -5 dBm 400MHz OOK Transmitter for Wireless Medical Application

Mousa Yousefi


A 400 MHz high efficiency transmitter for
wireless medical application is presented in this paper.
Transmitter architecture with high-energy efficiencies is
proposed to achieve high data rate with low power
consumption. In the on-off keying transmitters, the oscillator
and power amplifier are turned off when the transmitter
sends 0 data. The proposed class-e power amplifier has high
efficiency for low level output power. The proposed on-off
keying transmitter consumes 1.52 mw at -5 dBm output by 40
Mbps data rate and energy consumption 38 pJ/bit. The
proposed transmitter has been designed in 0.18µm CMOS

Full Text:



A. W. Wong, D. McDonagh, G. Kathiresan, O. Omeni, O. El-Jamaly, T. K. Chan, P. Paddan, and A. Burdett, “A 1 V, micropower system-on chip for vital-sign monitoring in wireless body sensor networks”, in Proc. IEEE Int. Solid-State Circuits Conf. San Francisco, 2008, pp. 138–139.

Y. J. Yang, Y. J. Huang, H. H. Liao, T.Wang, P. L. Huang, C.-W. Lin, Y.-H.Wang, and S. shi Lu, “A release-on-demand wireless CMOS drug delivery soc based on electro thermal activation technique”, in Proc. IEEE Int. Solid-State Circuits Conf. San Francisco, 2009, pp. 288–289.

M. Vidojkovic1 et al., “A 2.4GHz ULP OOK Single-Chip Transceiver for Healthcare Applications”, in Proc. IEEE Int. Solid-State Circuits Conf. San Francisco, 2011, pp. 458-460.

Brian P. Otis, Y.H. Chee, and Jan M. Rabaey, “A 400μW-RX 1.6mW-TX Super-Regenerative Transceiver for Wireless Sensor Networks”, in proc IEEE Int. Solid-State Circuits Conf, San Francisco, 2005, vol. 1, pp. 396–606.

J.-Y. Chen, M. Flynn, and J. Hayes, “A fully integrated auto-calibrated super-regenerative receiver in 0.13 mCMOS,”IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1976–1985, Sep. 2007.

J. Bohorquez, A. Chandrakasan, and J. Dawson, “A 350 WCMOS MSK transmitter and 400 W OOK super-regenerative receiver for medical implant communications,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1248–1259, Apr. 2009.

D. Daly and A. Chandrakasan, “An energy-efficient OOK transceiver for wireless sensor networks,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1003–1011, May 2007.

N. O. Sokal, “Class-E RF Power Amplifiers”, QEX, no. 204, pp. 9-20. Jan/Feb. 2001.

M. Acar, A. J. Annema, B. Nauta, “Analytical design equations for class-E power amplifiers”, IEEE Trans Circuits Syst. vol. 54, no. 12, pp: 2706–2717, Dec. 2007.

S. Jin, B. Park, K. Moon, M. Kwon, and B. Kim, “Linearization of CMOS Cascode Power Amplifiers Through Adaptive Bias Control”, Microwave Theory and Techniques, IEEE Tran. on , vol.61, no.12, pp.4534,4543, Dec. 2013

M. Apostolidou, M. P. V. Heijden, D. M. W. Leenaerts, J. Sonsky, A. Heringa, I. Volokhine, “A 65 nm CMOS 30 dBm class-E RF power amplifier with 60% PAE and 40% PAE at 16 dB back-off”, IEEE J. Solid-State Circuits, vol. 44, pp. 1372–1379, May 2009.

R. Brama, L. Larcher, A. Mazzanti, and F. Svelto, “A 30.5 dBm 48% PAE CMOS class-E PA with integrated balun for RF applications”, IEEE J. Solid-State Circuits, vol. 43, pp.1755–1762, Agu. 2008.

K. L. R. Mertens, M. S. J. Steyaert, “A 700-MHz 1-W fully differential CMOS class-E power amplifier”, IEEE J. Solid-State Circuits, vol.37, pp. 137–141, Feb. 2002.

K. C. Tsai, P. R. Gray, “A 1.9-GHz 1-W CMOS class-E power amplifier for wireless communications”, IEEE J. Solid-State Circuits, vol.34, pp. 962–970, Jul.1999.

M. Yousefi, Z. D. Koozehkanani, J. Sobhi and H. Jangi, “A 1.8 GHz Power Amplifier Class-E with Good Average Power Added Efficiency”, Circuits and Systems, vol.4, pp. 504-509, Dec. 2013.

P. Reynaert and M. Steyaert, RF Power Amplifiers for Mobile Communications. New York, Springer, 2006.

G. Retz, et al. “A highly integrated low-power 2.4 GHz transceiver using a direct-conversion diversity receiver in 0.18 m CMOS for IEEE802.15.4 WPAN”, in: Proc. IEEE ISSCC. San Francisco, CA. 2009, pp. 414-415,415a.

Y. S. Eo, H. J. Yu, S. S. Song, Y. Y. Ko, J. Y. Kim, “A fully integrated 2.4 GHz low IF CMOS transceiver for 802.15.4 ZigBee applications”, In. Proc. Solid-State Circuits Conference IEEE ASSCC07, Jeju, 2007, pp. 164–167.

J. Bae, L. Yan, H. Yoo, “A Low Energy Injection-Locked FSK Transceiver With Frequency-to-Amplitude Conversion for Body Sensor Application”, IEEE J. Solid-State Circuits, vol. 46, pp. 928-937, 2011.

B. Cook, A. Berny, A. Molnar, S. Lanzisera, K. Pister, “Low-power 2.4 GHz transceiver with passive RX front-end and 400 mV supply”, IEEE J Solid-State Circuits; vol. 41, pp. 2757–2766, 2006.

J. Bae, N. Cho, H. J. Yoo, “A 490 mW fully MICS compatible FSK transceiver for implantable devices”, In. Proc. Symposium on VLSI Circuits, 2009, pp. 36–37.

J. Tan, C. H. Heng, Y. Lian, “Design of Efficient Class-E Power Amplifiers for Short-Distance Communications”, IEEE Tran. ON circuit and systems, vol.59, pp. 2210-2220, 2012.

IEEE P802.15.6/ IEEE standard, May 2010.

D. Sira, P. Thomsen, and T. Larsena “Output Power Control in Class-E Power Amplifiers”, IEEE Microwave And Wireless Components Letters, vol. 20, no. 4, pp. 232–234, Apr 2010.

R. Brama,. L. Larcher, A. Mazzanti, F. Svelto, “A 1.7-GHz 31dBm differential CMOS Class-E Power Amplifier with 58% PAE”, in Proc. Custom Integrated Circuits Conf. 2007, San Jose, pp. 551-554.

J. Cai and Z. Li, “A 1-V, 800-MHz CMOS class-E power amplifier with power Wireless Communications & Signal Processing (WCSP)”, in Proc. 2013 Int. Conf., 2013, pp. 1-4.

A. O. Ameen, and K. M. Sharaf, “A 1.75 GHz CMOS Class E RF Power Amplifier and oscillator”, Microelectronics 2007 ICM 2007 Int. Conf., 2007, pp. 235 – 238.

K. L. R. Mertens, and M. S. J. Steyaert, “A 700-MHz 1-W fully differential CMOS class-E power amplifier”, IEEE J. of Solid-State Circuits, vol. 37, pp. 137-141.

Q. Zhang, P. Feng, Z. Geng, X. Yan, and N. Wu, “A 2.4-GHz Energy-Efficient Transmitter for Wireless Medical Applications”, Trans. on Biomedical Circuits and Systems IEEE, vol. 5, pp. 39–47, Feb 2011.

X. Huang, E. Harpe, P. ; X. Wang, and G. Dolmans, “A 0dBm 10Mbps 2.4GHz ultra-low power ASK/OOK transmitter with digital pulse-shaping”, Radio Frequency Integrated Circuits Symposium, Anaheim, CA, 2010, pp. 263 – 266.

M. R. N-Ahmadi, at et, “A 2mW 400MHz RF transceiver SoC in 0.18um CMOS technology for wireless medical applications”, Radio Frequency Integrated Circuits Sym., 2008, pp. 285 – 288.

M. M. El-Desouki, M. J. Deen, M. Haddara, and M. Yaser, “A low-power CMOS class-E power amplifier for biotelemetry applications”, in Proc. Microwave Conference, 2005, European, vol. 1.

T. Sowlati, and D.M. W. Leenaerts, “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier”, Solid-State Circuits, IEEE J. of RFIC Virtual J. IEEE, vol. 38, pp. 1318–1324, Aug 2003.

D. Sira, P. Thomsen and T. Larsen, “A cascode modulated class-E power amplifier for wireless communications”, Microelectronics J., vol. 42, pp 141–147, Jan 2011.

A. Shirvani, D. K. Su, and B. A. Wooley, “A CMOS RF power amplifier with parallel amplification for efficient power control”, IEEE J. of Solid-State Circuits, vol. 37, pp. 684–693, Jun 2002.

D. C. Daly and A. P. Chandrakasan, “An energy-efficient OOK transceiver for wireless sensor networks,” IEEE J. Solid-State Circuits, vol. 42, pp. 1003–1011, May 2007.

Ben W. Cook et,”An Ultra low Power 2.4GHz RF Transceiver for Wireless Sensor Network in 0.13 µm CMOS with 400mw supply and an Integrated Passive RX front-End,” in IEEE ISSCC dig. Tech. Papers, pp. 1460-1469, Feb. 2006.

M. Kumarasamy Raja and Yong Ping Xu, ” A 52 pJ/bit OOK Transmitter with adaptable data rate,” in Proc Solid-State Circuits Conf., 2008. IEEE Asian, Fukuoka, Japan 3-5 Nov 2008, pp. 341 –344.

Z. Qi, K. Xiaofei and W. Nanjian, “An ultra-low-power RF transceiver for WBANs in medical applications,” Journal of Semiconductors, vol. 32, June 2011.


International Journal of Electronics and Telecommunications
is a periodical of Electronics and Telecommunications Committee
of Polish Academy of Sciences

eISSN: 2300-1933